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Quantifying the diversity of multiple time series with an ordinal symbolic approach

Luciano Zunino 1,2,* and Miguel C. Soriano 3,†

1Centro de Investigaciones Ópticas (CONICET La Plata - CIC - UNLP), C.C. 3, 1897 Gonnet, La Plata, Argentina
2Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina

3Instituto de Física Interdisciplinar y Sistemas Complejos CSIC-UIB, Campus Universitat de les Illes Balears,
E-07122 Palma de Mallorca, Spain

(Received 31 August 2023; accepted 13 November 2023; published 6 December 2023)

The main motivation of this paper is to introduce the ordinal diversity, a symbolic tool able to quantify the
degree of diversity of multiple time series. Analytical, numerical, and experimental analyses illustrate the utility
of this measure to quantify how diverse, from an ordinal perspective, a set of many time series is. We have shown
that ordinal diversity is able to characterize dynamical richness and dynamical transitions in stochastic processes
and deterministic systems, including chaotic regimes. This ordinal tool also serves to identify optimal operating
conditions in the machine learning approach of reservoir computing. These results allow us to envision potential
applications for the handling and characterization of large amounts of data, paving the way for addressing some
of the most pressing issues facing the current big data paradigm.
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I. INTRODUCTION

It is a fact that the advent of new technologies has brought
with it an unprecedented increase in the amount of available
data to manage and analyze. Astronomy, climate science,
physics and genomics are some of the scientific fields that
currently need to cope with terabyte-sized data sets [1]. Very
often, scientists from these and other disciplines cannot yet
be fully successful in getting the best out of this modern del-
uge of data principally due to the complexity of the analysis
task they are facing [2]. Consequently, the development of
computationally efficient methods to handle this huge volume
of information in a reliable and robust way is vastly sought
for researchers from the time series analysis and data mining
communities. Unveiling relevant and hidden information from
large data sets is a challenge that deserves special considera-
tion and any progress on this matter is welcome.

Particularly, in recent years, great effort has been made to
measure the degree of similarity between time series [3–5].
Approaches able to quantify the similarity or dissimilarity
of time series are especially suited to address time series
clustering and classification problems with higher accuracy
[4,6]. Most of these measures are designed to estimate the
difference between two time series. However, a generalization
of this concept for multiple time series is necessary for many
applications for which the overall similarity or, otherwise,
diversity among a finite number of time series provides a very
useful piece of information. For example, assessing the degree
of diversity of a test dataset is a relevant issue before its use
for testing and evaluating the performance of a new method.
This is due to the fact that only datasets with a high level
of diversity enable a rigorous validation of any time series
algorithm [7]. In the context of machine learning techniques
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for time series processing, reservoir computing stands out as
a powerful method for predicting and generating arbitrary
dynamical systems [8]. For example, it has recently been
shown that reservoir computers can be used to create a large
number of different chaotic signals with desirable properties
from a single chaotic system. Making these generated signals
as diverse as possible is required to enhance its applicabil-
ity [9]. Consequently, suitable strategies for quantifying and
maximizing diversity are needed. Finally, minimizing the re-
dundancy among different variables in multivariate time series
analysis is another significant task that could be potentially
addressed by implementing a suitable diversity measure. This
approach might be useful to complement standard dimension-
ality reduction methods [10].

In this paper, we attempt to shed some light on this problem
by introducing the ordinal diversity. This symbolic measure is
defined as the generalized Jensen-Shannon divergence of the
ordinal pattern probability distributions associated with the
different time series of the dataset under analysis. On the one
hand, the generalized Jensen-Shannon divergence is a dis-
tributional distance measure with important advantages over
other approaches, such as flexibility for all distributional data
types and intuitive theoretical interpretation [11,12]. On the
other hand, the ordinal mapping of time series satisfies rele-
vant properties that make it especially suitable for handling a
high volume of complex data, namely, simplicity, low com-
putational cost, wide applicability, and less susceptibility to
outliers and artifacts [13,14]. Combining both concepts, the
ordinal diversity straightforwardly inherits all these features
and emerges as a potentially valuable tool for evaluating
how diverse multiple time series are in practical contexts.
We illustrate this through several analytical, numerical, and
experimental analyses.

The remainder of the paper is structured as follows. In
Sec. II, the ordinal diversity is introduced. Some analyti-
cal and numerical findings are detailed in Sec. III. Next, in
Sec. IV, an experimental application is included to illustrate
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the practical utility of the proposed measure in a real context.
The main conclusions reached along this work are highlighted
in Sec.V. For the sake of completeness, an Appendix is added
to describe a complementary tool used to characterize the
synchronization degree in the experimental application.

II. ORDINAL DIVERSITY: BACKGROUND
AND DEFINITION

In the following, we start by revisiting the ordinal symbolic
representation together with its main advantages. Then, the
generalized Jensen-Shannon divergence is briefly introduced.
Finally, the proposed measure for diversity is defined.

A. Ordinal symbolization

Since the publication, more than 20 years ago, of the foun-
dational paper by Bandt and Pompe [15], the use of ordinal
or permutation patterns for the analysis of time series has
been continuously increasing [16–18]. The success of this
coarse-grained representation can be principally attributed to
the fact that the temporal structure of the underlying data
is straightforwardly taken into account in the symbols [19],
and to its wide applicability; i.e., datasets generated by un-
known dynamic processes with unknown levels of noise can
be robustly analyzed by implementing this approach [20].
Furthermore, this approach offers a natural and simple way to
find an appropriate symbolic representation from a time series,
with a weak condition of stationarity (order stationarity) that
is often fulfilled in practice, at least approximately [14,21].

The ordinal framework essentially consists of map-
ping equidistant successive D values of a time series
{xt , xt+τ , . . . , xt+(D−1)τ } to one of the D! possible permuta-
tions of the same size that describe the order relation between
these elements. A symbol πi with i = 1, 2, . . . , D! is then as-
sociated with each permutation and, consequently, the original
time series {xt }t=L

t=1 of length L is mapped to an ordinal se-
quence {st }t=L∗

t=1 of length L∗ = L − (D − 1)τ with st ∈ SD =
{π1, π2, . . . , πD!} (the set of permutations of length D that
defines the new alphabet). D is usually known as the order
or embedding dimension and the time separation between the
elements in the subsequence is the lag or embedding delay
τ (τ = 1 when considering consecutive points). Ordinal time
series analysis is commonly based on the discrete probability
distribution of the symbols,

Pπ = {p(πi ), i = 1, . . . , D!}, (1)

with p(πi ) the probability of each ordinal pattern estimated as
the relative number of occurrences of them in the time series.
The presence of any kind of temporal correlation in the data
manifests itself in a nonuniform distribution of the ordinal
patterns while equiprobability is obtained for a completely
random sequence, i.e., for white noise. In order to robustly
estimate Pπ , the condition L � D! should be satisfied, lim-
iting the maximum value that can be chosen for the order
D. Regarding the parameter of the embedding delay, it is
commonly suggested to use τ = 1. However, estimations with
lagged data points, τ � 2, are particularly useful for a better
understanding of continuous and/or scale-dependent systems
[14,22–24].

A word of caution should be raised when time series from
high-dimensional dynamics are symbolized by using the or-
dinal mapping. On the one hand, as it has been carefully
analyzed in Ref. [25], the order D has to exceed a lower
bound Dmin to successfully resolve the underlying temporal
structures for data from high-dimensional systems. Actually,
an almost uniform distribution of ordinal patterns is obtained
if D < Dmin, making the distinction of these highly complex
dynamics from purely random noise unfeasible. But, on the
other hand, it is also true that the data length L is often
limited in real situations and, consequently, the order D cannot
be chosen arbitrarily large taking into account the aforemen-
tioned condition L � D!. As a result, the order D does not
have to exceed an upper bound Dmax. Thus, any chosen pattern
length in the range [Dmin, Dmax] would guarantee a proper
estimation of the ordinal pattern probability distribution. The
major challenge faced when dealing with time series from
high-dimensional dynamics is that Dmin can be larger than
Dmax, making it practically impossible to unfold the under-
lying complex structures.

It is worth noticing that amplitude threshold dependen-
cies that negatively affect more conventional symbolization
recipes based on range partitioning [26] are naturally cir-
cumvented with the Bandt and Pompe recipe, and, also, that
the distribution of ordinal patterns is invariant with respect
to strictly monotonically increasing transformations of the
original data [27]. Finally, since the ordinal mapping requires
sorted values, the presence of equal values in the subse-
quences deserves to be carefully considered, especially if the
number of them is not negligible. This could be the case of,
e.g., signals with low resolution. The estimation of Pπ can be
significantly biased if ties are frequent and the addition of
a small random perturbation helps to mitigate this spurious
effect [28].

B. Generalized Jensen-Shannon divergence

The Jensen-Shannon divergence between the distributions
P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} with weights
ωP and ωQ (ωP � 0, ωQ � 0, and ωP + ωQ = 1), respectively,
is defined [29] as

D(ωP,ωQ )
JS (P, Q) = S(ωPP + ωQQ) − ωPS(P) − ωQS(Q), (2)

with S the Shannon entropy function, i.e., S(P) =
−∑n

i=1 pi ln pi (as usual, we assume the convention that
0 ln 0 = 0). This divergence is a measure of discernibility
between two probability distributions that has proven to
be useful for heterogeneous applications such as the
segmentation of nonstationary symbolic sequences (e.g.,
DNA sequences) into stationary subsequences [11,30], the
definition of a statistical measure of complexity [31], and
the statistical analysis of language [3], to name just a few of
them.

But what is more important for our present concerns is the
fact that this divergence measure can be easily generalized
to quantify the overall difference among any finite number
of probability distributions. The extension to M multiple
distributions, usually known as generalized Jensen-Shannon
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divergence (GJSD) [29], is given by

D(ω1,ω2,...,ωM )
JS (P1, P2, . . . , PM ) = S

(
M∑

i=1

ωiPi

)
−

M∑
i=1

ωiS(Pi ) ,

(3)

with Pi the probability distributions and ωi positive weights
such that

∑M
i=1 ωi = 1. The GJSD is bounded in the range

[0,−∑M
i=1 ωi ln ωi]. The minimum is achieved if and only if

all probability distributions under comparison are identical,
while the maximum value is obtained whenever their supports
are disjoints, i.e., when their nonzero probabilities are entirely
nonoverlapping [12]. In particular, the maximum possible
value for the GJSD is equal to ln M when the same weight is
assigned to all the time series under analysis (ωi = 1/M,∀i).

C. Ordinal diversity

Leveraging on the two previous concepts, the ordinal di-
versity (OD) is defined as the GJSD [Eq. (3)] calculated
over the ordinal pattern probability distributions [Eq. (1)]
of the multiple time series that are being contrasted. This
measure quantifies the degree of diversity among the ordinal
coarse-grained representations of the multiple signals under
consideration. Intuitively, when the estimated ordinal distri-
butions are all similar, the OD will be close to 0. In contrast,
OD will be larger (significantly different from zero) if the
associated distributions of symbols obtained via the ordinal
mapping are relatively dissimilar from each other.

A related ordinal metric, the permutation Jensen-Shannon
distance (PJSD), has been recently introduced as a versatile
and robust tool for quantifying the degree of similarity be-
tween two arbitrary time series [5]. Briefly, it is defined as
the square root of the Jensen-Shannon divergence between the
ordinal probability distributions Pπ and Qπ of the two signals
under analysis with equal weights, i.e., [D(1/2,1/2)

JS (Pπ , Qπ )]1/2.
The exponent 1/2 is included since it has been shown that
[D(1/2,1/2)

JS (P, Q)]1/2 is a true metric for arbitrary probability
distributions P and Q [32]. For further mathematical and
technical details about the PJSD, we refer the interested reader
to Ref. [5]. OD is essentially a generalization of the PJSD
for more than two time series, which additionally enables
one to assign appropriate weights to each ordinal probability
distribution.

III. ANALYTICAL AND NUMERICAL ANALYSIS

Next, we resort to the analysis of well-known stochastic
and chaotic dynamical systems for assessing the usefulness of
the proposed tool within controlled scenarios. It is important
to clarify here that equal weights were assigned to the multiple
time series in all analyses included in this work.

A. Fractional Brownian motion

Fractional Brownian motion (fBm) is a generalization of
Brownian motion that allows for long-range dependence and
self-similarity of the random increments [33]. The so-called
Hurst exponent H , which is a real number in (0, 1), character-
izes the raggedness of the motion. If H = 1/2, fBm reduces

FIG. 1. OD analytically calculated for sets of M = 100 fBms
with Hurst exponent values linearly equispaced in the range [1 −
Hmax, Hmax]. Results for D = 3 (top plot) and D = 4 (bottom plot)
are displayed. Mean and standard deviation (as error bar) obtained
from OD estimations, with the same orders and lag τ = 1, for 100
independent ensembles of the different sets of M = 100 numerical
simulations with different data lengths L are also included for com-
parison purposes. It is observed that the OD increases monotonically
as a function of Hmax since time series with a wider range of long-
range dependencies are included in the set. Besides, numerical curves
get closer to the analytical counterpart as L increases.

to Brownian motion; if H > 1/2, the increments are posi-
tively correlated; if H < 1/2, the increments are negatively
correlated. fBm has been successfully used to model fractal
phenomena appearing in very heterogeneous fields such as
hydrology, telecommunication, turbulence, image processing,
and finance [34], and the practical characterization of this
family of fractal stochastic processes remains as a topic of
interest among researchers [35,36].

We start our analysis of the OD with the example of fBm as
we can compare the results of the numerical estimates with the
ground truth. Analytical probabilities of the ordinal patterns
with orders D = 3 and D = 4 for fBm have previously
been determined by Bandt and Shiha [37]. Thanks to the
self-similarity property satisfied by this family of stochastic
processes, the ordinal pattern probabilities are independent of
the lag τ . There is, however, no closed analytical formula for
orders D � 5. Making use of the analytical results for D = 3
and D = 4, the OD for sets of fBms with different H is plotted
in Fig. 1. To generate these analytical curves, M = 100 fBms
with H linearly equispaced in the range [1 − Hmax, Hmax]

065302-3



LUCIANO ZUNINO AND MIGUEL C. SORIANO PHYSICAL REVIEW E 108, 065302 (2023)

FIG. 2. OD analytically calculated for sets of M different fBms
with Hurst exponent values linearly equispaced in the range [1 −
Hmax, Hmax]. Results for D = 3 (top plot) and D = 4 (bottom plot)
are displayed. Analytical curves collapse when the number M of
different fBms in the set is larger than or equal to 100.

have been considered, where Hmax is varied between 0.5
and 0.9995 with step 0.0005. In Fig. 1, OD estimations
from numerical realizations have also been included. Mean
and standard deviations (as error bars) for 100 independent
ensembles of the different sets of M = 100 fBm realizations
with Hmax ∈ {0.5, 0.51, . . . , 0.99} and different data lengths
L are displayed for comparison purposes. The simulated fBm
time series were generated by implementing the method of
Wood and Chan [38]. We show that the OD increases for
increasing Hmax. The numerical results become closer to the
analytical curves as the length of the simulations increases.

We have also analyzed how the analytical curves change
with the number M of different fBms in the set with H linearly
equispaced in the range [1 − Hmax, Hmax]. As was done above,
fBms with Hmax ∈ {0.5, 0.5005, . . . , 0.9995} have been con-
sidered. Figure 2 shows results obtained for D = 3 (top)
and D = 4 (bottom) for M ∈ {10, 50, 100, 200, 1000}. The
analytical curves are almost indistinguishable for M � 100,
which is the value that has been used in Fig. 1 and will be
used in the remainder of the manuscript.

B. Logistic map

The logistic map is a recurrence relation of the form

xn+1 = rxn(1 − xn), (4)

FIG. 3. OD estimated for sets of M = 100 realizations of the
logistic map with values of the parameter r linearly equispaced
between 3.5 and rmax (top plot) and between rmin and 4 (bottom plot).
Mean and standard deviation (as error bar) obtained from OD esti-
mations with orders D ∈ {3, 4, 5} and lag τ = 1 for 100 independent
ensembles of the different sets of M = 100 numerical simulations
are displayed. Realizations of length L = 103 data points (after
discarding the first 104 generations to avoid the effect of transient
behavior on the results) were generated for this numerical analysis.
Results obtained for other data lengths are analogous. The OD is able
to capture the dynamical richness and dynamical transitions of the
logistic map, reaching higher values when time series from periodic
and chaotic regimes coexist in the set.

where xn is a number between 0 and 1 and r is a positive
constant. The logistic map is often used as a simple model
of population dynamics and chaotic behavior [39]. Depending
on the value of r, the logistic map can exhibit different types
of behavior, such as convergence to a fixed point when r is
between 0 and 3, or oscillations between two or more values
when r is between 3 and approximately 3.57. The logistic
map undergoes a period-doubling route to chaos, leading to
increasingly complex and unpredictable behavior. Chaotic be-
havior appears when r is between 3.57 and 4, with narrow
windows of periodicity for particular values of r (e.g., a stable
period-3 cycle emerges around r ∼ 3.83). The logistic map
is a paradigmatic example of how simple nonlinear equa-
tions can generate complex phenomena that are not easily
predictable or controllable.

Figure 3 shows the OD numerically estimated for sets of
M = 100 time series originating from Eq. (4). On the one
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hand, Fig. 3 (top) presents the results obtained via the OD
when the time series are generated with linearly equispaced r
values in the range [3.5, rmax]. We find that the OD captures
the dynamical changes present in the time series as rmax is
increased. In particular, the OD starts to increase when the
time series set under analysis includes oscillatory signals of
different periods and continues to grow as chaotic time se-
ries are included in the set. The OD measure also captures
the transition to periodic windows around r ∼ 3.83 as this
increases the dynamical richness in the time series set. On
the other hand, Fig. 3 (bottom) focuses on the estimation
of the OD when the time series are generated in the range
[rmin, 4]. As rmin is decreased, the OD grows as soon as time
series with different dynamics are included in the set under
analysis. An abrupt jump in the OD is again found when
the periodicity regime around r ∼ 3.83 is present in the time
series set. Overall, we find the largest OD for the time series
generated by the logistic map when chaotic and oscillatory
dynamics with different periods are combined.

C. Coupled Hénon maps

The Hénon map is a two-dimensional discrete-time dynam-
ical system that can exhibit chaotic behavior [40]. Here, we
consider two unidirectionally coupled identical Hénon maps
with equations

x1(t + 1) = 1.4 − x2
1 (t ) + 0.3x2(t ), (5)

x2(t + 1) = x1(t ), (6)

for the driving system X , and

y1(t + 1) = 1.4 − [Cx1(t )y1(t )

+ (1 − C)y2
1(t )] + 0.3y2(t ), (7)

y2(t + 1) = y1(t ), (8)

for the response system Y . This drive-response configuration,
proposed in Ref. [41], has been widely used as a testbed for
evaluating the performance of causality measures [42–45].
For the parameter values chosen in Eqs. (5)–(8), the dynamics
of the systems exhibits chaos. The response system becomes
identically synchronized to the drive as the coupling parame-
ter C approaches unity.

Figure 4 presents the PJSD and the OD for the coupled
Hénon maps, where we have considered 100 response sys-
tems with different values of the coupling. Each of these 100
realizations of the response system y1 has a coupling strength
C, which is randomly selected from a Gaussian distribution
with mean μ = Cmean and standard deviation σ = 0.05 (qual-
itatively similar results are obtained for other values of σ ). In
Fig. 4 (top), we present the PJSD between the time series of
the drive x1 and each of the 100 different responses y1. The
PJSD measure increases for increasing values of the coupling
in the range of Cmean [0, 0.5]. For Cmean > 0.5, the PJSD starts
to decrease and eventually we find that the PJSD approaches 0
for larger coupling strengths. The low values of the PJSD for
large couplings suggest that x1 and y1 are then identically syn-
chronized. Figure 4 (bottom) shows the OD measure for the
M = 100 independent responses y1 and for different values of
Cmean. We identify that the OD is maximal for low values of

FIG. 4. Results obtained for the analysis of two unidirectionally
coupled identical Hénon maps with coupling strength C randomly
selected from a Gaussian distribution with mean μ = Cmean and
standard deviation σ = 0.05. One hundred independent pairs of time
series x1 and y1 were generated for each mean coupling strength
Cmean. Top: PJSD between pairs of time series x1 and y1. Bottom: OD
estimated for the set of M = 100 independent responses y1. Mean
and standard deviation (as error bar) obtained from estimations with
orders D ∈ {3, 4, 5} and lag τ = 1 for 100 independent ensembles
of the set of M = 100 numerical responses y1 are displayed. Both
ordinal quantifiers are plotted as a function of the increasing mean
coupling strength Cmean. Realizations of length L = 104 data points
(after discarding the first 104 generations to avoid the effect of
transient behavior on the results) were generated for this numerical
analysis. A noticeable maximum of the OD is reached at Cmean ∼
0.65, in the middle of the transition to identical synchronization.

the coupling strength Cmean ∼ 0.1 and for intermediate values
of Cmean ∼ 0.65. It is particularly interesting to observe that
the responses become more diverse in the transition to identi-
cal synchronization at intermediate values of Cmean. In order to
better understand the different behaviors displayed by the two
ordinal quantifiers on the coupling strength, it should be noted
that PJSD quantifies the degree of ordinal similarity between
drive x1 and responses y1, while the OD measures the overall
difference among the ordinal coarse-grained representations
of the 100 independent responses y1. Thus, at Cmean ∼ 0.65,
the 100 responses reach the maximum ordinal diversity among
them even when each of them is quite ordinally similar to the
drive signal. In other words, for this coupling strength, the 100
responses y1 are comparatively heterogeneous but, simultane-
ously, similar to the drive x1 from an ordinal perspective.
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FIG. 5. Illustration of the experimental application. An input
stream u(t ) drives the reservoir with input strength γ . The reservoir
consists of a nonlinear node subject to delayed feedback, with β

denoting the feedback strength. The operating point of the Mackey-
Glass nonlinear node is controlled by the external bias �. The output
of the nonlinear node is measured at different time shifts, xi(t ), for
the N = 100 virtual nodes.

IV. AN ILLUSTRATIVE EXPERIMENTAL APPLICATION

In this section, we focus on evaluating experimental data
that originates from a reservoir computing implementation.
Reservoir computing (RC) is a machine learning paradigm
that exploits dynamical systems for time series forecasting
and classification [46,47]. The computational core of RC is
the so-called reservoir, which is typically an input-driven non-
linear dynamical system. While the reservoir was originally
considered to be a recurrent neural network, it is also possible
to implement a reservoir with different physical substrates
[48]. Main ingredients for operational reservoirs include the
accessibility to a high-dimensional input-output mapping, the
ability to perform nonlinear transformations, and the existence
of a memory that fades over time [49]. In practice, these ingre-
dients need to be tested with large amounts of data. Specific
measures to properly quantify them are scarce and typically
computationally demanding [50]. We propose here the OD
as an efficient tool to identify favorable operating regimes
for RC.

The data under analysis originate from a physical im-
plementation that follows the paradigm of delay-coupled
reservoir computing (delay RC) [51]. Instead of a network of
discrete elements, delay RC employs only a single nonlinear
node that is coupled to itself via a temporal feedback loop.
A set of N virtual nodes is then created by considering the
response of the nonlinear node at equidistant time slots, here
N = 100. A scheme of the physical system is presented in
Fig. 5, where an input stream drives the reservoir and N
output signals are measured at different temporal locations.
More details about the experimental implementation, which
is a Mackey-Glass-based reservoir computer, can be found in
Ref. [52].

We analyze the experimental data of N = 100 virtual nodes
for an input strength γ = 60 and a feedback strength β = 0.8
over 20 different values of the bias � in the range [12, 725].
The dynamics of the experimental system, in the absence
of input and for these parameter values, is typically chaotic
for � < 237, exhibits a window of periodic dynamics for
intermediate values of �, and a single fixed point (stable
dynamics) for � > 650. In the following, we compute and
analyze the PJSD and the OD for these data with the ultimate
goal to relate the values of the quantifiers to the properties

FIG. 6. Results obtained for the analysis of the experimental
Mackey-Glass-based reservoir computer with input scaling γ = 60
and feedback scaling β = 0.8 over 20 different values of the bias �

(x axis) in the range [12, 725] (that spans the domain of the Mackey-
Glass nonlinearity). Top: PJSD between each one of the outputs
associated with the 100 virtual nodes and the input stream that feeds
the reservoir. Mean and standard deviation (as error bar) obtained
from these 100 estimations are depicted. Bottom: OD estimated for
the set of M = 100 outputs. Estimations with orders D ∈ {3, 4, 5}
and lag τ = 1 for time series of length 3 × 105 data points are
displayed. The parameter region at around � ∼ 687 satisfies having
large OD with low PJSD, i.e., large values of diversity among the
output signals, but preserving their similarity with the input stream
that feeds the reservoir.

desired for performing reservoir computers. For characteri-
zation purposes, the input stream follows a random uniform
distribution.

Figure 6 (top) shows the average value of the PJSD be-
tween each one of the measured 100 virtual output nodes
and the input stream that feeds the reservoir. Three distinct
regions can be observed in Fig. 6 (top). For � � 275, the
input and output ordinal pattern distributions are equivalent
as characterized by a low PJSD. For 312 � � � 575, the
large PJSD values indicate that the output distributions are
significantly different than the input one. For � � 612, the
input and output distributions are similar but not identical as
illustrated by the intermediate values of PJSD. In this range,
the relatively large error bars hint at the fact that the ordinal
pattern output distributions exhibit some diversity.

Figure 6 (bottom) shows the OD estimated for the set of
100 virtual node outputs. The OD exhibits two distinct local
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FIG. 7. Transcript synchronization 1 − HT as a function of the
bias � between the input stream that feeds the reservoir and each one
of the 100 virtual output nodes. Mean and standard deviation (as error
bar) obtained from the 100 estimations with orders D ∈ {3, 4, 5} and
lag τ = 1 are depicted. A drive-response relationship is confirmed
between the input and the output signals for intermediate and large
values of the bias �.

maxima around � ∼ 312 and � ∼ 687, respectively, which
are close to the transitions between dynamical regimes in the
absence of external input. A third local maximum can be seen
at � ∼ 537. The maximum at � ∼ 687 exhibits the largest
OD for all embedding dimensions.

For reservoir computing purposes, a large output diversity
that preserves the input driving is favorable. The parameter
region around � ∼ 687 best fulfills the desired properties of
large OD with low PJSD. A final test needs to be performed in
order to guarantee that the observed large output diversity is a
signature of a high-dimensional input-output mapping. We re-
sort to the transcript entropy, a measure of desynchronization
[53], as an indicator of the existence of a mapping between
the input and the output signals. Please see the Appendix for
more details about the transcript entropy analysis. As shown
in Fig. 7, the input and the output time series are related in
similar parameter regions where the OD peaks.

One of the main reasons for the popularity of reservoir
computing for time series processing is the existence of a sim-
ple training scheme, i.e., usually a linear regression suffices
[46]. For this reservoir computing training, only the signals
at the output of the reservoir are needed. However, the final
performance of the reservoir for a given computational task
depends nontrivially on the so-called hyperparameters of the
system, such as, in our case, the feedback strength or the
input scaling. Brute-force evaluation of the optimal hyper-
parameters for each task is time consuming and contradicts
the simplicity of the reservoir computing approach. For this
reason, the evaluation of task-independent metrics can help
to reduce the hyperparameter search for each task. Our re-
sults with the ordinal quantifiers are in good agreement with
those obtained with the more involved information processing
capacity measure [52] for the identification of favorable pa-
rameter regions for computing in the same system evaluated
in our work. In turn, the relationship between information
processing capacity and task-specific performance has been
derived in [54]. Using the same data analyzed here, we have

verified that good performance in a nonlinear autoregressive
moving average task [55] coincides with the parameter range
where the OD is greatest.

V. CONCLUSIONS

We have proposed the ordinal diversity as a measure to
estimate the heterogeneity in a set of time series. With the
presented analytical, numerical, and experimental results, we
have identified a number of useful properties that can im-
prove the toolkits for time series analysis. The quantification
of the fractional Brownian motion shows first that the OD
measure increases monotonically as the range of Hurst expo-
nents in the set under analysis is extended, while the numerical
results approach the analytical values of the OD. Second, the
example of the logistic map allows us to visualize that the OD
characterizes the dynamical richness in a set of time series
as well as serves to identify dynamical transitions. Third, the
OD can identify the region of transition to synchronization in
the case of heterogeneous coupled Hénon maps. Finally, we
have validated the OD as a way to characterize the machine
learning paradigm of reservoir computing, where diversity can
be viewed as a resource for computation. For large amounts
of data, the OD can also be used as a tool to identify the
level of redundancy. These examples illustrate the potential
applications of reducing the diversity of time series to a single
number. Of course, the OD can be complemented with other
measures, as details of the statistical properties of the time
series are lost in the reduction to a single value.

There are two other outstanding features of the OD that
deserve to be fully explored in future research. The first
one is the possibility to assign different weights to the time
series. This could be useful, for example, when time series
with different lengths and/or different amplitude resolutions
are compared. The second one is the fact that a multiscale
analysis can be easily carried out by setting different τ values
in the symbolization mapping. This multiscale implementa-
tion might be especially valuable in those analyses in which
signals with different sampling frequencies are considered.

Thanks to its wide applicability, versatility, and robustness,
we are optimistic about the utility of the proposed tool for the
analysis of complex signals in heterogeneous scientific fields.
In particular, we conjecture that it could be of high interest
in neuroscience to help overcome some current issues related
to the spatiotemporal dynamics of the human brain during
physiological and pathological conditions [56].

MATLAB code to estimate ordinal diversity is available in a
GitHub repository [57].
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APPENDIX: TRANSCRIPT ENTROPY ANALYSIS

The symbolic transcription scheme has been proposed by
Monetti et al. [58] to study synchronization between two
time series. Through basic permutation operations, the ordinal
patterns from the source and the target time series are mapped
into each other. More precisely, the transfer symbol or tran-
script T = (T1, T2, . . . , TD) is the unique ordinal pattern that
transforms the source ordinal symbol X = (X1, X2, . . . , XD)
into the target ordinal motif Y = (Y1,Y2, . . . ,YD) (T, X,Y ∈
SD), such that [59]

T ◦ X = (XT1 , XT2 , . . . , XTD ) = Y. (A1)

A transcript series can then be calculated by repeating this
procedure for each pair of simultaneous ordinal patterns from
the source and the target time series. Let us illustrate this
procedure with the help of a toy example. Given the source
time series {4.1, 1.2, 6.3, 5.3, 10.8, 7.3} and the target time
series {2.2, 8.3, 9.4, 3.7, 1.4, 2.6}, their associated ordinal se-
quences with D = 4 and τ = 1 are

{(2, 1, 4, 3), (1, 3, 2, 4), (2, 1, 4, 3)} (A2)

and

{(1, 4, 2, 3), (4, 3, 1, 2), (3, 4, 2, 1)}, (A3)

respectively. The transcript series is given by the sequence of
transfer symbols,

{(2, 3, 1, 4), (4, 2, 1, 3), (4, 3, 1, 2)}, (A4)

that allows us to generate (A3) from (A2) by applying (A1).
The normalized Shannon entropy HT = S(Tπ )/Smax, with

Smax = ln D!, of the ordinal patterns probability distribution
Tπ associated with the transcript series quantifies the desyn-
chronization between the two original, i.e., source and target,
time series from an ordinal perspective. Consequently, the
so-called transcript synchronization 1 − HT is a measure of
synchronization [53]. Intuitively, a high transcript synchro-
nization implies that a low number of transcripts (small
amount of information) is needed to deduce the ordinal se-
quence of one series, given the ordinal sequence of the other
one. On the contrary, a low transcript synchronization is ob-
tained when many different transcripts are required to infer
the target ordinal sequence from the source one.
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nization as adjustment of information rates: Detection from
bivariate time series, Phys. Rev. E 63, 046211 (2001).

[44] T. Kreuz, F. Mormann, R. G. Andrzejak, A. Kraskov, K.
Lehnertz, and P. Grassberger, Measuring synchronization in
coupled model systems: A comparison of different approaches,
Physica D 225, 29 (2007).

[45] A. Krakovská, J. Jakubík, M. Chvosteková, D. Coufal, N.
Jajcay, and M. Paluš, Comparison of six methods for the de-
tection of causality in a bivariate time series, Phys. Rev. E 97,
042207 (2018).
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