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Order-disorder transition in the zero-temperature Ising model on random graphs
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The zero-temperature Ising model is known to reach a fully ordered ground state in sufficiently dense random
graphs. In sparse random graphs, the dynamics gets absorbed in disordered local minima at magnetization close
to zero. Here, we find that the nonequilibrium transition between the ordered and the disordered regime occurs
at an average degree that slowly grows with the graph size. The system shows bistability: The distribution of the
absolute magnetization in the reached absorbing state is bimodal, with peaks only at zero and unity. For a fixed
system size, the average time to absorption behaves nonmonotonically as a function of average degree. The peak
value of the average absorption time grows as a power law of the system size. These findings have relevance for
community detection, opinion dynamics, and games on networks.
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I. INTRODUCTION

The Ising model is a cornerstone of equilibrium statistical
mechanics [1,2]. Beyond its original scope of describing fer-
romagnetic phenomena, the model is a general reflection of
discrete units’ tendency to align their state with neighbours,
e.g., agents’ opinions in social systems [3]. With temperature
in a canonical ensemble playing the role of noise or deviations
from the alignment tendency, the model at temperature zero
is relevant as a noiseless base case. The zero-temperature
limit of the equilibrium model, however, is not equivalent
to the actual kinetics with temperature fixed at zero. While
the former simply assigns all probability mass to the ground
state configurations, the latter explicitly probes the energy
landscape, especially local minima above the ground state
energy, if the initial spins are drawn uniformly at random,
which corresponds to an initialization at infinite temperature.
The energy landscape, in turn, is generated by the underlying
graph or interaction network.

We analyze the zero-temperature Ising model on random
graphs [4,5] for varying edge probability p and network
size N . This system is also known as the randomly
dilute Curie-Weiss model (CW), which corresponds to a
homogeneous CW in which the fixed interactions between
all spin pairs are replaced by random ferromagnetic coupling
[independent and identically distributed (i.i.d.) Bernoulli
random variables with mean p] between any pair of spins.
This change complexifies the energy landscape by introducing
metastable states to which the system tends to converge at
zero temperature [6–8]. While similar behavior has been
observed on other network topologies [9–11] and update
dynamics [12,13], we situate our findings at the gap between
two previous results in the context of the randomly dilute CW:
For sparse random graphs [k � log(N ) [8], where the mean
degree k = p(N − 1)], the probability to reach the global

minimum in which all spins are aligned (which we will refer
to as consensus) tends to 0 as N → ∞ [14]. For dense random
graphs [k = O(N )], the probability to reach consensus tends
to 1 as N → ∞ [8]. All these results are asymptotic, for
N → ∞. Our contribution sheds light on the regime between
finite sparse and dense graphs, where the average degree
k ≈ log(N ). Looking at final magnetization averaged over
different realizations 〈|m|final〉, we observe a transition from
disorder (〈|m|final〉 ≈ 0) to consensus (〈|m|final〉 ≈ 1) as we
move from sparse to dense random graphs by increasing the
mean degree. The dynamical runs that do not reach consensus
get trapped in local minima. As the networks densify, the
probability to reach a local minimum decreases continuously,
facilitating the system to reach consensus. With growing
network sizes N , we observe that the transition from disorder
to consensus shifts to higher values of k.

II. DYNAMICS

We investigate the ferromagnetic Ising model at zero tem-
perature on random graphs [4,5]. Consider a graph G =
(V, E ), where V = {1, . . . , n} is the set of vertices and E the
set of edges. Every vertex i ∈ V has a binary state variable si ∈
{−1,+1}. A spin configuration s = (s1, . . . , sn) is assigned
the energy

H (s) = −
∑

{i, j}∈E

sis j . (1)

We consider zero-temperature Metropolis dynamics with
initial conditions s(0) ∈ {−1,+1}V drawn uniformly at ran-
dom. In every microstep, a random vertex i is chosen. The
state of i is flipped, si → −si, if the resulting configuration
has lower than or equal energy as s itself [cf. Eq. (1)]. Time is
updated as t → t + 1/n in every microstep. Microsteps are
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iterated until the dynamics reaches a local minimum sfinal,
defined as a configuration from where configurations with
strictly lower energy are not reachable by the Metropolis
dynamics. Since the drawn graphs contain nodes with an
even number of neighbors, adjacent configurations with equal
energies occur, which in the literature are referred to as blinker
states [15]. Thus a given configuration cannot be identified
as a local minimum based on its neighboring configurations
(with respect to single-spin flips) alone. See the Appendix for
details of our method for detection of local minima.

For each run, we consider the magnetization of the local
minimum reached:

mfinal = 1

N

∑
i∈V

sfinal
i . (2)

For the absolute value of the final magnetization, we com-
pute the first moment 〈|mfinal|〉 and the variance (centered
second moment) σ 2 = 〈m2

final〉 − 〈|mfinal|〉2 where 〈·〉 denotes
averaging over realizations. We also record the time T until a
dynamical run first reaches a local minimum and consider the
average 〈T 〉 over realizations.

For given values of N and average degree k, 100 ran-
dom graphs are generated and 1000 independent runs are
performed on each of the graphs, resulting in 105 runs per
parameter choice. A graph G is generated as follows. Draw
a random graph from the ensemble G(N, p) with edge prob-
ability p = k/(N − 1); take as G the connected component
with a maximum number of nodes n and disregard all other
connected components.

III. RESULTS

Figure 1 shows the average absolute value of the magne-
tization of the system’s final state 〈|m|final〉 as a function of
the mean degree k = p(N − 1) for different network sizes. As
we increase the mean degree, we observe a smooth transition
from disorder (|m|final ≈ 0) to consensus (|m|final ≈ 1). Simu-
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FIG. 1. Average final magnetization 〈|m|final〉 as a function of the
mean degree k = p(N − 1) for different network sizes, increasing
from the top curve to bottom curve. We observe a transition from
disorder (|m|final ≈ 0) to consensus (|m|final ≈ 1). With growing net-
work sizes, the transition shifts to higher values of k.

(a) (b)

FIG. 2. Inverted average final magnetization 1 − 〈|m|final〉 as a
function of the mean degree k for different network sizes, decreasing
from top curve to bottom curve. (a) shows that the inverted average
final magnetization decreases exponentially for k > 3. In (b), we
shift the mean degree [k → k − kC (N )] such that the curves overlap
to reveal the N dependency of the transition point shown in the inset.
Using p = k/N as the control parameter, we would get a critical
pc ≈ log(N )/N , which tends to 0 as N tends to infinity.

lating the dynamics on different network sizes (from N = 103

to N = 105), we observe that with growing network size,
this transition happens at higher mean degrees k. Looking
at the inverted average final magnetization 1 − 〈|m|final〉 in
Fig. 2(a), we observe that it decays exponentially for suffi-
ciently large k. To quantify the influence of the network size,
we shift the magnetization curves: We define kc(N ) as the
value of k where 1 − |m| = 0.1. Figure 2(b) shows the data
collapse of the magnetization plotted as a function of k − kc,
the inset showing the values kc(N ). We see that the critical
degree kc(N ) grows at least as log(N ), which lies between
the growth regimes of sparse and dense graphs: The former
are characterized by k � log(N ) [8], while the latter exhibit
k = O(N ). Therefore, the transition from disorder to order in
the randomly dilute CW model happens in a parameter region
between sparse and dense graphs.

To further quantify this transition, we examine the distri-
bution of the magnetization for different graph realizations
and initial conditions in Fig. 3. For increasing network size
N , this distribution approaches a Bernoulli distribution where
|m|final takes values 0 and 1 only. For a mean value of 0.5,
the Bernoulli distribution has a variance σ 2 = 0.25. As shown
in the inset of Fig. 3, the difference �σ 2 between observed
variance and the theoretical maximum decreases algebraically
as we increase N while keeping 〈|m|final〉 = 0.5. If this trend
extrapolates to the limit of large N , the system either reaches
consensus or is trapped in a local minimum with |m|final ≈ 0.

Figure 4 shows the average time 〈T 〉 to reach the final state
as a function of the average degree k for various system sizes.
It behaves nonmonotonically, as there is a peak value of 〈T 〉
for a given system size N which increases as a power law with
N (see the inset of Fig. 4). We may compare this behavior to
the case of complete graphs, where the average time to reach
the final state is given by 〈T 〉 ∼ log(N ).

In order to characterize the final states of the system, we
compute for each node the fraction of neighbors in the oppo-
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FIG. 3. Variance vs average final magnetization for different net-
work sizes, decreasing from the top curve to bottom curve. The
dashed line indicates the maximally possible variance at the given
mean value, as obtained for a distribution with the given mean but
restricted to values at 0 and 1. The inset shows the system size de-
pendence of �σ 2 = 0.25 − σ 2 evaluated at 〈|m|〉 = 0.5 (+ symbols)
and a straight line with slope −0.25.
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FIG. 4. Average time to reach the final state as a function of the
mean degree k for different network sizes, decreasing from the top
curve to bottom curve. The peak, designating the network param-
eters that take the longest time to reach the final state, is close to
k = log(N ). With growing network sizes, this peak again shifts to
higher k. For each curve of the main panel, the inset shows the peak
value Tmax as a function of N (+ symbols); the solid line is the result
of a power-law fit yielding an exponent 0.440(5), and a correlation
coefficient 0.9996. Colors designate network sizes and are the same
as in Fig. 1.

FIG. 5. Cumulative histograms of the fraction of opposing neigh-
bors in the final state, taken over all nodes of degree k > 0 in
10 000 independent runs for a given N and k. Network sizes are
increasing from the top solid curve to the bottom solid curve. For the
solid curves, k is chosen such that the final average magnetization
〈|m|final〉 = 0.5. The step shape of histogram is due to the fact that
these fractions are the result of divisions by small integers.

site state. This quantity is given by

πs(i) = 1 − 1

ki

∑
j∈N (i)

δsi,s j , (3)

where N (i) designates the neighborhood of i, ki its degree,
and δsi,s j = 1 if si = s j . The distribution of πs(i) gives insight
into the structure of the local minima. If all values are strictly
below 1/2, this means that the associated state is strictly
stable because no individual nodes would flip spins under
the dynamics. Notice that in a consensual state πs(i) = 0 for
all nodes. On the other hand, values πs(i) > 1/2 indicate
that the node would switch under the dynamics, rendering
an associated spin profile s unstable. One important question
concerns the existence of local minima that contain blinkers,
that is, nodes with an equal number of aligned and unaligned
neighbors such that their spin flip does not change the global
energy of the system [16]. These nodes are characterized by
πs(i) = 1/2.

Figure 5 shows the cumulative histogram of these fractions
πs(i) for different network sizes and values of mean degree
k such that 〈|m|final〉 = 0.5, where roughly half of the runs
land in consensus and the other half in a local minimum.
We see that the majority of nodes have fully homogeneous
neighborhoods and that the probability to observe larger πs(i)
decreases in a sequence of steps. We observe a considerable
proportion of “indifferent” agents (blinkers), who have the
same amount of neighbors in each state at the end of the
dynamics. This indicates the existence/prevalence of local
minima defined by a series of neighboring states s that can
be reached by flipping the single nodes’ spins.

Finally, in order to check the robustness of our results,
we ran the dynamics on graphs with continuous-valued pos-
itive coupling strengths, as well as two modified dynamics:
Glauber dynamics, where equal-energy spin flips happen only
with probability 1/2, and another type of dynamics where spin
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flips happen only if they strictly decrease the energy. All three
scenarios present qualitatively the same transition as seen in
Fig. 1 at a critical mean degree increasing with system size as
well.

IV. DISCUSSION

We have studied the transition from disorder to order
in zero-temperature dynamics on the randomly dilute
Curie-Weiss model as we move from sparse to dense random
graphs by increasing the mean degree. The transition depends
on the graph size N , which shifts the critical degree to
higher values of k. In the transition region realizations can be
trapped in a plethora of local minima with zero magnetization
(|m|final ≈ 0).

We may describe the persistence of these local minima
in the context of community structure in networks. As we
have seen for certain configurations of N and k, the system
consistently converges to metastable states, which raises the
question whether the graph partitions given by these states can
be related to partitions in the sense of community detection,
such as the ones gained by modularity maximization [17]. The
intuition is that communities correspond to clusters of nodes
that are more strongly connected within their cluster than
across the network. Following this approach, a given partition
b of a graph G is evaluated using the following function,

Q(A, b) = 1

2m

∑
i, j

(
Ai j − kik j

2m

)
δbi,b j , (4)

where the entry of the adjacency matrix Ai j = 1 if there exists
an edge between nodes i and j, 0 otherwise. The normal-
ization factor 2m = ∑

i, j Ai j makes the measure comparable
across network sizes. The community index of node i is de-
noted by bi and δbi,b j = 1 if i and j are in the same community,
0 otherwise. The term kik j/2m implements the configuration
model [18,19] as the null model to which the real network
structure is compared. The modularity Q∗(A) of a graph is
then defined as the maximum modularity of all its possible
partitions:

Q∗(A) = max
b

Q(A, b). (5)

Previous works have shown that for random graphs,
limk→∞ Q∗ → 0 [20,21]. The metastable traps the system
converges to in the case of the randomly dilute Curie-Weiss
model discussed here therefore correspond to partitions that
are not uncovered by modularity maximization methods.

Beyond the energy landscape of the Ising model, the ques-
tion addressed by this paper is also relevant in the context
of opinion dynamics on social graphs [3]. Our results show
that even in random graphs there is a certain regime of graph
connectivity—in between sparse and dense graphs—in which
nonconsensual opinion profiles can be a stable outcome on
connected components. This is remarkable because random
graphs are characterized by the absence of group structures
and network segregation which were assumed to be the driv-
ing forces behind polarization dynamics in many opinion
dynamics models [22–24].

Our results are also interesting in the context of coordi-
nation games played over a social network [25] because the

observed zero-temperature dynamics in the randomly dilute
CW model can be considered as a best response update in a
symmetric coordination game where the payoff of agent i is∑

j∈N (i) sis j , which is the negative local energy of node i. In
this case, one is interested in the set of possible Nash equi-
libria defined as network configurations (s) in which no agent
alone is better off by changing their action. This definition
hence corresponds to how local minima have been defined
in the present paper. In games on networks, the existence of
nonconsensual equilibria is captured by the notion of cohesive
sets, which partition the set of nodes in a network in two such
that every agent has more connections to its own subset than
to the other [26]. The existence of local minima in the ran-
domly dilute CW model therefore proves that nonconsensual
outcomes in symmetric coordination games can be stable on
random graphs. An interesting follow-up question would be to
relate the number of local minima in the energy landscape to
the number of mutually disjoint cohesive sets of the network.
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APPENDIX: IDENTIFICATION OF LOCAL MINIMA
UNDER NEUTRALITY

For a configuration s = (s1, s2, . . . , sn) ∈ SV , node i ∈ V ,
and σ ∈ S, we write Uσ

i s as the configuration having σ as the
entry at node i and being s j for all other indices j �= i. This
way we describe updating the spin at node i with direction σ .
The change in energy caused by the update is

H
(
Uσ

i s
) − H (s) = −(σ − si)

∑
j∈�(i)

s j, (A1)

with �(i) := { j ∈ V : {i, j} ∈ E} being the neighborhood of
node i.

For configurations r, s ∈ SV and σ ∈ S, we say that r is a
σ -minor of s, in symbols r �σ s, if si ∈ {ri, σ } for all i ∈ V .

Lemma 1. Let r, s ∈ SV and σ ∈ S so that r �σ s. Further-
more, consider i ∈ V with si �= σ . Then

H
(
Uσ

i r
) − H (r) � H

(
Uσ

i s
) − H (s). (A2)

Proof. Due to si �= σ and r �σ s, we find (σ − ri ) =
(σ − si ) = 2σ . Therefore Eq. (A1) implies H (Uσ

i r) − H (r) −
H (Uσ

i s) + H (s) = −2σ
∑

j∈�(i)(r j − s j ). Since r is a σ -
minor of s, we have σ r j � σ s j for all j ∈ V , which implies
−2σ

∑
j∈�(i)(r j − s j ) � 0 and completes the proof. �

A walk (of length l) is a sequence s(0), s(1), s(2), . . . , s(l )
of configurations in [q]V where for each k ∈ [l] there are i ∈ V
and σ ∈ [q] so that s(k) = Uσ

i s(k − 1). For fixed σ ∈ [q], a
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walk s(0), s(1), s(2), . . . , s(l ) is called σ -homogeneous if for
each k ∈ [l] there is i ∈ V so that s(k) = Uσ

i s(k − 1).
A walk s(0), s(1), s(2), . . . , s(l ) is adaptive if

H (s(k)) � H (s(k − 1)) for all k ∈ [l]. The adaptive
walk s(0), s(1), s(2), . . . , s(l ) is escaping if H (s(k)) <

H (s(k − 1)) if and only if k = l . A configuration s ∈ SV

is called local minimum if all adaptive walks starting in s
are not escaping. By the following lemmata we establish
the existence of a homogeneous escaping walk from any
configuration not being a local minimum.

Lemma 2. Consider a configuration s(0) ∈ SV , and sup-
pose there is an escaping walk s(0), s(1), . . . , s(l ). Then
there are σ ∈ S, l ′ � l , and a σ -homogeneous escaping walk
r(0), r(1), . . . , r(l ′) with r(0) = s(0).

Proof: Choose s(0), s(1), . . . , s(l ) as an escaping walk
of minimum length l . Find i ∈ V and σ ∈ V so that
s(l ) = Uσ

i s(l − 1). We make the assumption (to be led to
contradiction) that the walk s(0), s(1), . . . , s(l ) is not σ -
homogeneous. Then there are k ∈ [l − 1] and j ∈ V so
that s j (k − 1) = σ and s j (k) �= σ . Choose such k and j
so that k is maximal. Define a walk r(0), r(1), . . . , r(l −
1) by setting r(m) = Uσ

j s(m + 1) for k � m < l and
r(m) = s(m) otherwise. By construction for each m ∈
{k, . . . , l − 1}, s(m + 1) is a σ -minor of r(m), implying
H (Uσ

i r(m)) − H (r(m)) � H (Uσ
i s(m + 1)) − H (s(m + 1)).

Therefore H (r(l − 1)) � H (s(l )), so there exists an escap-
ing walk from s(0) strictly shorter than l , incompatible
with the choice of s(0), s(1), . . . , s(l ) as having minimum
length. The assumption that this escaping walk is not σ -
homogeneous thus leads to a contradiction, completing the
proof. �

Lemma 3. Consider σ ∈ [q] and a configuration s(0) ∈
[q]V , and suppose there is a σ -homogeneous escaping walk
s(0), s(1), . . . , s(l ). Furthermore, suppose there is i ∈ V with
r(0) = Uσ

i s(0) having H (r(0)) = H (s(0)). Then there is a
σ -homogeneous escaping walk r(0), r(1), . . . , r(m).

Proof. Construct the walk by doing the same updates as in
the given walk. Since all updates are σ -updates, the energy
along the constructed walk is less or equal to that of the given
one, i.e., H (r(k)) � H (s(k)) for all k ∈ [l]. �

Algorithm. Given a configuration s ∈ [q]V , we use the fol-
lowing method to decide if s is a local minimum. An outer
loop runs over all spin directions σ ∈ S. For each value of σ ,
we initialize r = s and run the following inner loop. (i) If there
is a node i with ri �= σ and H (Uσ

i r) � H (s), update r ← Uσ
i r;

otherwise leave the inner loop. (ii) If H (r) < H (s), terminate
with result not a local minimum. (iii) Resume at (i).

If the execution ends without result not a local minimum
[step (ii)], then the result is that s is a local minimum.

Proof of correctness. Suppose first that s is not a local min-
imum so s has an escaping path. By Lemma 2, find σ ∈ S and
a σ -homogeneous escaping walk from s. By Lemma 3, also
all configurations reachable from s by a σ -homogeneous walk
have a σ -homogeneous escaping walk. Thus, when the inner
loop with the right σ is performed, such an escaping walk
to a lower-energy configuration r will be found, terminating
with result not a local minimum. Conversely, suppose s is a
local minimum so there is not an adaptive walk leading to a
configuration with energy below H (s). Since only nonincreas-
ing updates lead from s to any configuration r encountered,
H (r) = H (s). The condition at (ii) is never fulfilled so the
algorithm will return local minimum.
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