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Abstract: The use of 90 kDa heat shock protein (HSP90) inhibition as a therapy in lung adenocarci-
noma remains limited due to moderate drug efficacy, the emergence of drug resistance, and early
tumor recurrence. The main objective of this research is to maximize treatment efficacy in lung
adenocarcinoma by identifying key proteins underlying HSP90 inhibition according to molecular
background, and to search for potential biomarkers of response to this therapeutic strategy. Inhibition
of the HSP90 chaperone was evaluated in different lung adenocarcinoma cell lines representing the
most relevant molecular alterations (EGFR mutations, KRAS mutations, or EML4-ALK translocation)
and wild-type genes found in each tumor subtype. The proteomic technique iTRAQ was used to
identify proteomic profiles and determine which biological pathways are involved in the response
to HSP90 inhibition in lung adenocarcinoma. We corroborated the greater efficacy of HSP90 inhibi-
tion in EGFR mutated or EML4-ALK translocated cell lines. We identified proteins specifically and
significantly deregulated after HSP90 inhibition for each molecular alteration. Two proteins, ADI1
and RRP1, showed independently deregulated molecular patterns. Functional annotation of the
altered proteins suggested that apoptosis was the only pathway affected by HSP90 inhibition across
all molecular subgroups. The expression of ADI1 and RRP1 could be used to monitor the correct
inhibition of HSP90 in lung adenocarcinoma. In addition, proteins such as ASS1, ITCH, or UBE2L3
involved in pathways related to the inhibition of a particular molecular background could be used as
potential response biomarkers, thereby improving the efficacy of this therapeutic approach to combat
lung adenocarcinoma.

Keywords: lung adenocarcinoma; HSP90; HSP90 inhibitors; response biomarkers

1. Introduction

Cancer is one of the leading health concerns in the world and is expected to cause
approximately 11.5 million deaths by 2030 [1]. Among the different types of tumors,
lung cancer is of particular note as it is responsible for one in five cancer deaths and
consequently represents the highest mortality rate worldwide [2,3]. Histologically, lung
cancer can be classified into non-small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC), accounting for 85% and 15% of cases, respectively. The heterogeneity present
in NSCLC has led to the sub-classifications of adeno-carcinoma (50%), squamous cell
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carcinoma (35%), and large cell carcinoma (15%) being applied [4]. In addition to histo-
logical variability, different genetic alterations underlie each subtype, opening up a range
of possibilities in the development of therapies aimed at specific alterations [5–7]. Specif-
ically, in the most common histological subtype, lung adenocarcinoma, several genomic
alterations in driver genes have been identified, including epidermal growth factor recep-
tor (EGFR), echinoderm microtubule-associated protein-like protein 4 fused to anaplastic
lymphoma kinase (EML4-ALK), Kirsten rat sarcoma viral oncogene homolog (KRAS),
serine/threonine-protein kinase B-Raf (BRAF), mesenchymal-epithelial transition (MET)
factor, human epidermal growth factor 2 (HER2/ErbB2/neu), or ROS pro-to-oncogene
1, receptor tyrosine kinase (ROS1) [8,9]. This has permitted the development of therapies
targeting specific driver oncogenes in lung adenocarcinoma [10–12]. However, despite
advances in precision medicine, many cases of lung adenocarcinoma still lack an effective
targeted therapy [13], and in those cases where a therapy exist, the development of acquired
resistance is problematic [14–16].

Based on the above, a broad-spectrum therapy directed simultaneously against several
driver oncogenes would be of significant benefit. In this regard, the 90 kDa heat shock
protein (HSP90) stands as a therapeutic target due to its ability to regulate and stabilize
a large number of oncogenic proteins, or so-called HSP90 clients. The main isoforms of
this protein, inducible HPS90α and constitutive HSP90β, act as molecular chaperones of
the client proteins by promoting their folding and maturation, as well as regulating their
stability, activity, and function [17,18]. In this way, HSP90 inhibition has been shown to
result in a rapid de-crease of client protein activity and subsequent degradation, simultane-
ously de-creasing multiple oncoproteins and thus modulating features of the malignant
phenotype [19,20]. Currently, the most advanced inhibitors are those that block HSP90′s
ATPase activity, which is essential for its function as a molecular chaperone, thereby leading
to the proteasomal degradation of client proteins [19,21,22]. This fact is particularly relevant
in lung adenocarcinoma, since some of the oncodrivers of this histological subtype are
HSP90 clients such as EGFR [23], HER2 [24], MET [25], BRAF [26], and the EML4-ALK
fusion protein [27]. The degradation of these driver proteins after HSP90 inhibition leads
to loss of tumor cell viability [28], while decreased expression of the HSP90 gene is asso-
ciated with increased survival of NSCLC patients [29]. On the other hand, the elevated
expression of this chaperone has been associated with resistance to chemotherapy and
radiotherapy [30,31].

Taken together, these data support the notion of HSP90 inhibition as a therapeutic strat-
egy and point to the significant potential for clinical trials in NSCLC to be per-formed [32].
Some of the most encouraging HSP90 inhibitors identified to date have been the gel-
danamycin derivatives tanespimycin (17-AAG) and retaspimycin hydrochloride (IPI-504),
as well as the radicicol derivatives ganetespib (STA-9090) and luminespib (AUY-922) [33].
These have been responsible for some of the most promising results in clinical trials, es-
pecially those in which the stratification of NSCLC was carried out based on the presence
of molecular alterations [34–36]. This is mainly due to the fact that some driver proteins,
such as EGFR or EML4-ALK exhibit a strong dependence on HSP90 that makes them
more sensitive to HSP90 inhibition. Consequently, this translates into an increased effi-
cacy of HSP90 inhibition in patients with tumors that are ‘molecularly addicted’ to these
proteins [37]. However, not all patients whose tumors are sensitive to HSP90 inhibitors
respond positively to treatment, meaning that the use of HSP90 inhibition as a therapy in
lung adenocarcinoma remains limited due to moderate drug efficacy, the emergence of
drug resistance, and early tumor recurrence [38]. Advances in this field have so far focused
on expanding our understanding of the biological basis of HSP90 inhibition in NSCLC [39],
as well as identifying biomarkers that predict response to inhibitors of these tumors [40].
In addition, to improve the efficacy of HPS90 inhibitors, it is essential to monitor inhibition
responses to ensure proper blocking of the chaperone. To date the clinical trial studies
of pharmacodynamic effects after HSP90 inhibition have been based primarily on the
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analysis of HSP70 induction, although a significant correlation between this biomarker and
treatment response has not yet been validated [41].

For these reasons, the identification of additional predictors to optimize the clinical
efficacy of HSP90 inhibitors in lung adenocarcinoma is essential and forms the main
objective of the research outcomes reported here. For this purpose, isobaric tags for relative
and absolute quantification (iTRAQ), a high-throughput proteomics technique widely
used in NSCLC research [42–44], have been selected. This proteomic assay was used to
identify proteins related to HSP90 inhibition responsiveness according to the most relevant
molecular alteration in lung adenocarcinoma such as EGFR and KRAS mutations and ALK
translocation. This work aims to identify proteins that could serve as potential biomarkers
to monitor response to HSP90 inhibitors, thereby improving the efficacy of this therapeutic
strategy in lung adenocarcinoma.

2. Results
2.1. Expression of HSP90 and Related Proteins in Different Molecular Subtypes of
Lung Adenocarcinoma

In the analyzed panel of 11 lung adenocarcinoma cell lines with distinct molecular
patterns, the expression of HSP90α, HSP90β, and other related HSPs was determined
(Figure 1).
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Figure 1. Characterization of the lung adenocarcinoma cell lines panel used. Study of HSP90 protein
expression, other related heat shock proteins, and EGFR and EML4-ALK client proteins in the cell
lines under study. EGFR = EGFR mutation, KRAS = KRAS mutation, ALK = EML4-ALK translocation
carrier, TN = triple negative (EGFR, KRAS and wild-type ALK).

HSPP90α expression was different in each molecular sub-group, with the lowest levels
found in H1650 for the EGFR-mutated subtype, H2009 for the KRAS-mutated subtype,
H2228 for the EML4-ALK -translocated subtype, and CALU-3 among the Triple Negative
(TN) cell lines (referring to the absence of alterations in EGFR, KRAS, and ALK). No
significant changes in HSP90β or HSP70 expression were found in the different molecular
groups studied. However, it is noteworthy that within each molecular subtype, the cell
lines with the lowest expression of HSP90α showed a higher expression of HSP90β and
HSP70, with the exception of the EML4-ALK subtype. Similar to GRP94 (heat shock protein
90 beta family member 1) expression, generally showed a reverse expression pattern to
HSP90α. Finally, it should be noted that HSP27 was the only chaperone that showed
differential expression according to the molecular sub-group, with the highest expression
levels seen in EGFR-mutated cell lines, inter-mediate levels in the KRAS-mutated cell lines,
and undetectable expression in the EML4-ALK-translocated lines. The exception was the
TN group where large variations were observed.
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Expression levels of the most interesting HSP90 client proteins were also studied.
Focusing on EGFR, the highest expression of this mutated receptor was detected in the
HCC827 cell line. The H1650, H2009, A549, and H2228 cell lines, each of which has a
different mutational status of this receptor, presented high levels of EGFR expression,
while the remaining cell lines presented low or undetectable expression of this receptor.
It, therefore, follows that the EGFR mutation status is not related to EGFR expression. In
contrast, the EML4-ALK fusion protein was detected exclusively in cell lines harboring
variant 1 (H3122) and variant 3 (H2228) of this translocation.

2.2. Effect of Inhibition of HSP90 According to the Lung Adenocarcinoma Molecular Subgroup

IC80 (80% inhibitory concentration) values of selected HSP90 inhibitors were deter-
mined to assess the sensitivity of the lung adenocarcinoma cell lines (Table 1). Lower
IC80 values were seen in most cell lines in response to treatment with radicicol deriva-
tives (STA-9090 and AUY-922), whereas higher values were detected after treatment with
geldanamycin derivatives (17-AAG and IPI-504). Focusing on the molecular subgroups,
EGFR-mutated cell lines were the most sensitive to all HSP90 inhibitors, followed by cell
lines with EML4-ALK translocation. In contrast, the triple-negative cell lines, particularly
CALU-3, were the most resistant to both inhibitor families.

Table 1. IC80 values of the HSP90 inhibitors used on lung adenocarcinoma cell lines.

Cell Line

HSP90 Inhibitors

IC80
17-AAG

nM

IC80
IPI-504

nM

IC80
STA-9090

nM

IC80
AUY-922

nM
EGFR ALK KRAS

HCC827 105.02 68.58 20.55 16.67 M WT WT
H1975 5.03 51.00 18.96 10.38 M WT WT
H1650 26.22 15.06 22.64 5.89 M WT WT
H3122 104.66 113.45 31.96 36.44 WT T WT
H2228 43.55 185.36 16.52 17.95 WT T WT
H2009 172.79 135.33 18.63 9.91 WT WT M
H358 52.26 18.65 30.96 32.42 WT WT M
A549 65.18 77.97 25.24 122.93 WT WT M

H1437 14.83 13.89 27.18 11.26 WT WT WT
CALU-3 350.93 173.18 73.78 6963.64 WT WT WT
H1781 49.38 123.9 39.82 95.15 WT WT WT

nM: nanoMolar; M: mutated gene; T: translocated gene; WT: wild type gene.

Protein expression responses of the cell line panel were evaluated after treatment with
the different HPS90 inhibitors at their IC80 concentration (Figure 2). A compensatory induc-
tion of HSP70 and HSP90 expression was identified by Western blot analysis, confirming
the correct inhibition of HSP90. We also found that the effect of HSP90 inhibition on client
proteins depended on the molecular subgroup of the cell line. The degradation of EGFR
was more pronounced and faster in EGFR-mutated cell lines such as HCC827 (Figure 2A)
and H1650 (Figure 2B). On the other hand, in cell lines where EGFR was not the oncogenic
driver, their EGFR degradation was much lower even though it was highly expressed in
the cell line, as was the case in the A549 (Figure 2D), H358 (Figure 2E), H2009 (Figure 2F),
H1781 (Figure 2H) and H2228 (Figure 2K) cell lines.
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Figure 2. Evaluation of HSP90 inhibition in lung adenocarcinoma cell lines. (A) HCC827, (B) H1650, (C) H1975, (D) A549, (E) H358, (F) H2009, (G) H1437, (H) H1781,
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to study expression of HSP90α, HSP70 and the corresponding EGFR, EML4-ALK or CDK4 client proteins. Each experiment was performed in triplicate. Western
blots correspond to a representative image of the replicates. - = untreated with inhibitor; h = hours.
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EML4-ALK was degraded after HSP90 inhibition in the two cell lines showing expres-
sion of this fusion protein. However, in the H3122 line that carries translocation variant 1,
the protein was completely degraded in response to all inhibitors from the beginning of
treatment (Figure 2J). H2228, which harbors translocation variant 3, showed less degrada-
tion, especially after treatment with geldanamycin derivatives (Figure 2K).

2.3. HSP90 Gene Silencing in Lung Adenocarcinoma Cell Lines

To define specific responses to HSP90 inhibition and to detect off-target effects of
pharmacological inhibitors of HSP90, the expression of both isoforms of this chaperone
was silenced in cell lines (Figure 3). Due to the relevance of HSP90 in cell viability, halving
the expression of this chaperone was considered suitable as a positive control of inhibition.

Silencing conditions were selected in the HCC827 line by assessing the decrease in
expression of HPS90α (Figure 3A), HSP90β (Figure 3B), and the combination of both
(Figure 3C) under different conditions. Treatment with the most effective interfering RNAs
(siRNA_HSP90α_1 and siRNA_HSP90β_3) at 30 pmol and for 48 h achieved an optimum
reduction in expression and was therefore used in EGFR-mutated H1975 (Figure 3D), H1650
(Figure 3E), KRAS-mutated H2009 (Figure 3F), A549 (Figure 3G), triple-negative CALU-3
(Figure 3H), and H17881(Figure 3I) cell lines. On the other hand, in the H2228 (EML4-ALK-
trasnslocated) and H358 (KRAS-mutated) cell lines, enhanced silencing of HSP90α was
observed with siRNA_HSP90α_2 (Figure 3J) and siR-NA_HSP90α_3 (Figure 3L), while
siRNA_HSP90β_3 was also used for HSP90β silencing (Figure 3K,M). Finally, in the H3122
(EML4-ALK translocation bearer) (Figure 3N) and H1437 (TN) (Figure 3O) cell lines, other
siRNAs (Dharmacon, Lafayette, CO, USA) had to be used to silence HSP90.
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Figure 3. Effectiveness of HSP90 gene silencing in the panel of lung adenocarcinoma cell lines. Western blot analysis of the validity of gene silencing of (A) HSP90α
and (B) HSP90β in the HCC827 cell line using siRNAs from the commercial company Origene. In this same cell line, we chose a 48-h incubation with 30 pmol
of siRNA_HSP90α_1 and siRNA_HSP90β_3 as the optimal conditions for (C) combined silencing of HSP90. HSP90α and HSP90β expression for the established
conditions was studied in the (D) H1975, (E) H1650, (F) H2009, (G) A549, (H) Calu-3, and (I) H1781 cell lines. Verification of conditions for optimal silencing of
HSP90α and HSP90β in (J,K) H2228 and (L,M) H358. Verification of HSP90α and HSP90β protein reduction in response to treatment with siRNAs (Dharmacon)
of the (N) H3122 and (O) H1437 cell lines. - = Untransfected; Control = non-specific interfering RNA; siRNA_HSP90α = interfering RNA against HSP90α;
siRNA_HSP90β = interfering RNA against HSP90β.
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2.4. Differentially Expressed Proteins Underlying the HSP90 Inhibition Identified by
Proteomic Profiling

Isobaric tag for relative and absolute quantitation (iTRAQ) coupled with mass spec-
trometry (NanoLC-MS/MS) analysis was used to identify those proteins with clinically
significant expression changes after inhibition or silencing of HSP90 in each cell line
(Figure 4, Table 2 and Supplementary Tables S1–S11).
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Figure 4. iTRAQ design of experiments. 100 µg of proteins from the different conditions to be
analyzed, for each cell line under study, were digested with trypsin and labeled with iTRAQ
reagents. Each of the thirteen fractions obtained was analyzed by LC-MS/MS and the data were
combined to make the corresponding protein identification and quantification. VER = VER-155008;
siRNA_α + β = gene silencing of HSP90α and HSP90β.

Table 2. Number of proteins with significant changes after treatment with inhibitors or gene silencing
of HSP90 (17-AAG, IPI-504, STA-9090, AUY-922) or gene silencing of HSP90 identified in the panel of
lung adenocarcinoma cell lines.

Treatment
Expression

Change

HCC827 H1975 H1650 H3122 H2228 H2009 H358 A549 H1437 CALU3 H1781

EGFR mut EML4-ALK KRAS mut TN

HSP90
inhibi-

tion

17-AAG
+ 96 133 29 142 122 126 69 165 31 172 89
− 238 170 109 389 385 269 337 202 28 438 445

IPI-504
+ 107 169 13 168 181 106 103 194 13 195 120
− 154 301 40 287 370 258 227 204 16 391 473

STA-9090
+ 94 143 7 167 135 78 188 70 22 288 58
− 164 230 65 119 147 177 149 113 23 276 244

AUY-922
+ 140 128 31 269 142 79 116 189 56 197 138
− 167 159 118 202 199 146 161 182 23 483 318

Genetic
silencing

siRNA
HSP90α +

β

+ 471 134 69 321 304 269 249 219 92 316 198
− 243 272 69 309 434 108 289 252 217 270 294

mut: mutated; TN: EGFR, ALK and KRAS wild type; siRNA: small interfering RNA.

The CALU-3 and H2228 cell lines had the highest number of proteins showing signifi-
cant expression changes, while H1650 and H1437 showed the lowest number of proteins
that underwent expression changes. These last two cell lines presented a set of values far
from the other cell lines and were considered outliers. We found that most cell lines and
study conditions resulted in similar expression patterns, with more underexpressed than
overexpressed proteins. Specifically, in the H1975, H2228, and H1781 cell lines treated with
IPI-504, the number of over-expressed proteins was never higher than that of underex-
pressed proteins. In contrast, in gene silencing experiments on the H3122 cell line, a higher
number of overexpressed proteins was detected.

Considering the total number of proteins with significantly altered expression, six times
more deregulated proteins were detected after siRNA treatment than in response to HSP90
inhibitors. Differentiating between underexpressed and overexpressed proteins, the 17-AAG
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inhibitor was the only treatment in which a higher number of underexpressed proteins was
detected, compared to that seen with genetic silencing.

2.5. Effect of HSP90 Inhibition on Proteomic Profiling with Respect to the Lung Adenocarcinoma
Molecular Subgroup

PERSEUS software was used to identify proteins with significant expression changes
after HSP90 inhibition in cell lines with the same molecular background (EGFR-mutated,
KRAS-mutated, EML4-ALK-translocation, and TN). As shown in Table 3, the highest
number of proteins whose expression was significantly altered was found in KRAS-mutated
cell lines, while the lowest number was identified in the group of EML4-ALK translocated
cell lines.

Table 3. Functional annotation of HSP90 inhibition in different molecular subtypes of lung adenocar-
cinoma.

Molecular
Background Significant Proteins Final Proteins * Biological Pathways

EGFR MUT 332 246 7
EML4-ALK 57 34 10
KRAS MUT 1696 1157 21

TN 1288 866 12

* Significant proteins matched after gene silencing; mut: mutated; TN: EGFR, ALK and KRAS wild type.

Differentially expressed proteins were plotted according to their change in expression
and the corresponding p-value (Figure 5). All molecular subgroups were identified as
having similar expression patterns, with approximately three times more underexpressed
than overexpressed proteins after inhibition by HSP90.

Subsequently, proteins whose expression was significantly altered and which were
also deregulated in gene silencing were identified to ensure the real effect of inhibition
(Table 3). Based on this selection, the final number of proteins decreased by approximately
30% in all lung adenocarcinoma molecular subgroups.

A Venn diagram was then used to represent those proteins specific to HSP90 inhibition
that were significantly deregulated for each molecular subtype (Figure 6). Only two proteins
were deregulated after inhibition of HSP90 inhibition in all molecular subgroups studied. In
particular, the overexpression of acireductone dioxygenase 1 (ADI1) and underexpression
of ribosomal RNA processing protein 1 (RRP1) were identified. Moreover, approximately
half of the proteins showing significantly altered expression were specific to molecular
subgroups. Consequently, the number of proteins among the remaining combinations
was also low, especially when one of the molecular subtypes in the comparison was the
translocated EML4-ALK.

2.6. Functional Annotation of Specifically and Significantly Down-Regulated Proteins after HSP90
Inhibition in Different Molecular Subgroups of Lung Adenocarcinoma

Table 3 shows the biological pathways associated with proteins that were specifically
and significantly deregulated after HSP90 inhibition. The highest number of biological
pathways was identified in the KRAS-mutated cell lines, which was to be expected since this
molecular subtype had the highest number of differentially expressed proteins. However, it
should be noted that in the EML4-ALK cell lines, a similar number of biological pathways
was detected as in the TN cell lines, and a higher number than in the EGFR-mutated cell
lines, even though these molecular groups had 25 and 7 times more deregulated proteins,
respectively. The small group of deregulated proteins after HSP90 inhibition in translocated
EML4-ALK cell lines suggests that a large number of biological pathways are involved in
such inhibition (Table 4).
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Table 4. Biological pathways related to differentially expressed proteins following HSP90 inhibition.

EGFR Mut EML4-ALK KRAS Mut Triple Negative

Apoptosis Apoptosis Apoptosis Apoptosis
Arginine biosynthesis Arginine biosynthesis Cholesterol biosynthesis Coenzyme A biosynthesis

Asparagine and aspartate
biosynthesis

Formyltetrahydroformate
biosynthesis Purine biosynthesis Proline biosynthesis

Serine glycine biosynthesis Succinate to propionate
conversion

Pyrimidine ribonucleotides
byosinthesis Huntington’s disease

Methylcitrate cycle EGFR signaling pathway Heme biosynthesis Pyrimidine metabolism
Huntington’s disease FGF signaling pathway Insulin/IGF-PKB pathway DNA replication

p53 pathway PDGF signaling pathway Cell cycle Ubiquitin proteasome
pathway

AR-α signaling pathway Huntington’s disease Pentose phosphate pathway
GnRHR pathway Parkinson’s disease L signaling pathway

Methylmalonil pathway Axon guidance mediated by
semaphorins PDGF signaling pathway

CCKR signaling map Endothelin signaling pathway
Salvage pyrimidine

ribonucleotides GnRHR pathway

Cytoskeletal regulation by Rho GTPase
DNA replication

Ubiquitin proteasome
pathway

p53 pathway by glucose
deprivation

EGFR signaling pathway
FGF signaling pathway

VEGF signaling pathway
Cadherin signaling pathway
Integrin signaling pathway

Mut: mutated; Triple Negative: EGFR, ALK and KRAS wild type; EGFR: epidermal growth factor recep-
tor; FGF: fibroblast growth factor; PDGF: platelet-derived growth factor; AR-α: alpha-adrenergic receptor;
GnRHR: Gonadotropin-releasing hormone receptor; CCKR: cholecystokinin receptor; VEGF: vascular endothelial
growth factor; IL: interleukins.

These enriched biological pathways were classified using a Venn diagram (Figure 7).
Apoptosis was the only pathway common to all molecular subgroups, thereby demonstrat-
ing the influence of inhibitors on cell death in lung adenocarcinoma. Molecular groups with
EGFR mutations or EML4-ALK translocation shared the enrichment of arginine biosyn-
thesis. Alterations in the EGFR and FGF signaling pathways, both of which are related to
cell growth, were common to the EML4-ALK translocated and KRAS-mutated molecular
subgroups, whereas the EML4-ALK translocated and TN groups shared enrichment of
the PDGF and GnRHR signal-ling pathways. Finally, DNA replication and the ubiquitin-
proteosome pathway were shared between the KRAS-mutated and TN subtypes. Since
proteosome ubiquitination and degradation are essential steps in response to HSP90 inhibi-
tion, this alteration could be the result of a differential reaction in the KRAS-mutated and
TN groups compared to the other lung adenocarcinoma molecular subgroups.

2.7. ADI1 and RRP1 mRNA Expression Are Strongly Associated with Clinical Outcome

To evaluate whether ADI1 y RRP1 are associated with clinical outcomes in patients
with lung adenocarcinoma, we analyzed their mRNA expression levels according to disease
progression and overall survival by way of the KM Plotter web-site (https://kmplot.com),
accessed on 1 July 2022 (Figure 8). An online tool that includes gene expression data and
clinical characteristics of 10 independent datasets, published in the Cancer Biomedical
Informatics Grid (caBIG), the Gene Expression Omnibus (GEO), and The Cancer Genome
Atlas (TCGA) (https://www.cancer.gov/tcga, accessed on 1 July 2022) repositories. We
found that lower ADI1 expression was significantly associated with a reduced time to initial
disease progression (hazard ratio (HR) = 0.43, 95% confidence interval (CI) = 0.31–0.59,

https://kmplot.com
https://www.cancer.gov/tcga
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p < 0.001) (Figure 8A) and poorer overall survival (HR = 0.32, 95% CI = 0.25–0.41, p < 0.001)
(Figure 8B). In the case of RRP1, the opposite was true; high mRNA levels were associated
with poorer clinical outcomes. Differences were also significant with respect to time to
initial disease progression (HR = 1.57, 95% CI = 1.13–2.18, p = 0.006) (Figure 8C) and overall
survival (HR = 1.76, 95% CI = 1.39–2.23, p < 0.001) (Figure 8D).
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3. Discussion

In the present work, an iTRAQ-based high-throughput quantitative proteomics tech-
nique was used to evaluate molecular context-dependent responses to different HSP90
inhibitors and to identify proteins that could potentially be used as biomarkers of the
response to inhibition of this chaperone in lung adenocarcinoma. Taken together, the
results presented here aim to optimize the use of HSP90 as a therapeutic target in this
disease where there are no good response biomarkers available to guide who might benefit
from HSP90 inhibitor treatment, or for how long. As a first approach to the study, the
efficacy of four HSP90 inhibitors was evaluated on a panel of previously characterized
lung adenocarcinoma cell lines. In our experiments, all of the cell lines studied showed
compensatory expression of HSP70 after HSP90 inhibition. These results confirm the cor-
rect blockade of HSP90 in our study panel, since increased HSP70 expression is thus far
the only biomarker used to monitor response to HSP90 inhibition [41]. In addition, our
results show that these cell lines were more sensitive to radicicol derivatives (STA-9090
and AUY-922) than to geldanamycin derivatives (17-AAG and IPI-504). Since radicicol
derivatives are second-generation inhibitors and have lower off-target toxicities [14], their
higher efficacy was expected. Also, our results show how the effectiveness of the inhibitors
used was directly related to the oncogenic addiction of the cell line to HSP90. The most
significant examples were in the translocated EML4-ALK cell lines, particularly the H3122
carrying variant 1, which showed rapid and complete degradation of the receptor. This
may be due to an extremely unstable protein structure that is dependent on HSP90, as
described by Richards et al. [45]. As expected, promising results have been obtained in
clinical trials of different HSP90 inhibitors in subgroups of patients with translocation of
EML4-ALK [32,37].

In relation to these findings, we studied responses to HSP90 inhibition according to the
most clinically relevant lung adenocarcinoma molecular subtypes. In our experiments, an
overall higher number of underexpressed proteins was detected following HSP90 inhibition
given that HSP90 client proteins dissociate from this chaperone after its inhibition and are
degraded via the proteosome [22,46].

Subsequently, proteins differentially expressed significantly and specifically after
HSP90 inhibition in the different molecular subtypes of lung adenocarcinoma were selected.
Of all the proteins identified, ADI1 and RRP1 were consistently deregulated in all the
subgroups studied. This low percentage of deregulated proteins suggests that the response
to HSP90 inhibition is, at the protein level, highly dependent on the molecular context.
Both of these common proteins may be relevant due to their potential use in monitoring
response to the HSP90 inhibitors studied here. ADI1 is an acireductone dioxygenase that
forms part of the methionine salvage pathway [47]. However, the first identified function of
this protein was the binding and inhibition of membrane type 1-matrix metalloproteinase
(MT1-MMP), an oncogenic protein involved in tumor invasion and progression [48–50].
Based on this evidence, and due to the reduced expression of ADI1 in different tumor
types, this protein has been proposed as a possible tumor sup-pressor in several types of
cancer [48,49,51,52]. Among the mechanisms by which this protein could function as a
tumor suppressor is the correlation of ADI1 overexpression with a higher rate of apoptosis,
which could be a consequence of the increase in metabolites produced by this enzyme in
the methionine salvage pathway [51,52]. Furthermore, in our study, a higher expression of
ADI1 was shown to be correlated with better disease progression outcomes and overall
survival in patients with lung cancer. Therefore, an increased expression of ADI1, detected
after inhibition of HSP90 inhibition in all molecular subtypes of lung adenocarcinoma,
proved to be a potential indicator of adequate response.

On the other hand, RRP1 was described as a key factor in ribosome biogenesis [53]. To
date, the involvement of RRP1 has been demonstrated both in the cleavage of the 47S ribo-
somal RNA precursor transcript [54], and in the physical separation of both precursors [55]
that gives rise to the small and large subunits of the ribosome. Since both processes are
essential for ribosome biogenesis in human cells, the lower expression of RRP1 detected in
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our experiments threatens protein synthesis and directly affects cell viability. Consistent
with this, lower RRP1 expression correlates with improved disease progression outcomes
and overall survival in lung cancer. Therefore, the expression of this protein could be con-
sidered a good predictive biomarker of the antitumoral effectiveness of HSP90 inhibitors,
regardless of the molecular subtype of lung adenocarcinoma.

From another point of view, and based on the results obtained through functional
annotation, we highlight that the cellular apoptosis pathway was found to be altered in
all molecular subgroups studied after HSP90 inhibition. These results agree with those
previously obtained by two-dimensional gel electrophoresis where, after treatment of
different cell lines with HSP90 inhibitors, one of the common pathways was apoptosis [39].
On this basis, and since low HSP90 activity induces apoptosis in lung cancer [56,57], our
results suggest that this cell death pathway is a key process during the pharmacological
inhibition of HSP90 in lung adenocarcinoma, regardless of the molecular subtype and
inhibitor used.

On the other hand, dysregulation of the arginine biosynthesis pathway was identi-
fied in cell lines showing EGFR mutations and EML4-ALK translocation. Arginine is
a semi-essential amino acid that becomes essential in tumor growth, mainly due to the
high energy demand required to maintain intense proliferation [58]. Argininosuccinate
synthase 1 (ASS1), an arginine-metabolizing enzyme, is overexpressed in several tumor
types, such as lung, colon, gastric, and ovarian cancers [59]. It is possible that high levels of
ASS1 support tumor proliferation and aggressiveness through increased arginine, which
translates into increased nitric oxide (NO) production [60]. High concentrations of NO have
been reported to cause a cytotoxic effect in the cell due to the induction of DNA damage, as
well as gene mutations followed by apoptosis [61]. Therefore, elevating NO levels through
donor drugs has been used as a therapeutic strategy to reduce tumor progression and
increase tumor blood flow, which enhances the delivery of cytotoxic therapy to tumor
tissue [62,63]. Specifically, the potential of the NO donor glyceryltrinitrate as a chemo-
sensitizing agent was demonstrated in NSCLC [64], while pre-treatment with the NO
donor RRx-001 results in the sensitization of carboplatin-refractory patients [65]. These
results agree with those obtained in our cell lines characterized by EML4-ALK translocation
where, after HSP90 inhibition, there was an increase in ASS1. This phenomenon could
induce cytotoxicity via an excess of NO in this molecular subtype, as well as enable a
possible therapeutic combination of drugs to be used. In addition, in the exclusively EGFR-
mutated cell lines, an underexpression of ASS1 was detected after treatment with HSP90
inhibitors. Different tumor types show variability in the expression of this enzyme, which
makes cancer cells dependent on or independent of exogenous arginine [66]. In the case
of dependence, arginine deprivation has been confirmed to be an excel-lent therapeutic
strategy [67,68]. However, these tumors often develop resistance to deprivation-inducing
agents using cytosolic aspartate, which is not used by ASS1, or by the CAD enzyme
complex for pyrimidine nucleotide synthesis and cell proliferation [69]. However, in EGFR-
mutated cell lines, we detected, in addition to ASS1 underexpression, a reduction in CAD
after HSP90 inhibition. This double protein decrease could prevent or at least weaken
the previously described proliferative mechanism of ASS1-deficient cells. Taken together,
these results support the deregulation of arginine synthesis after HSP90 inhibition as a
key mechanism with the potential to block cell proliferation in lung adenocarcinoma with
mutated EGFR or EML4-ALK translocation. This concept requires further study.

The ubiquitin-proteosome and DNA replication pathways were altered in KRAS-
mutated and triple-negative molecular subtypes of lung adenocarcinoma after HSP90
inhibition. Since ubiquitination and degradation in the proteosome are essential steps
in the response to HSP90 inhibition [22,46], the differential expression of two essential
proteins in this pathway and in both molecular sub-types are highlighted here: ITCH (E3
ubiquitin-protein ligase itchy homolog) and UBE2L3 (ubiquitin-conjugating enzyme E2
L3). ITCH indirectly inhibits the Wnt/β-catenin signaling pathway [70], whose aberrant
activation is crucial for the initiation, progression, and metastasis of lung cancer [71,72].
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Therefore, increased expression of ITCH, which is normally underexpressed in lung cancer,
regulates cell proliferation by blocking the Wnt/β-catenin pathway [73]. In our study,
this protein was found to be underexpressed in the KRAS-mutated and triple-negative
subgroups, while it was overexpressed under most conditions in the EGFR-mutated and
EML4-ALK translocation molecular subtypes. Therefore, we suggest that this E3 ubiquitin
ligase could be involved in the differential responses seen after HSP90 inhibition, being
more effective in molecular subgroups (i.e., EGFR mutation and EML4-ALK translocation)
where ITCH expression was in-creased. UBE2L3 has been linked to the stability of the tumor
suppressor p53-binding protein 1, c-FOS, or the NF-κB precursor p105, demonstrating the
relationship between this enzyme and carcinogenesis [74,75]. Consequently, overexpressed
UBE2L3 was detected in different tissues and cell lines of NSCLC, and its expression level
has been directly related to the cancer stage in patients. Based on the above, UBE2L3 was
proposed as a potential therapeutic target in NSCLC [76]. In our results, this enzyme was
found to be overexpressed in the triple-negative and KRAS-mutated molecular subgroups,
where a clear dysregulation of the ubiquitin-proteosome pathway was detected. In contrast,
this enzyme was found to be significantly underexpressed in molecular subtypes with
EGFR mutations and EML4-ALK translocation, which could be related to a more effective
response of these cell lines to HSP90 inhibition. In general, these data indicate that UBE2L3
overexpression and/or underexpression of ITCH could favor cell proliferation in the KRAS-
mutated and triple-negative lung adenocarcinoma subgroups, hindering the antitumor
potential of HSP90 inhibitors in these contexts.

Based on the above and taking into account the limitations of the study performed,
which was based exclusively on in vitro data, ongoing study and in vivo validation of
potential biomarkers and the mechanisms of response to HSP90 inhibition in lung adeno-
carcinoma proposed here are required to substantiate their importance. Such limitations
are due to a lack of samples from patients treated with HSP90 inhibitors, mainly as a con-
sequence of the toxicity profiles of clinically tested inhibitors and the paucity of response
to treatment by patients with lung adenocarcinoma. However, the combined treatment
with HSP90 inhibitors along with activating or blocking agents of proteins or biological
pathways proposed as relevant in the response could decrease the pharmacological dose
required and thus the toxicity to which patients are exposed. Furthermore, the identification
of molecular con-text-dependent proteins proposed as potential biomarkers of response
would facilitate monitoring outcomes in patients with lung adenocarcinoma following
treatment with HSP90 inhibitors.

4. Materials and Methods
4.1. Cell Line Culture

Eleven human lung adenocarcinoma cell lines (EGFR-mutated: HCC827, H1650, and
H1975; KRAS-mutated: A549, H2009, and H358; ALK translocation bearer: H3122 and
H2228; and Triple Negative (TN) referring to the absence of alterations in EGFR, KRAS, and
ALK: CALU3, H1437, and H1781) were used for this study. All cell lines were obtained from
the American Type Culture Collection (ATCC), with the exception of the H3122 cell line,
which was kindly provided by Dr. Koivunen. Cells were cultured in RPMI-1640 medium
(Sigma-Aldrich, St. Louis, MO, USA), with the exception of the A549 cell line, which was
propagated in DMEM medium (Sigma-Aldrich, St. Louis, MO, USA). Both media were
supplemented with 10% fetal bovine serum (FBS, TICO Europe), 1% antibiotic-antimycotic
solution (Sigma-Aldrich, St. Louis, MO, USA), and 1% glutamine (v/v). All cell lines
were cultured as monolayers at 37 ◦C and 5% CO2 in a humidified incubator. Cells were
authenticated and periodically checked to ensure the absence of mycoplasm.

4.2. Genetic Silencing of HSP90

Cells were seeded at appropriate densities into 35 mm culture dishes and incubated
at 37 ◦C and 5% CO2 to reach 70% confluence 24 h later. HSP90 small interfering RNAs
(siRNAs) were transiently transfected into cells with LipofectamineTM RNAiMAX (In-
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vitrogen, Waltham, MA, USA), according to the manufacturer’s instructions. At least
two of four different siRNAs (SR302262 and SR302264) from Origene were used to induce
silencing of HSP90α and HSP90β, respectively. Furthermore, cells were transfected with
scramble siRNA (SR30002, Origene) as a negative control. Finally, simultaneous transfec-
tions were performed in each cell line with the aim of silencing both genes at the same time.
Transfected cells were cultured for 48–72 h before being used for further analyses.

4.3. Treatment with HSP90 Inhibitors

For HSP90 inhibition studies, derivatives of geldanamycin (tanespimycin (17-AAG) (Sel-
leckchem, Munich, Germany) and retaspimycin hydrochloride (IPI-504) (Eurodiagnóstico,
Madrid, Spain) and derivatives of radicicol (ganetespib (STA-9090) and luminespib (AUY-
922) from Selleckchem, Munich, Germany) were used. All HSP90 inhibitors were dis-
solved in dimethyl sulfoxide (DMSO) according to the manufacturer’s instructions for
in vitro application.

Cell line drug sensitivity was measured using fluorescence-based cell viability assays
after 96 h of treatment with the different HSP90 inhibitors at concentrations ranging from
0.33 nM to 20 uM. Three independent experiments were performed at each concentration.
Dose-response curves made it possible to calculate half-maximal inhibitory concentration
values (IC50). Following this, the concentration of each HSP90 inhibitor at which growth
was reduced to 80% (IC80) was calculated and applied to cell lines in the log phase seeded
at 3 × 103 cells/well in 96-well plates for 24 h.

4.4. Western Blot (WB)

Total protein extracts from each treated cell line were isolated and solubilized with
RIPA lysis buffer (Sigma-Aldrich, St. Louis, MO, USA) containing a protease inhibitor cock-
tail (cOmpleteTM Mini EDTA-free, Roche, Basel, Switzerland) and phosphatase inhibitors
(PhosSTOP EASYpack, Roche, Basel, Switzerland). Cells were incubated on ice for 1 h and
centrifuged at 15,000 rpm for 10 min at 4 ◦C. Protein concentrations were determined using
Bradford reagent (BioRad, Berkeley, CA, USA) according to the manufacturer’s instruc-
tions. Proteins were separated by 7.5–15% SDS-PAGE according to the molecular weight
of the protein of interest, and transferred to a PVDF membrane using a miniProtean elec-
trophoretic system at 400 mA (BioRad, Berkeley, CA, USA) and a wet electroblotting system
(BioRad, Berkeley, CA, USA), respectively. The membrane was incubated overnight at
4 ◦C with primary antibodies against HSP90α (ab79849, Abcam, Cambridge, UK), HSP90β
(ab53497, Abcam, Cambridge, UK), HSP70 (ab45133, Abcam, Cambridge, UK), GRP94
(ab18055, Abcam, Cambridge, UK), CDK4 (ab3112, Abcam, Cambridge, UK), HSP27 (#2402,
Cell Signaling, Danvers, MA, USA), EGFR (#4267, Cell Signaling) or ALK (#3633, Cell
Signaling). α-Tubulin (T9026, Sigma-Aldrich, St. Louis, MO, USA) or β-actin (A5316,
Sigma-Aldrich, St. Louis, MO, USA) was used as a loading control. The membrane was
then incubated with horseradish peroxidase-conjugated anti-mouse secondary antibody
(#7076, Cell Signaling) or anti-rabbit secondary antibody (#7074, Cell Signaling) for 1 h
at room temperature. Protein expression was visualized with an ECL detection reagent
(Clarity Western ECL Blotting Substrates (BioRad)) and imaged using chemiluminescence
through the ChemiDoc system (BioRad). Densitometric analysis of bands was performed
using ImageLab software (BioRad). The ratios between the signals from proteins of in-terest
and the loading control were calculated to determine the relative protein expression values.
No grouping of gels/blots cropped from different parts of the same gel or from different
gels, fields, or exposures was performed.

4.5. Sample Preparation for Proteomics Analysis

Cells were seeded at an appropriate density into 10 cm diameter culture dishes to
reach 60–70% confluence at 24 h. For each cell line, the proteomic profile of six conditions
was identified: 17-AAG, IPI-504, STA-9090, and AUY-922 at IC80 for 24 h, HSP90α + β
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siRNAs, and untreated cells. Cell lysis and protein extraction were performed as described
by Marrugal et al. [40].

Protein concentrations were measured using Qubit fluorometric quantitation (Life
Technologies), with each sample aliquoted and stored at 80 ◦C until required.

4.6. iTRAQ Labelling

100 µg of peptide mixture from each sample was reduced with 50 mM tris-(2-carboxyetyl)
phosphine (TCEP, AB Sciex) for 1 h at 60 ◦C with shaking. To block cysteine residues, samples
were incubated with 200 mM methylmethanethiosulfate (MMTS, AB Sciex) for 20 min at room
temperature. Proteolysis was carried out at 37 ◦C with trypsin (Promega, Fitchburg, WI, USA)
in a ratio by weight of 10:1 (enzyme to substrate) in a water bath overnight. Finally, peptides
were dried in a Speed Vac concentrator.

8-plex iTRAQ labeling (AB Sciex) was performed according to the manufacturer’s in-
structions. Briefly, each protein digestion was reconstituted in 1 M TEAB (triethylamonium
bicarbonat) and subsequently labeled at room temperature for 2 h with an isobaric amine-
reactive tag as follows: untreated cells, 113; 17-AAG treatment, 114; treatment with IPI-504,
115; STA-9090 treatment, 116; treatment with AUY-922, 117; genetic silencing of HSP90α +
β, 121. The samples were then pooled, dried at 45 ◦C, and incubated at 4 ◦C overnight.

4.7. Nano LC-MS/MS Analysis

Before analysis by mass spectrometry (MS), the iTRAQ-labeled samples were de-salted
using Oasis HLB C18 cartridges (Waters) and dried using a Speed Vac concentrator. Next,
using a total of 13 increasing concentrations (50, 100, 200, 300, 400, 500, 600, 700, 800, and
900 mM and 1, 1.5, and 2 M) of ammonium formate and MCX Oasis columns (Waters), the
peptides were prefractionated.

Nanoliquid chromatography (nano LC 1000, Thermo Scientific) was used to sepa-
rate the peptides contained in each fraction, while the analysis was carried out by a
nanoelectrospray ionization system (Proxeon Biosystems) connected to a Q Ex-active Plus
Orbitrap mass spectrometer (Thermo Scientific). For each sample, 13 µL of each of the
13 fractions was loaded, pre-concentrated, and washed in an Acclaim PepMap precolumn
(75 µm× 2 cm, nanoViper, C18, 3 µm, 100 Å; Thermo Scientific). Next, an analytical column
(75 µm × 15 cm, nanoViper, C18, 2 µm, 100 Å (Acclaim PepMap RSLC; Thermo Scientific))
was used for 240 min at 200 nL/min to separate the peptides.

Immediately after this step, a gradient of buffer A (0.1% formic acid, 100% H2O) to
buffer B (0.1% formic acid, 100% acetronitrile) was used to elute the peptides. The elution
gradient included 0 to 35% of buffer B for 0–220 min, followed by a ramp of 35 to 45% of
buffer B for 220–230 min, and then 45 to 95% of buffer B for 230–240 min. MS/MS analysis
was performed using the Q Exactive system in the positive-ion and information-dependent
acquisition modes. The scanned mass range was 200–1800 m/z, at a resolution of 70,000
(full width at half maximum at 100 m/z). Up to 15 precursors with a charge state greater
than or equal to two were selected and incorporated into the list of exclusions for 60 s.
The higher-energy collisional dissociation (HCD) spectrum was considered for peptide
identification and quantification. Finally, to maximize the abundance of iTRAQ reporter
ions, HCD fragmentation was carried out with a collision energy of 32%.

4.8. MS Data Analysis

Peptides were identified from MS/MS spectra using the Sequest HT search engine
and Percolator, embedded into Proteome Discoverer 1.4 software (Thermo Fisher Scientific)
and confronted with footprint patterns of the UniProt database for Homo sapiens. The
following search parameters were applied: digestion with trypsin; iTRAQ 8-plex peptide
label (N-terminal) and iTRAQ 8-plex peptide label (lysine) as fixed modifications; oxida-
tion of methionine and carboxiamidomethylation of cysteine as variable modifications.
Afterward, MS/MS scans of iTRAQ-labeled peptides were used to determine the relative
abundances of peptides. The mass spectrometry proteomics data have been deposited to
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the ProteomeXchange Consortium via the PRIDE [77] partner repository with the dataset
identifier PXD040170. The ratios of the iTRAQ reporter ion-peak areas reflected the rel-
ative abundances of peptides and ultimately proteins in the samples. To be considered
quantifiable, proteins had to present at least two unique peptides with a significance score
greater than or equal to 95%, a ratio with a p-value < 0.05, and a false discovery rate (FDR)
less than 2. Finally, for each identified protein, the expression ratios between the different
treatments studied and the corresponding untreated control were calculated. These data
were then transformed [log2 (x)] and filtered, including only proteins in which at least one
study group contained more than 50% valid values.

4.9. Bioinformatics Analysis

The bioinformatics tool used to analyze the proteomic data was PERSEUS Software
(www.perseus-framework.org). This software allowed exploring, visualizing, and repre-
senting the data as well as analyzing them statistically. Concretely, the one-sample t-test
tool was used to identify differentially expressed proteins in the different study groups;
the obtained p-values were corrected by Benjamini-Hochberg FDR and represented in a
volcano plot. Adjusted p-values less than 0.05 were considered statistically significant.

Once the proteins of interest for each study condition were identified, these were
grouped into Venn-Euler diagrams using the jvenn program (http://jvenn.toulouse.inra.fr/
app/index.html, accessed on 1 July 2022). Next, the PANTHER (Protein ANalysis Through
Evolutionary Relationships) database (http://pantherdb.org/) was used to functionally
analyze and categorize these proteins according to their biological processes and molecular
functions. Also, protein-protein interaction networks were built based on the publicly
available Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database
(https://string-db.org/). Only those results with a Benjamini-Hochberg adjusted p-value
of less than 0.05 were considered statistically significant. Finally, the Kaplan-Meier Porter
website (https://kmplot.com), an open-access resource for the analysis of progression
and survival, was used to validate the most important results [78]. Specifically, analy-
ses were used to identify differences in expression levels of proteins of interest in lung
adenocarcinoma.
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