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ABSTRACT Roundabouts have many benefits when compared with traditional signal-controlled intersec-
tions: improve safety, reduce delay, improve traffic flow, are less expensive, and occupy less area. The
behavior of traffic participants is full of uncertainties in the real world. An automated system that relies
only on its perception is unable to safely enter the roundabout until a large gap occurs or the vehicle
approaching has actually left the roundabout or passed the conflict area. In order to improve the driving
quality, autonomous vehicles should be able to infer the correct intention at roundabouts as early as possible.
In this work, a method to classify the intentions of the surrounding vehicles at unsignalized roundabouts is
proposed. For each vehicle at the scene, a Dynamic Bayesian Network is instantiated and the intentions are
inferred using a particle filter.

INDEX TERMS Intention-detection, interaction-aware, roundabout.

I. INTRODUCTION
The anticipation of other vehicles’ intentions is crucial to
safely navigate through traffic. The behavior of traffic par-
ticipants is full of uncertainties in the real world. In order
to improve the driving quality, autonomous vehicles should
evaluate the threats, taking seriously the ones with high
probability to happen and not overreacting to the ones with
low probability. Probabilistic intention and motion predic-
tions are unavoidable to accomplish safe and high-quality
decision-making and motion planning for autonomous
vehicles [1]. Wrong predictions can result in either too
conservative motions, such as unnecessary stops/yielding,
or dangerous situations, like emergency brakes and
collisions.

Roundabouts have many benefits when compared with
traditional signal-controlled intersections: improve safety,
reduce delay, improve traffic flow, are less expensive, and
occupy less area [2]. Some mobility studies [3] point out that
accidents that still happen in these situations are mainly due
to failure to give way when entering the roundabout, which
can be interpreted as a failure to infer the intentions of the
drivers inside the roundabout.
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To infer the intention of the drivers at intersections, some
works use classifiers, such as particle filters or naive Bayesian
classifiers, but they do not take into account the interaction
between vehicles or only consider the most probable action.
These can lead to suboptimal results in complex scenarios.
Others use data-driven approaches, that do take into account
the interaction but depend on a large amount of data and they
cannot guarantee that the results can be applied to different
scenarios.

In this paper, a method to classify the intentions of the sur-
rounding vehicles at unsignalized roundabouts is proposed.
The framework here presented is evaluated in 9 roundabouts
with data from the datasets INTERACTION [4], rounD [5],
and openDD [6]. The main contributions of this article are:

• A generic approach to handle almost any layout and
number of vehicles to:

– find all possible navigable corridors and their
relations;

– compute the expectation at intersections;
– estimate the intention of vehicles at roundabouts.

• The evaluation is carried out with real data from public
datasets.

• The proposed strategy is compared with similar
approaches with quantitative results.
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The remainder of this paper is organized as follows:
Section II presents a review of some related works trying
to solve the identified problem. Section III describes the
architecture used with the proposed intention estimation been
described in Section IV. Section V presents the datasets being
used and shows the results for 9 simulations. Section VI
concludes.

II. RELATED WORK
Roundabouts are an increasingly researched topic in many
areas of interest, such as optimization of the geometry [7],
cyclists safety [8], analyze the brainwaves going through a
roundabout [9] and gap acceptance [10], [11].

Compared with highways, roundabouts, as other types of
intersections, offer stronger interactions between vehicles,
where the collision risk is higher. Since the intention of the
other drivers cannot be measured directly, many works focus
on ways to estimate it.

Intention inference can be considered a classification prob-
lem of driving behaviors and can be divided into two cate-
gories: index-based and machine learning approaches [12].
Index-based approaches include Time-to-Intersection, Time-
to-Collision, Time-to-React, and can be used to estimate
risk [13]. A few machine learning approaches found in the
literature will be described below.

A framework for assessing traffic scenes with the interac-
tion between traffic participants is presented in [14]. They
transform the possible behavior patterns of the vehicles
involved into hypotheses and compute the joint probability
of each hypothesis by reconstructing the individual proba-
bility of each behavior. As a result, they obtain the fully
interaction-aware joint probability distribution over all the
hypotheses. Their approach grows exponentially as the situa-
tion complexity and the number of vehicles involved increase.

The authors in [15] implement a Dynamic Bayesian Net-
work to reason about the situations and the risks at inter-
sections on a semantic level. The risk is assessed based on
the comparison of the intentions with what is expected from
the drivers in a given scenario. They model the expected
vehicle’s motions based on the road network (stop signs,
give away lines), distance to the intersections, and previous
pose and velocity. The intention to stop is computed based
on the previous intention and current expectation. With the
intention and the maneuver, the future pose and velocity
can be estimated. An evolution of this approach consid-
ering also lateral expectations has been recently presented
in [16] and [17].

In [18] the authors use a Dynamic Bayesian Network with
a particle filter to evaluate the interaction between vehicles
and estimate their route and maneuver intentions. From these
intentions, an action, represented by acceleration and yaw
rate values, is obtained and the motion prediction is com-
puted. This method considers only the most probable action
for the whole time horizon of the prediction, which, in com-
plex scenarios, may negatively influence the motion planning
search space.

In [19], the authors present a probabilistic method to clas-
sify the driver intention at a roundabout with a naive Bayes
classifier. To generalize to unseen roundabouts, they generate
optimal trajectories given a map. With the optimal leaving
and remaining trajectories, a Frenet frame is determined by
temporally aligning them and averaging the aligned posi-
tions. The trajectories of the vehicles are projected onto the
Frenet axis and the probabilities of leaving and remaining are
obtained by computing the Bayes’s theorem at k points of
the trajectory. Another naive Bayes classifier is used in [20]
where the authors present a probabilistic method to classify
the driver intention at a roundabout using Bayesian update
and Dynamic Time Warping (DTW). The distances of the
trajectory of the vehicles to the optimized center points are
computed with DTW and the probability of being in a given
corridor is updated with Bayes’s theorem.

In the field of data-driven approaches, many works use
LSTM [21]–[23], graph neural networks [24], reinforcement
learning [25] or transformer networks [26]. These techniques
can take into account features that can be hardly modeled by
traditional methods. Nevertheless, large amounts of data have
to be used for training and good results may be limited to
scenes with similar conditions to the training set.

III. ARCHITECTURE
The framework here proposed belongs to the block Motion
prediction from Figure 1 and can be mainly divided into
4 blocks: Find/Reuse corridors, Find interactions, Compute
intentions andMotion prediction, as shown in Figure 2 where
the flowchart and the data entering and leaving each block
is presented. The focus here is on the estimation of the
intentions and the corridors’ probabilities (three first blocks),
leaving the motion prediction out of the scope of this work.
The entrance data can be obtained from exteroceptive sensors,
V2X communication or from publicly available datasets. The
output of the block goes to the maneuver planner of the ego
vehicle.

FIGURE 1. Architecture overview.
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FIGURE 2. Intention inference and motion prediction flowchart.

Below, each block will be detailed, starting with a descrip-
tion of the maps.

A. MAP
The maps are loaded at the beginning of the simulation. They
are formed by lanelets [27], that are interconnected drivable
road segments geometrically represented by a right and left
bound. The relation between each pair of lanelets is used to
create an adjacency graph.

Linked to the lanelets are the regulatory elements, that,
in the case of unsignalized intersections, can describe the
lanelets with the right of way, the ones that have to yield, and
the physical position of the stop line. These features are nec-
essary to locate the intersections in the map and to compute
the longitudinal expectation, as described in Section IV-6.

The intersections are obtained by some geometrical oper-
ations over the lanelets of the map and are composed of a set
of lanelets, entrance and exit points, connections corridors
linking entrances to exits, and priorities. The priorities are
defined based on a pairwise comparison of the connections
corridors and result on n× n table, where n is the number of
connection corridors. The pairwise comparison follows these
set of rules:

• if the corridors geometrically intersect and the corri-
dor i has the right of way and the corridor j has to
yield, the position (i, j) receives 2 and the position (j, i)
receives 1.

• if the corridors geometrically intersect, but none of them
carries information regarding their relation, both posi-
tions, (i, j) and (j, i) receive 1.

• if the corridors do not intersect both positions, (i, j) and
(j, i) are set to 0.

B. FIND/REUSE CORRIDORS
Given a map formed by lanelets, their relational and physical
layers are used to obtain all the navigable corridors for the
vehicles in the scene. The length of these corridors has,
at minimum, the distance that the car can reach in a time
interval with its current speed, assuming constant maximum
acceleration.

For all vehicles, first, the current lanelet(s) where the
vehicle is located is obtained by comparing its position and
orientation in the physical layer. Next, a graph search is
performed for surrounding lanelets starting from the vehicle
lanelet(s) to create a lanelet-sequence for each corridor.

In the next iterations, the corridors found can be either
expanded or removed, if necessary. The expansion occurs if
the remaining distance is lower than what it can reach in the
future horizon, set as 4 seconds. In this case, a search is made
to add at least 10% of its current distance to the corridor
end. In the expansion is also possible to add new corridors,
as it happens when the vehicle is reaching an intersection.
The removal occurs if the current measured orientation of the
vehicle, when compared with the centerline of the corridor,
has a difference bigger than a threshold (see Figure 3) or if
none of the current lanelet(s) the vehicle is located belongs to
the corridor.

In the cases where there is more than one lane, at each
iteration, the lanelet in which the center of the vehicle is
located is selected. Based on this information, each corridor
is defined as being left, center, right, or not reachable with
respect to the position of the vehicle. To reach the corridors
at right/left, a Bézier curve is created that concatenates the
two road segments (the one in the current lane with the one in
the adjacent lane) with a length of max(4 v, 10)m, being v the
current vehicle’s velocity and 4 is the considered duration of
a lane change (in seconds). These values were defined after
analyzing the patterns of a lane change.

Using the optimized center points offline computed with
the method described below, the path of each corridor is
found by matching its lanelet’s identifiers and the lanelet’s
identifiers of the optimization.

A grid is created based on the shape of the road for each
corridor of the surrounding vehicles. For the ego vehicle,
a route is assumed and the grid is built using this information.
This grid is used to project the motion prediction of the vehi-
cle in the corridor, but the details of this process (appearing in
the last block of Figure 2) is outside the scope of this paper.
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FIGURE 3. Example of corridor being removed due to its orientation
difference.

At each time step, the lateral position of the vehicle with
respect to the grid is updated and the centerline closest to the
vehicle is select to be used in the following procedures.

An example of the corridors of a vehicle is shown
in Figure 4, where for one of the corridors the grid is drawn.
As mentioned before, this process is done for all vehicles, and
the grid is created for all their corresponding corridors.

FIGURE 4. Example of corridors and grid.

Applying this search to all vehicles present at the scene
results in a list of corridors (LC).

1) CORRIDORS OPTIMIZATION
The corridors generated in with the process described above,
use the center points obtained from the optimization proposed
in [28].

These center points are the result of the optimization of
corridors linking all entrances to all exits in a process done
offline only once and are loaded with the map. The cost
function used here is:

J = w1l + w2k̇2 + w3k̈2 (1)

FIGURE 5. Example of the optimization. In black, the center points
resulting from the average of the bounds. In blue, the center points
optimized.

where l and k are the distance and curvature of the optimized
path, respectively andw1,w2 andw3 are weights defined as 1,
10000 and 5000, respectively.

Each centerline is divided to match the corridor’s lanelets
and the corresponding points are stored with the identifiers of
all the lanelets.

C. FIND INTERACTIONS
In this stage of the process, the relations between vehicles and
between vehicles and the elements of the map are found.

Three interactions are obtained from the current list of
corridors: the corridors dependencies, the distances to the
intersections, and the lateral relation.

1) CORRIDORS RELATIONS
To find the dependencies between the vehicles present at the
scene, the centerline of the corridors are pairwise intersected
resulting in a collision list for each corridor. Figure 6 shows
the collision points for a corridor (that remains inside the
roundabout) from the magenta vehicle when compared to the
two corridors from the blue vehicle, one leaving (Figure 6a)
and one remaining inside the roundabout (Figure 6b).

In each pair, it is verified which vehicle arrives first at the
initial collision points. The one that arrives first is causing the
dependency on the one that arrives later. The possible colli-
sions are then grouped and sorted considering the distance
to the initial collision point and length (distance between the
initial and end points). The closest (within a range) and largest
one, in length, is defined as the dependency to the corridor.
The reason why only one dependency is selected is due to
the fact that in the motion prediction step only one corridor is
considered to influence the predictions of the other at a given
instant. From the example, the dependency from Figure 6b
is selected, since it influences the corridor from the magenta
vehicle for a longer distance.

If the selected dependency falls in any of the following
criteria, it is discarded and the next one is verified:
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TABLE 1. Example dependencies: The color is the vehicle and the number is the exit.

FIGURE 6. Example of collision points for one corridor of the magenta
vehicle compared to the two corridors from the blue vehicle. In both
cases, the magenta vehicle arrives later to the initial collision point,
hence it is the one having a dependency.

• the corridor causing the dependency has another depen-
dency before;

• the corridor causing the dependency has an intersection
before and has to stop;

If a corridor has a dependency before reaching an intersec-
tion, this corridor will not be considered at this intersection.
This process reduces the number of vehicles that have to be
handled at the intersections.

In this approach, at least one corridor has to be free (has
no dependency) to avoid a locked chain. In roundabouts,
the corridor with the farthest dependency is considered free
and leads the chain.

Table 1 exemplify the result of the process described
above considering the frame shown in Figure 7. The cor-
ridors are described as (vehicle color and exit number
(in blue)).

FIGURE 7. Example of the dependencies.

2) DISTANCE TO INTERSECTIONS
For each vehicle’s corridors, the lanelet’s identifiers of the
corridor are intersected with those of the intersections to
determine, if any, through which intersection the corridor
passes.

At each intersection, several key variables are determined:
the distance to the intersection, the entrance, and through
which connection corridor the corridors go through. If the
distance is bigger than what the vehicle can travel in the time
horizon, the corridor will not be considered in the following
processes to avoid unnecessary computation. Only the corri-
dors that go through at the intersection are considered.

The distance to the intersection is found by the projection
of the entrance point to the center points of the corridor
and computing the difference between the projected position
of the vehicle and the projected position of the entrance,
as shown in Figure 8.

FIGURE 8. Parameter description in intersections.

The result from the corridors relations is the corridors
dependencies (CD).
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The result of this process is the distances to intersec-
tions (DI).

3) LATERAL INTERACTION
In this step, the surrounding vehicles to every target vehicle
are found and the identifiers, distances, and velocities are set
to a table, as described in [17].

The result from the lateral interaction is the lateral
relation (LR).

IV. INTENTION ESTIMATION
In order to compute the intention of the traffic participants,
the Dynamic Bayesian Network (DBN) proposed in [15] and
used in [17] is applied. For each of the vehicles present in
the scene, with the exception of the ego vehicle, the network
represented in Figure 9 is instantiated, where bold arrows
represent the influences of the other vehicles on vehicle n
through some key variables (Ent , I

n
t ,8

n
t , Z

n
t ) described below.

FIGURE 9. Bayesian network.

The relations among variables appearing in Figure 9 allows
to model the driving scene as the following generalized
distribution [15]:

P(E0:T , I0:T ,80:T ,Z0:T )

= P(E0, I0,80,Z0)

×

T∏
t=1

×

N∏
n=1

[P(Ent |It−18t−1)× P(I
n
t |8

n
t−1I

n
t−1E

n
t )

×P(8n
t |8

n
t−1I

n
t−1I

n
t )× P(Z

n
t |8

n
t )] (2)

where the variables are described below:
• Expected maneuver Ent : represents the expected behav-
ior of the vehicle n at instant t according to traffic rules.
It is divided into two parts: longitudinal and lateral. The
longitudinal expectation is used to model the probability
that the vehicle should stop at an intersection and can
assume two values: go and stop. The lateral expectation,
on the other hand, models the probability that the vehicle
can make a lane change without hindering traffic. It can
assume two values: stay and change.

• Intended maneuver Int : represents the intention of the
vehicle and is also divided into longitudinal and lateral.

Algorithm 1 : Particle Filter Overview
Input: CD, DI, LR
Output: LI, CP

1 initialize particles
2 while true do
3 compute lateral expectation
4 compute lateral intention
5 compute longitudinal expectation
6 compute longitudinal intention
7 update pose and velocity

 Prediction

8 compute weight } Update
9 resample } Resampling
10 end

The lateral intention also includes the corridor the vehi-
cle intends to follow.

• Physical vehicle state8n
t : represents the pose and speed

of the vehicle. They are calculated at each instant based
on the intentions.

• Measurements Znt : represents the real measurements
of the physical state of the vehicle, extracted directly
from exteroceptive sensors of the ego-vehicle or via
V2X communications [29].

An exact inference of (2) is not tractable, hence a particle
filter is used to estimate the hidden states Et, It and8t, given
the observed variables Zt.

The particle filter is a type of Bayesian filter and the
predict/update cycle can be used to estimate the state [30].
The version here implemented can be divided into three main
steps: prediction, update, and resampling. In the prediction
step, the prior is computed by propagating the particles based
on a system model. In the update step, a measurement Zt is
used to refine the expected state estimate. In the resampling
step, new particles are randomly selected, with replacement,
from the set of weighted particles [31]. Each particle repre-
sents a possible state of the situation and contains a specific
corridor to each vehicle.

An overview of the particle filter implemented is presented
in Algorithm 1 followed by a description of each step. The
input to the algorithm is the interactions previously defined,
and the outputs are the longitudinal intentions (LI) of each
corridor at the next intersection (stop or go) and the prob-
abilities (CP) of the vehicle being in each of its possible
corridors.

4) LATERAL EXPECTATION
The decision to change lanes should be based on the desire to
quit the current lane, the selection of the target lane, and the
feasibility of the change.

For every vehicle in every particle, the vehicles’ follow-
ers and leaders in all possible lanes are determined and the
distances bumper-to-bumper and the velocity differences are
found. This information is used to compute the expected lat-
eral motion of the vehicles present at the scene with the with
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the model of [32], following the outcomes of the comparison
conducted in [17].

5) LATERAL INTENTION
The lateral intention is computed based on the previous inten-
tion (Ict−1) and the current expectation (Ect ). The intention
is 1 (change) if a random value is bigger than the probability
generated by Table 2.

TABLE 2. Lateral intention.

If the intention is to change lanes, a corridor containing
the target lanelet is selected. In those cases where there is
only one possible lane, the particle can also change corridors
following the probabilities from Table 2, given that the expec-
tation is 0 (stay).

6) LONGITUDINAL EXPECTATION
At each intersection, a pairwise evaluation of the corridors is
performed to determine the expected maneuver of the vehi-
cles resulting in a conflict matrix. The pairwise evaluation
was defined to be able to handle most types of unsignalized
intersections, not only roundabouts.

For each pair of vehicles the evaluation takes the following
rules into consideration:
• if the priorities are 0, both vehicles are expected to go;
• if the priority of the vehicle i is bigger than the priority
of vehicle j, vehicle i is expected to go and vehicle j will
have its expectation computed (adapted from [33]) as:

E =
1.05

1+ ( η3 )
−4 < rand (3)

where the left part represents the probability to accept
the gap and η is the absolute value of the difference
between the arriving time at the intersection.

• if the priority is one for both vehicles, the arrival time is
compared:
– if any vehicle arrives more than one second before

the other, this vehicle is expected to go and the
expectation of the other is computed with (3).

– if both vehicles arrive within one second and one
entrance is on the right of the other, the vehicle
coming from the right is expected to go and the
other to stop.

– if none of the above applies, the expectation for both
vehicles is computed with (3).

This pairwise evaluation is done to all vehicles going
through the intersection and will result in a conflict matrix
containing all the expectations. To define which vehicles can
go andwhich vehicles should stop, the columns of the conflict
matrix are summed and the vehicles corresponding to the
lowest values are expected to go and the others to stop.

As an example, the evolution of the expectation for a vehi-
cle waiting to enter the roundabout is presented in Figure 10.
In this scenario, mainly three vehicles are involved: blue,
yellow, and magenta. The three main events of the situation
are shown in Figure 11 and are marked with discontinuous
black lines in Figure 10. Table 3 is the conflict matrix for
a single particle and contains the probability to accept the
gap and the expectations for the frame from Figure 11a.
In this particle, the magenta vehicle intends to remain inside
the roundabout. If the corridor assigned to this vehicle was
leaving the roundabout, the vehicle would not be considered
in the computation of the expectation at this intersection.

FIGURE 10. Longitudinal expectation, intention and velocity of the blue
vehicle.

TABLE 3. Conflict matrix: probability to accept the gap and the
longitudinal expectation in parenthesis.

The way to read Table 3 is: the magenta vehicle has the
priority when compared with the blue vehicle. Therefore,
the cell (blue, magenta) has 1 as the probability to accept
the gap and 0 (go) as the expected maneuver. For the cell
(magenta, blue), the probability to accept the gap, computed
with (3), is 0.294, resulting in an expected maneuver to go
when compared with a random number. The sum of the
columns results in [0 0 1], which is interpreted as an
expected maneuver to go for the yellow and magenta vehicles
and to stop for the blue vehicle.

7) LONGITUDINAL INTENTION
As for the lateral intention, the longitudinal intention is com-
puted based on the previous intentions (It−1) and the current
expectations(Et ). The intention is 1 (stop) if a random value
is bigger than the probability generated by Table 4 [34].

The longitudinal intention is applied to compute themotion
prediction for vehicles at intersections.

For the example presented in Figure 11a, the intention of
the blue vehicle is shown in Figure 10 with a red line.
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FIGURE 11. Evolution of a situation.

TABLE 4. Longitudinal intention.

8) PHYSICAL VEHICLE STATE UPDATE
After the computation of the intentions, it is necessary to
update the pose and velocity for each vehicle in each particle.

a: POSE
A visualization of the pose update can be seen in Figure 12.
For all vehicles from all particles, the new position is com-
puted in two steps. Firstly, the current position is projected
into the centerline of the corridor and the distance traveled in
the last time interval is added as follows (the indices for the
particle and the vehicle are omitted):

Ptproj = Pt−1proj + b
vt−11t
sl
c

Pt1 = cp(:,Ptproj)+ (vt−11t mod sl) ∗
pv
‖pv‖

(4)

FIGURE 12. Pose update for a vehicle from a particle.

where cp is a 2 × n matrix of the center points, Ptproj and v
t

are the projected position of the particle into the center line
and the velocity of the particle for the vehicle at the instant t ,
respectively, sl is the segment length, and pv is the directional
vector between the two center points near Pt1.

Secondly, it is considered that the particle can move freely
from its previous position P to a new one P2 using this
expression:

Pt2 = Pt−1 + vt−11t
[
cos(θ t−1)
sin(θ t−1)

]
(5)

The final position update Pt is the average of (4) and (5),
including an additive random deviation:

Pt =
Pt1 + P

t
2

2
+ rand (6)

The orientation is updated by adding a deviation to the
direction of the vector in the centerline.

b: VELOCITY
The update of the velocity for a given vehicle in a particle
is performed as follows: if the intention for the particle is to
go, the update is done by sampling one acceleration from the
acceleration distribution used in the motion prediction; if the
intention is to stop, the update is done using a speed profile.

The acceleration distribution is a probability distribution
that represents the acceleration the vehicle must probably
have in the current instant. It is computed with Algorithm 2,
that takes into account the current acceleration a from the
vehicle and a defined set of accelerations intervals ranging
from −3 m/s2 to 2 m/s2. At each instant, it is verified in
which interval a falls, and the result is averaged with the
result from the previous time to avoid sudden changes. The
velocity is updated as follows (the indices for the particle and
the vehicle are omitted):

vt = vt−1 + as1t (7)

where as is a sample drawn from the initial acceleration
distribution.

In the second case, two speed profiles are defined given
two lateral accelerations, one maximal and one average
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Algorithm 2 Acceleration Distribution for a Vehicle

/* current acceleration, previous
distribution */

Input : a, accDistk−1

/* current acceleration distribution

*/
Output
:

accDistk

/* acceleration’s intervals */
1 accInt = [−3, −2, −1, 0, 1, 2]
2 1a = 0.3 // acceleration threshold
3 for i← 1 to 5 do
4 accDistk (i)← (accInt(i)−1a) ≤ a <

(accInt(i+ 1)+1a)
5 end
6 accDistk = normalize(accDistk )
7 accDistk = (accDistk + accDistk−1)/2)

(set by design), and the curvature κ of the path with
Equation 8.

vd =
√
alatd
|κ|

, d = avg,max (8)

Both velocity vectors, vmax and vavg, are limited by the
maximum allowed velocity in the corridor for both curves.
The maximum velocity allowed can be retrieved from the
map in the form of a regulatory element, or, in the absence
of such element, be defined as the maximum velocity used in
the motion prediction.

An example of the two curves is shown in Figure 13b
for the corridor from Figure 13a. Note that the velocity in
the intersection point is set to 0 m/s and the profiles are
updated to fulfill the acceleration and deceleration bounds set
by design.

With the points obtained from these profiles, the velocity
is updated as follows [33]:

vt = vatB−
vatB− vmtB
vatA− vmtA

(vatA− vt−1)+ rand (9)

where vmtA and vatA are the maximum and average veloci-
ties in the previous projected position (Pt−1proj), and vmtB and
vatB are the maximum and average velocities in the current
projected position (Ptproj).

9) WEIGHT UPDATE
The weight of each particle is updated considering, for each
vehicle, a four-variate normal distribution centered on the true
state Znt with no correlation between x, y, 2 and v.

P(Znt |8
n
t ) = N (x̂nt , x

n
t , σx)×N (ŷnt , y

n
t , σy)

×N (2̂n
t ,2

n
t , σ2)×N (v̂nt , v

n
t , σv) (10)

whereN (a, b, c) evaluates the estimated value a, considering
a mean b and a deviation c.

FIGURE 13. Example of speed profile for an intersection.

The total weightw of a particle k is the product of (10) over
all N vehicles present:

wtk =
N∏
n=1

P(Znt |8
n
t ) (11)

10) RESAMPLING
In the resampling step, the particles are selected according
to their weights. The selection is performed using the Low
Variance Resampling method [35] to prevent the loss of
diversity.

The criterion for implementing resampling is the effective
sample size (ESS) Neff which reflects the degree of weight
degeneracy [36].

Neff =
1

K∑
k=1

(wtk )
2

(12)

Resampling occurs when the ESS falls below a selected
threshold, set as half of the number of particles.

V. DATASET PROCESSING AND EVALUATION RESULTS
To evaluate the framework proposed in previous Sections,
publicly available datasets were used. This data needs to
be prepared beforehand, with the process described below.
To evaluate the results, one situation is selected and explained
in Section V-C1. The results from the 9 selected situations are
presented in Section V-C2.

A. DATASET PROCESSING
The data used in the simulations are obtained from publicly
available datasets recorded from a bird-eye-view perspective.
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TABLE 5. Roundabouts.

These data contain public traffic data from the traffic partici-
pants present at the scenes. For each participant, they include
their pose, velocity, acceleration, size, and also the frames
where it appears. Within the considered public available
datasets (INTERACTION [4], rounD [5], and openDD [6]),
9 different roundabouts were identified, from which the situ-
ation with a higher interactivity, was selected.

In order to use these data for the purpose of this work, they
have been downsampled and filtered to remove undesired
participants, such as static vehicles, pedestrians, motorcycles,
and large trucks. After binary tagging each frame as contain-
ing or not these participants, the intervals are grouped and the
vehicle that stays the longest in each interval is defined as the
ego vehicle. The frames in which this vehicle is not present
are discarded.

Table 5 contains relevant information regarding each case,
where the number of bifurcations represents the number
of times a vehicle can either leave or remain inside the
roundabout.

B. LONGITUDINAL EXPECTATION/INTENTION AT THE
INTERSECTION
The longitudinal intention (LI) is usually evaluated by a risk
metric computed as the difference between what is expected
and what is the inferred intention of the vehicle. Since the
data is real and obtained from public datasets, situations of
real risk are rare and, in the selected cases, none.

In this framework, the LI is applied and evaluated in the
motion prediction step: applied as the probability of
the vehicle to stop at the next intersection and evaluated by the
accuracy of the predictions in future time steps. Since motion
prediction is out of the scope of this paper, the evaluation is
performed by assessing how well the intention reflects the
expectation.

Similar to the risk, the evaluation is done by comparing
the expected value to the inferred intention at each instant
for every vehicle arriving at the intersection. If the absolute
difference between the expected and inferred values is bigger
than a threshold, this instant is flagged as an error. The
threshold here used is set to 0.3, the same value used to detect
risk in [33].

The metrics used to evaluate the longitudinal intention are
the overestimation and underestimation, defined as:
• overestimation: the difference is bigger than the thresh-
old. The expectation is more conservative than the
inferred intention;

• underestimation: the difference is smaller than the neg-
ative threshold. The intention is more conservative than
the computed expectation.

To illustrate the meaning of these categories, an example
with a vehicle from roundabout C is selected. Its expectation,
intention and difference are shown in Figure 14 and the
trajectory followed by this vehicle is shown in Figure 15. The
instants where the vehicle is behind the yield line are marked
in magenta in the map in Figure 15 and are represented by
continuous lines in Figure 14 where the bars classify the
instants as good (blue), overestimation (green) and underesti-
mation (red). In this example, from the 57 instants the vehicle
is present at the scene, 4 are classified as overestimation
(7.02%), and 1 as underestimation (1.75%).

FIGURE 14. Expectation, intention and difference. The instants are
classified as good (blue), overestimation (green) or
underestimation (red).

FIGURE 15. Trajectory followed by the vehicle from the example from
Figure 14. The instants the vehicle is behind the yield line are highlighted
in magenta.

The results for the 9 cases are presented in Table 6. Instants
shows the overall number of situations where the vehicles are
arriving at the roundabout, and Overestimation and Under-
estimation represent the percentage of mismatch between
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TABLE 6. Percentage of overestimation and underestimation for the
9 cases from Table 5.

expectation and intention. From the 7503 instants a vehicle
is facing the entrance to a roundabout, 206 (2.75%) are clas-
sified as overestimation and only 38 (0.51%) as underestima-
tion, which can also be interpreted as 96.74% of similarity
between expectation and intention.

C. INTENTION TO LEAVE OR REMAIN INSIDE THE
ROUNDABOUT
The intention of the vehicles should be classified as early
as possible. For this reason, the lead time was selected
to evaluate the estimations. For each vehicle, the intention
of leaving or remaining inside the roundabout is estimated
by the sum of the probability of the corridors leaving and
remaining inside the roundabout. With a threshold of 0.5,
and allowing a maximum of three spikes up to 0.7, the lead
time is defined as the interval between the time the sum of
the correct corridors has a bigger probability than the sum of
the wrong corridors until the time these wrong corridors are
eliminated from the list of possible corridors (as explained
in Section III-B). Here, correct and wrong corridors can be
either the corridors leaving or remaining in the roundabout
depending on the trajectory of the vehicle. Lead times larger
than 4 s are reduced to 4 s.

1) QUALITATIVE RESULT
Due to the small number of vehicles, a selected roundabout
(E) is used to describe and illustrate the metrics used for the
intention estimation evaluation. Figure 16 shows the trajecto-
ries followed by each vehicle in this driving scenario, where
each color represents a different car.

To take into account the stochastic nature of the particle
filter, each situation is simulated three times and the final
result is the average of the three.

Figure 17 shows the evolution of the probabilities for the
given situation. Each line of the figure represents a vehicle
identified by the red number on the left. The black dashed
vertical lines are the instants where a corridor leaving the
roundabout is removed and the vehicle remains inside the
roundabout, whereas the black continuous vertical lines are
the ones where the vehicle leaves the roundabout and the
corridors remaining inside are removed. The cyan dashed line
is the threshold used to define the lead time and the blue line
is the estimation of the wrong intention, where 0 represents

FIGURE 16. Trajectories follow by the vehicles throughout the whole
simulation.

a totally accurate intention estimation and 1, the opposite.
This value is computed by the sum of the probabilities of the
corridors leaving and remaining inside the roundabout. After
the last vertical line, the probability is one since the vehicle
has left the roundabout. For each bifurcation the lead time is
presented in Table 7.

TABLE 7. Lead time (larger is better) for the evolution from Figure 17.

Figure 18 details the evolution for the vehicle 8. Each
vertical line is complemented with the position of the vehicle
in the roundabout:
• continuous green (Figure 18b): instant the first lead time
starts to count. As already mentioned, a maximum of
three spikes up to 0.7 are allowed.

• discontinuous black (Figure 18c): instant the corridor
leaving the roundabout on the east exit is removed.
At this point, the first lead time is completed.

• continuous magenta (Figure 18d): instant the second
lead time starts to count.

• continuous black (Figure 18e): instant the corridors
remaining in the roundabout on the east exit are
removed. At this point, the second lead time is com-
pleted.

2) COMPARISON
The framework proposed (Method A) was applied in the
9 roundabouts defined in Table 5 and compared with other
intention estimation strategies:
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FIGURE 17. Evolution of the probabilities of leaving or remaining inside the roundabout for each vehicle.

TABLE 8. Comparison of the proposed method (A) with two baselines (B and C) and two implementations of works found in the literature (D and E). For
each method, columns 1-3 contain the number of cases the lead time interval occurs in the situation, and columns 4-5 contain the minimum and mean
lead time (in seconds), respectively. For the minimum and mean lead time, the larger the value, the better. The values in bold are the best results
in each situation.

• Centerlines optimized (Method B): the centerlines
are obtained directly from the optimization from the
Section III-B1;

• Centerlines directly extracted as the geometrical center
of the lanelets (Method C);

• The implementation of two representative works found
in the literature that also have a way to classify the
intention in roundabouts:
– Dynamic Time Warping + Naive Bayes Classi-

fier [20] (Method D);
– Frenet Frame + Naive Bayes Classifier [19]

(Method E).

Table 8 presents the results for the 5 methods in each of the
considered roundabouts. As can be seen, the framework here
proposed outperforms the other methods in 7 of the 9 cases,
both in the minimum and in the mean lead time.

In order to better understand the results the lead time ld was
classified into four intervals: ld ≤ 0.1 s, 0.1 s < ld ≤ 1.0 s,
1.0 s < ld ≤ 2.0 s and ld > 2.0 s. ld ≤ 0.1 s represents the
cases where the method do not give a higher priority to
the correct corridors until these corridors are removed from
the list of possible corridors. The last interval ld > 2.0 s is not
present in the table since it is the total number of bifurcations
(Table 5) minus the quantity of the other intervals. Note that
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FIGURE 18. Evolution of the probabilities of leaving or remaining inside the roundabout for the vehicle 8 and snapshots of the
scene in 4 instants. The target vehicle is enclosed by a black box.

methods A and B have no case where the correct intention is
not estimated (ld ≤ 0.1 s), whereas the other methods have
at least one case.

VI. CONCLUSION
In this work, the framework currently being used by
the AUTOPIA Group for the interaction-aware intention
classification of vehicles at roundabouts is presented. The
foundation of the framework, based on geometricalmaps con-
taining structural data of the roads (left and right bounds) and
intersections (right of way, yield, reference line) and general
navigable corridors obtained from the relational layer from
the map, can be applied to any context. The interaction-aware
estimation is performed with a Dynamic Bayesian Network

where the inference of the intentions is done with a particle
filter.

The longitudinal expectation/intention at intersections was
evaluated by assessing how well the intention reflects the
expectation. With the threshold used, 2.75 % of the instants
were classified as overestimation and only 0.51 % were clas-
sified as underestimation.

A comparison of the intention classification with four
baseline techniques was presented. The results found after
evaluation of 9 driving situations in roundabouts with
data obtained from publicly available datasets showed that
the approach here presented yields better performance
both in the minimum lead time and in the mean lead
time.
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