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Abstract: Neonatal hypoxia–ischemia (HI) is a brain injury caused by oxygen deprivation to the
brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting
sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes
of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia
has been successful in reducing mortality and some disabilities, but it is only applied to a subset of
newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric compli-
cations that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI
brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present
in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic
properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent
models, that have investigated the neuroprotective properties of nutraceuticals in preventing and re-
ducing HI-induced brain damage and cognitive impairments. The natural products reviewed include
polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane,
and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These
nutraceuticals were administered before the damage occurred, either to the mothers as a dietary
supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few
of these nutritional interventions have been investigated in humans, but we refer to those that have
been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical
evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a
safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.

Keywords: neonatal hypoxia–ischemia; nutraceuticals; natural products; neuroprotection; prevention;
maternal supplementation; polyphenols; omega-3 fatty acids; vitamins; plant-derived compounds

1. Introduction

Brain damage during late pregnancy and childbirth, mainly represented by hypoxia-
ischemia (HI) encephalopathy, is a major cause of neonatal mortality worldwide. Ap-
proximately 40% of newborns with HI do not survive the neonatal period, and those
who survive may have severe neurological morbidities such as cerebral palsy, visual and
hearing impairment, seizures, epilepsy, mental retardation, or learning and communication
problems [1]. This pathology affects 1–3/1000 in term infants (after 37 weeks of gestation)
and 7/1000 in growth-restricted and preterm infants (before 37 weeks of gestation), with
this figure increasing to 10–20/1000 live births in low-income countries [2,3]. Neonatal HI
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is global cerebral damage caused by inadequate blood flow and oxygen delivery to the
brain as a result of a hypoxic–ischemic event during the prenatal, intrapartum, or postnatal
period, such as birth asphyxia or intrauterine ischemia. HI encephalopathy can strike
in pregnancies that have been uneventful until the final moments, and the nature of the
obstetric complications that contribute to perinatal asphyxia is difficult to predict [4]. HI
encephalopathy shares many common pathophysiological features with perinatal ischemic
stroke, a focal ischemic brain injury that typically occurs between 28 weeks of gestation
and postnatal day 28 [5].

The pathological events of HI encephalopathy occur in two phases: primary energy
failure and secondary energy failure. Primary energy failure occurs as a result of the initial
reduction of cerebral blood flow, which leads to severe oxygen and glucose deprivation,
affecting the normal ionic gradients within the neuronal cells. This depolarization results
in an excessive release of glutamate, which causes excitotoxicity and initiates the ischemic
cascade [6,7]. The consequent intracellular influx of calcium triggers apoptosis, autophago-
cytosis, and necrotic pathways [8]. The low levels of glucose and oxygen also induce
mitochondrial dysfunction, which occurs within minutes after the insult, resulting in the
depletion of ATP production and the overproduction of reactive oxidative species (ROS) [9].
The generation of free radicals causes oxidative stress, which is particularly harmful to
the neonatal brain due to the low concentration of antioxidants and the high consumption
of oxygen when transitioning from fetal to neonatal life [10]. Increased calcium triggers
nitric oxide (NO) production by the nitric oxide synthase (NOS), leading to brain dam-
age [11,12]. The activation of the immune response within minutes after the ischemia
triggers a cascade of immune cells that includes microglia, dendritic cells, macrophages,
and lymphocytes, as well as the release of proinflammatory cytokines such as tumor necro-
sis factor α (TNF-α) or several interleukins (e.g., IL-1β, IL-6) This results in the breakdown
of the blood–brain barrier (BBB), which in turn favors the infiltration of immune cells into
the cerebral parenchyma and can lead to edema and tissue deterioration [13]. Immune
cells also release inducible nitric oxide synthase (iNOS) that contributes to the harmful
effect of NO on cerebral ischemia [14]. Once blood flow is restored, there is a brief period
of recovery known as the latent period, characterized by normal cerebral metabolism. The
secondary energy failure phase occurs 6 to 48 h after the initial injury and can last for days.
This phase appears to be related to oxidative stress, excitotoxicity, and inflammation and
is characterized by seizures, renewed cytotoxic edema, release of excitotoxins, impaired
cerebral oxidative energy metabolism, and, finally, neuronal cell death [6,7].

The intensity of each of the events in the ischemic cascade will have an impact on
the sequelae left by the brain injury, the treatment and care of which require significant
resources. Even after maximal care, there is often little improvement in the general ca-
pabilities of newborns, with long-term burdens on the family and the healthcare system.
Current therapies are limited. The most widely used is hypothermia, delivered through
either selective head or whole-body cooling of the infant at 33–36.5 ◦C for 48–72 h. Hy-
pothermia has been associated with a significant reduction in death and improved outcome
at 18 months follow-up [15], but 40–50% of infants treated with hypothermia still die or
develop chronic neurological impairments [16]. Moreover, hypothermia is only applied to
a subset of newborns that meet strict inclusion criteria; it has a small therapeutic window
(up to 6 h after birth), and it is largely restricted to use in tertiary-level medical facilities [17].
This strategy is aimed at reducing the spread of damage by reducing cerebral metabolic
demand and inhibiting key steps in the excito-oxidative cascade, but it cannot prevent the
injury or reduce susceptibility [1]. Therefore, new neuroprotective strategies for revers-
ing/preventing the sequelae of neonatal HI need to be designed to ideally cover a greater
percentage of affected newborns.

The balance of the pathophysiological response after an ischemic brain injury is critical
to recovery, and all of the pathophysiological aspects have been evaluated as possible
targets for neuroprotective therapies (reviewed in [18]). Therefore, research into the factors
that lead to improved recovery and plasticity in the face of those that exacerbate ischemic
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damage is an important area for future translational research. In the adult population, the
administration of natural neuroprotective compounds before an insult has shown beneficial
effects in minimizing the neuronal damage induced by ischemic stroke [19]. This approach,
known as advanced neuroprotective strategy (ADNES), consists of neuroprotective diets
that include bioactive components with antioxidant or anti-inflammatory properties. The
use of dietary interventions as a method of increasing adherence to treatment has been
shown to reduce the risk of stroke in the adult population by achieving an environment of
reduced excitotoxicity [20,21].

Lessons learned from nature show us that the environment, condition, and/or geno-
type of the mother can modulate the phenotype of her offspring, in some cases reversing
the developmental instructions conferred by the offspring’s genotype. This is what is
known as the maternal effect, which gives plasticity to the phenotype of the offspring
to adapt to different environmental situations [22]. Thus, an effective strategy for the
prevention of developmental diseases would be to treat the mother during pregnancy
to alter the fetal environment and, in turn, modulate the phenotype of the fetus. In this
way, maternal folic acid supplementation has been shown to be effective in reducing the
incidence of neural tube defects [23,24]. Maternal nutrition during pregnancy is a research
topic of growing interest in the field of pediatric ischemia as it may have an impact on both
the development of offspring as well as the provision of neuroprotection. Furthermore,
we believe that to maximize the benefits of ADNES designed to prevent neonatal HI, the
dietary interventions should be as healthy and natural as possible to promote pregnant
women’s adherence to these diets.

Animal models are the first step in exploring the mechanisms that underlie disease
and evaluating the safety and efficacy of treatments. Particularly in models of perinatal
brain damage, the success of generating reliable models for human development will
depend largely on obtaining similarities in the function and development of the central
nervous system (CNS) between species. In both humans and rodents, CNS development is
achieved in the postnatal age, and cross-comparisons of macroscopic neuroanatomy have
shown similarities in the timing of neurogenesis, synaptogenesis, glycogenesis, maturation,
myelination, as well as in age-dependent molecular and biochemical changes. The rodent
brain at postnatal day 1 (P1)–P5 corresponds to 23–32 weeks of gestation in humans and
is, therefore, suitable for studying lesions in preterm patients. On the other hand, the
rodent brain at P7–P10 corresponds to 36–40 weeks of gestation in humans and is, therefore,
suitable for studies of brain injury in term patients [25]. Although most studies of neonatal
HI use rodent models, other species such as piglets [26], rabbits [27], sheep [28], and
nonhuman primates [29] are also used.

Experimentally, one way to make animal models of HI encephalopathy comparable
to those observed in humans is to induce lack of oxygen (hypoxia) and reduce blood
perfusion in the brain (ischemia) over a significant period of time for damage to occur. The
most commonly used method in the immature animal is the Rice–Vannucci method [30],
based on the previous protocol described by Levine [31] for adult rodents. The Rice–
Vannucci method consists of the unilateral ligation of the common carotid artery, followed
by exposure to hypoxia using 8% O2; this is usually performed at P7 [30]. This model causes
hypoperfusion on the ligated side of the brain, while the unlinked side serves as a control
by being exposed to hypoxia only. The length of hypoxic exposure (typically between
45 min and 2.5 h) can lead to mild, moderate, or severe HI damage [32]. Another protocol
used in rodents is the Wigglesworth model of fetal growth restriction. In this protocol, the
uterine and/or ovarian vessels are ligated or occluded, uni- or bilaterally, to induce chronic
placental insufficiency at embryonic day 19–20 (E19–E20), considering that gestation lasts
23 days [33]. This protocol is exclusive for the study of HI in preterm neonates. Moreover,
other models of brain damage due to perinatal asphyxia can be achieved by exposing the
pups to a mixture of asphyxiation gas that combines hypercapnia (20% CO2) and hypoxia
(9% O2) [34] or by inducing intrauterine ischemia with a “delayed cesarean section”, a
protocol developed by Bjelke et al. [35], in which the pregnant uterus is dissected at the
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end of the gestation period and placed in a pre-warmed saline bath before the fetuses are
extracted. Finally, another model of perinatal brain injury caused by glutamate-induced
excitotoxicity is achieved by injecting glutamate or its analog ibotenate into the brain at
P5 [36,37]. As nearly all the investigations published to date have utilized rat and mouse
models, this review will focus on those species but will also provide information on other
species, especially humans, where such information is available.

The present review summarizes the preclinical in vivo studies and the few available
human clinical studies in which nutritional interventions were applied as prophylaxis
before the HI cerebral damage, either as a maternal dietary supplementation during
pregnancy or to the offspring before HI induction. The interventions examined only
included natural products and nutraceuticals, which may be attractive alternatives to
traditional drugs as they have a low toxicity profile, are comparatively affordable, and are
widely available [38–40]. The neuroprotective and preventive properties of polyphenols,
omega-3 fatty acids, vitamins, and other plant-derived and endogenous compounds in the
context of neonatal HI are summarized below.

2. Methods

The articles reviewed herein were collated from the PubMed database, which was
searched up to January 2021 with the following search, which excluded reviews and
those articles not written in English: ((((((“hypoxia”[MeSH Terms] OR hypoxi*[Text Word]
OR anoxi*[Text Word]) AND (“ischemia”[MeSH Terms] OR ischemi*[Text Word])) AND
(((((((pregnancy) OR (gestational)) OR (maternal)) OR (prenatal)) OR (antenatal)) OR
(neonatal)) OR (perinatal))) AND (((neuroprotect*) OR (prevent*)) OR (anti-inflammatory)))
AND ((((((((((natural) OR (nutrient)) OR (nutrition*)) OR (nutraceutical)) OR (supplement*))
OR (diet*)) OR (vitamin)) OR (polyphenol)) OR (melatonin)) OR (polyunsaturated fatty
acid))) AND ((((((((((((((human) OR (female)) OR (women)) OR (mother)) OR (animal
model)) OR (rodent)) OR (murine)) OR (rat)) OR (mouse)) OR (mice)) OR (guinea pig))
OR (pig)) OR (sheep)) OR (rabbit))) AND ((((fetus) OR (newborn)) OR (neonate)) OR
(pup)) AND (english[Filter]) NOT (“review”[Publication Type]). The search resulted in
256 articles, but the following were excluded: in vitro studies, ex vivo studies, and those
in which the neuroprotective strategy was applied after the HI damage had occurred
(i.e., as a post-treatment to pups or newborns). After reading the abstract, and, in some
cases, the entire manuscript, a total of 49 studies fitted the inclusion criteria; only two of
those were clinical studies conducted on humans [41,42]. The preclinical in vivo studies
using natural products with neuroprotective properties in neonatal HI animal models are
summarized in Table 1. The chemical structures of the natural compounds reviewed are
shown in Figure 1.
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Table 1. Summary of the preclinical in vivo studies that have examined the neuroprotective effects of natural products administered before neonatal hypoxia–ischemia (HI) injury.

Compound Organism HI Injury Method * Injury
Date

Administration
Timing

Administration
Duration ¶ Dose Administration

Mode Neuroprotective Effects Ref

POLYPHENOLS

Resveratrol Mouse
and rat

RV: 8% O2 for 45 min
(mouse) or 2.5 h (rat)

P7 Pups: 24 h or 10 min
before H

Single dose 0.002, 0.2 or
20 mg/kg

i.p. injection ↓ Tissue loss in hippocampus and striatum, ↓ apoptotic and
necrotic cell death

[43]

Rat RV: 8% O2 for 2 h
15 min

P7 Pups: 10 min before H Single dose 20 mg/kg i.p. injection ↓ Brain infarct volume, loss of myelination and cell loss in
cortex and hippocampus, ↓ ROS production, ↑maintenance
of the mitochondrial inner membrane integrity and
transmembrane potential, ↓ long-term cognitive
impairments and functional damage

[44]

Rat RV: 8% O2 for 2 h
15 min

P7 Pups: 10 min before HI Single dose 20 mg/kg i.p. injection ↓Morphological damage and astrogliosis in the inferior
colliculus, ↓ loss of myelination, restored the auditory
brainstem functional response

[45]

Rat RV: 8% O2 for 2.5 h P14 Pups: P7–P14 7 days 20 or 40
mg/kg/day

i.p. injection ↓ Brain infarct volume, ↓ cerebral edema, ↓
neuroinflammation,
↓ oxidative stress, ↑ Nrf2/HO-1 signaling pathway

[46]

Rat Helmy model: 9% O2
+ 20% CO2 for 90 min

P6 Mothers: from end of
weaning till pups
reached P7

88–98 days † 50 mg/kg/day Drinking
water

↓ Neuroinflammation in hippocampus [47]

Rat RV: 8% O2 for 2 h P7 Mothers: E15–P9 15 days 0.15 mg/kg/day Drinking
water

Partially ↓ sensorimotor defects and long-term memory
deficits in the context of moderate maternal
alcohol consumption

[48]

Piceatannol Rat RV: 8% O2 for 2 h P7 Mothers: E15–P7 or P0–P7 6 or 14 days 0.15 mg/kg/day Drinking
water

↓ Brain infarct volume and anatomical brain lesions, ↓
cerebral edema, ↓ neuronal apoptosis, ↑ early reflexes, ↓
sensorimotor defects and long-term cognitive impairments

[49]

Rat RV: 8% O2 for 2 h P7 Mothers: E15–P9 15 days 0.15 mg/kg/day Drinking
water

↓ Sensorimotor defects and cognitive impairments in the
context of moderate maternal alcohol consumption

[48]

Pterostilbene Rat RV: 8% O2 for 2 h P7 Pups: 30 min before HI Single dose 50 mg/kg i.p. injection ↓ Brain infarct volume, ↓ brain edema, ↓ neuronal apoptosis,
↓ neuroinflammation, ↓ oxidative stress through ↑ HO-1
expression, ↓motor and memory deficits

[50]

Quercetin Piglet Transient bilateral
carotid ligation + 8%
O2 for 40 min

P2 Pups: 1 h before HI Single dose 10 mg/kg Nanosomes
injected
intravenously

Improved electroencephalographic amplitude records and
neurological functions, restored blood pressure and
spontaneous breathing

[51]

Rat RV: 8% O2 for 2.5 h P7 Pups: P0–P7 7 days 40 mg/kg/day Intragastric ↓ Cortical cell apoptosis, microgliosis, and astrogliosis, ↓
neuroinflammation, ↓ TLR4/NF-κB signaling

[52]

Mangiferin Rat RV: 8% O2 for 2 h P10 Pups: P3–P12 9 days 50, 100 or
200 mg/kg/day

Oral gavage ↓ Brain infarct volume, ↓ neuronal apoptosis, ↓ oxidative
stress, ↑ PI3K/Akt signaling pathway, ↑ isoflurane’s
neuroprotection

[53]
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Table 1. Cont.

Compound Organism HI Injury Method * Injury
Date

Administration
Timing

Administration
Duration ¶ Dose Administration

Mode Neuroprotective Effects Ref

POLYPHENOLS

Pomegranate
juice

Mouse RV: 8% O2 for 45 min P7 Mothers: E14–P8
or E14–P14

15 or 21 days 8, 16, or
32 µmol/day

Drinking water ↓ Tissue loss in the hippocampus, cortex, and striatum in a
dose-dependent manner, ↓ neuronal apoptosis

[54]

Mouse
and rat

RV: 8% O2 for 45 min
(mouse) or 2.5 h (rat)

P7 Mothers: E0–P8 29 days 4.8 mg/day Drinking water ↓ Neuronal apoptosis [43]

GSPE Mouse RV: 8% O2 for 2 h P7 Pups: 20 min
before HI

Single dose 30 mg/kg i.p. injection ↓ Brain infarct volume, ↓ neuronal apoptosis, improved
neurobehavioral outcomes

[55]

Icariin Mouse RV: 8% O2 for 2 h P7 Pups: 20 min
before HI

Single dose 10 mg/kg i.p. injection ↓ Brain infarct volume, ↓ neuronal apoptosis, improved
neurobehavioral outcomes, ↑ PI3K/Akt signaling pathway

[56]

Daphnetin Rat RV: 8% O2 for 2.5 h P7 Pups: 1 h before H Single dose 10 mg/kg i.p. injection ↓ Brain infarct volume [57]

OMEGA-3 FATTY ACIDS

n-3
PUFAs

Rat RV: 8% O2 for 90 min P7 Mothers: E1–P21 41 days 46% w/w total
fatty acids

Flaxseed-enriched
diet

↓ Brain tissue loss, ↑ hippocampal n-3 PUFAs content in
pups’ brains, ↓ depressive behavior and cognitive
impairments

[58]

Rat 3 hypoxic insults per
day with 10% O2 + 3%
CO2 for 2 h

P7–P12 Mothers: E1–P12 32 days 3.5–4 g/day Fish-oil-enriched diet ↓ Hippocampal apoptosis, preserved striatal
dopamine levels

[59]

Mouse RV: 8% O2 for 15 min P10 Pups: postsurgery
and post-H

2 doses 3 mg/day i.p. injection ↓ Brain infarct volume [60]

DHA and
EPA

Rat RV: 8% O2 for 2.5 h P7 Mothers: E2–P14 33 days 1.5% w/w Fish-oil-enriched diet ↓ Brain tissue loss, ↑ cortical content of DHA and EPA in
pups’ brain, ↓microgliosis, ↓ neuroinflammation, ↓
long-term sensorimotor and cognitive impairments

[61]

Rat RV: 8% O2 for 2.5 h P7 Mothers: E2–P14 33 days Not specified Fish-oil-enriched diet ↓ Brain tissue loss, ↓ cortical apoptosis, ↑
phosphatidylserine, DHA and EPA content in pups’ brain, ↑
PI3K/Akt signaling pathway, improved neurological
outcomes

[62]

Rat RV: 8% O2 for 2.5 h P7 Mothers: E2–P14 33 days 1.5% w/w Fish-oil-enriched diet ↓ Brain edema, ↑ BBB integrity, ↓matrix
metalloproteinase activity

[63]

DHA Rat RV: 8% O2 for 90 min P7 Mothers: E7 till
pups’ sacrifice at
P8–P14

22–28 days 10% w/w total
fatty acids

Fish-oil-enriched diet ↑ DHA content in pups’ brain, ↓ hippocampal apoptosis, ↓
oxidative stress

[64]

Rat RV: 8% O2 for 90 min P7 Pups: 2.5 h before
HI

Single dose 1, 2.5 or
5 mg/kg

i.p. injection ↓ Hippocampal tissue loss, improved functional outcomes [65]

Rat RV: 8% O2 for 90 min P7 Pups: 2.5 h before
HI

Single dose 1 mg/kg i.p. injection Improved functional outcomes in the context of E. coli
lipopolysaccharide-induced systemic inflammation

[66]

Rat RV: 8% O2 for 2 h
15 min

P7 Pups: 10 min
before HI

Single dose 1 mg/kg i.p. injection ↓ Brain infarct volume, ↓ loss of myelination, ↓ astrogliosis
and microgliosis, ↑maintenance of the mitochondrial inner
membrane integrity and transmembrane potential, ↓
long-term behavioral and cognitive impairments

[67]

Rat RV: 8% O2 for 2 h
15 min

P7 Pups: 10 min
before HI

Single dose 1 mg/kg i.p. injection ↓ Astrogliosis, ↓ loss of myelination, restored the auditory
brainstem functional response

[45]
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Table 1. Cont.

Compound Organism HI Injury Method * Injury
Date

Administration
Timing

Administration
Duration ¶ Dose Administration

Mode Neuroprotective Effects Ref

VITAMINS

Vitamin A Rat RV: 8% O2 for 2.5 h P7 Mothers: 4 weeks
before pregnancy
till pups’ sacrifice

Whole
pregnancy and
lactation

300 or
7000 IU/kg/day

Diet ↓ Hippocampal cell apoptosis by ↑ caspase-3 and
caspase-8/Bid pathways, ↑ PI3K/Akt signaling pathway by
binding to RARα,
improved learning ability, and spatial memory impairments

[68]

Rat RV: 8% O2 for 2.5 h P7 Mothers: 4 weeks
before pregnancy
till pups’ sacrifice

Whole
pregnancy and
lactation

300 or
7000 IU/kg/day

Diet ↑ Neurol stem cell proliferation by ↑ RARα-mediated
modulation of β-catenin signaling, improved learning
ability, and spatial memory impairments

[69]

Vitamin E Rat RV: 8% O2 for 90 min P7 Pups: P4, P6
and P8

3 doses 1.5 mg/day s.c. injection ↓ Expression of iNOS, nNOS and IGF-related proteins [70]

Folic acid Rat RV: 8% O2 for 90 min P7 Mothers: E0
till birth

Whole
pregnancy

2 or
20 mg/kg/day

Diet ↓ Long-term memory impairments, ↓ brain-derived
neurotrophic factor imbalance

[71]

PLANT-DERIVED COMPOUNDS

Tanshinone
I

Rat RV: 8% O2 for 2.5 h P7 Pups: P6–P12 6 days 5 mg/kg/day i.p. injection ↓ Neuronal loss in the hippocampus, ↓motor and cognitive
deficits, ↓ oxidative stress

[72]

Tanshinone
IIA

Rat RV: 8% O2 for 2 h P7 Pups: P5–14 or
P5–21

9 or 16 days 10 mg/kg/day i.p. injection ↓ Brain injury, ↓ cortical cell loss, ↑ plasma antioxidant
capacity, improved sensorimotor function

[73]

Sulforaphane Rat RV: 8% O2 for 90 min P7 Pups: 30 min
before HI

Single dose 5 mg/kg i.p. injection ↓ Brain infarct volume, ↓ apoptosis in cortex and
hippocampus,
↓microgliosis, ↓ lipid peroxidation, ↑ Nrf2/HO-1 signaling
pathway

[74]

Rat Wigglesworth model:
bilateral uterine artery
ligation

E20 Mothers: E15–P14 20 days 200 mg/day Diet (dried broccoli
sprouts)

↓White matter loss and ventricular dilation, ↓ hippocampal
cell loss, ↓ loss of myelination, ↓ astrogliosis, improved
neurobehavioral outcomes

[75]

Capsaicin Rat RV: 8% O2 for 2 h P10 Pups: 3 h before
HI

Single dose 0.2 or 2 mg/kg i.p. injection ↓ Brain infarct volume, ↑ the middle cerebral artery
myogenic tone

[76]
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Table 1. Cont.

Compound Organism HI Injury Method * Injury Date Administration
Timing

Administration
Duration ¶ Dose Administration

Mode Neuroprotective Effects Ref

ENDOGENOUS COMPOUNDS

Melatonin Spiny
mouse

Bjelke model:
7.5 min intrauterine
ischemia

E37 Mothers: E29–E37 8 days 0.1 mg/kg/day Subscapula
osmotic pump

↓Macrophage infiltration, ↓
microgliosis, ↓ apoptosis in cortex

[77]

Rat Bilateral
utero-ovarian artery
occlusion for 30 min

E16 Mothers: E0 till
birth

Whole pregnancy 4 mg/kg/day Drinking water ↓Mitochondrial damage, ↓
degeneration of pyramidal cells in the
hippocampus

[78]

Rat RV: 8% O2 for 2.5 h P7 Pups: 30 min
before HI

Single dose 5 or 15 mg/kg i.p. injection ↓ Brain tissue loss in a
concentration-dependent manner

[79]

Rat RV: 8% O2 for 2.5 h P7 Pups: 30 min
before HI

Single dose 15 mg/kg i.p. injection ↓ Brain damage in hippocampus and
cortex, ↓ oxidative stress by
↓ the levels of free iron, F2-isoprostanes,
and F4-neuroprostanes

[80]

Rat Excitotoxity injury
by ibotenate
injection

P5 Pups: 15 min
before ibotenate
injection

Single dose 5 mg/kg i.p. injection ↓White matter lesions, preserved the
ability to develop conditioning

[36]

Carnitine Rat RV: 8% O2 for
70 min

P7 Pups: 30 min
before H

Single dose 16 mmol/kg i.p. injection ↓ Brain injury, ↓ apoptosis in
hippocampus and cortex

[81]

Rat RV: 8% O2 for
70 min

P7 Pups: 30 min
before H

Single dose 16 mmol/kg i.p. injection ↓ Accumulation of acyl-CoA esters in
the brain, ↓ superoxide
levels, ↓mitochondrial injury

[82]

Rat RV: 8% O2 for 1 h P7 Pups: just
before HI

Single dose 200 mg/kg i.p. injection ↓ Apoptosis in hippocampus
and striatum

[83]

Creatine Spiny
mouse

Bjelke model:
7.5 min intrauterine
ischemia

E37 or E38 Mothers: E20 till
sacrifice at
E37–E38

17–18 days 5% w/w Enriched diet ↑ Capacity of the offspring to survive
birth asphyxia, improved postnatal
growth, ↑ creatine content in brain and
other fetal tissues

[84]

Spiny
mouse

Bjelke model:
7.5 min intrauterine
ischemia

E38 Mothers: E20–E38 18 days 5% w/w Enriched diet ↓ Lipid peroxidation, ↓ apoptosis, ↓
mitochondrial damage

[85]

Rat RV: 8% O2 for
100 min

P7 Pups: P6–P8 3 doses 3 g/kg/day s.c. injection ↓ Brain edema, ↑ energy potential and
the levels of phosphocreatine in
the brain

[86]

Rat RV: 8% O2 for
80 min

P7 Pups: P4–P7 4 doses 3 g/kg/day s.c. injection ↓ Brain injury, ↓ neuronal cell damage
in the cortex and hippocampus

[87]

Lactate Rat RV: 8% O2 for 2 h P7 Pups: just
before H

Single dose 2.14 mmol/kg i.p. injection ↓ Brain infarct volume [88]

Abbreviations: GSPE, grape seed proanthocyanidin extract; i.p., intraperitoneal; n-3 PUFAs, omega-3 polyunsaturated fatty acids; RV, Rice–Vannucci; s.c., subcutaneous. * HI methods: Rice–Vannucci model of
unilateral common carotid artery ligation, followed by a period of hypoxia with 8% O2 [30]; Helmy model of perinatal asphyxia, a combination of hypercapnia (20% CO2) and hypoxia (9% O2) [89]; Bjelke model
of intrauterine ischemia or “delayed cesarean section” [35], later adapted in [84]; Wigglesworth model of chronic placental insufficiency induction by bilateral uterine artery ligation [90]; Ikonomidou excitotoxity
model by ibotenate injection [37]. ¶ The duration of nutraceutical administration was calculated based on an average gestation length of 21 days in rats. † In [47], supplementation was initiated when female rats
finished weaning (at P30) and continued while dams reached maturity for mating (at P90–P100), during the whole pregnancy, and the first week of lactation, adding up to a total of 88–98 days.
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3. Polyphenols

Polyphenols are a diverse group of plant-derived organic compounds characterized
by having several hydroxyl groups on aromatic rings. These molecules are secondary
metabolites that fulfill a very broad range of physiological roles in plants and are gener-
ally involved in defense against ultraviolet radiation or aggression by pathogens [91,92].
Polyphenols display numerous biological activities, and dietary polyphenols present in
fruits and vegetables have shown beneficial effects in the treatment and prevention of
several diseases, including cancer [93,94], neurodegenerative disorders [95,96], and dia-
betes [97]. Some polyphenols have been demonstrated to possess neuroprotective effects
against brain injury; below, we summarize their properties in relation to neonatal HI.

3.1. Resveratrol

Resveratrol (3,5,4′-trihydroxystilbene) is a natural stilbene polyphenol found in many
plant species and fruits such as grapes, peanuts, pomegranates, and some berries [98]. The
most common dietary source of resveratrol is red wine, and this polyphenol is believed to
be an important factor in the French Paradox: the observation that the French population
has a very low incidence of cardiovascular disease despite a high-fat diet [99]. Resveratrol
is one of the most extensively studied polyphenols, and it has anticarcinogenic, anti-
inflammatory, and antioxidant properties [100,101]. However, its oral bioavailability is low
(<1%) as it undergoes extensive metabolization in the intestine and liver [102]. Resveratrol
can cross the placenta and reach fetal circulation [103], and its maternal consumption
during pregnancy (at doses up to 750 mg/kg/day) is safe [104]. Several studies have
examined the neuroprotective properties of resveratrol in the context of neonatal HI when
injected intraperitoneally to pups prior to an HI insult [43–46] or when administered to the
mothers as a dietary supplementation [47,48].

Using the Rice–Vannucci method in P7 mouse and rat pups, West et al. [43] showed
that resveratrol at 20 mg/kg protected against tissue loss in the hippocampus and striatum
and reduced apoptotic and necrotic cell death in a dose-dependent manner when injected
intraperitoneally to mice pups 10 min or 24 h before HI [43]. The finding that resveratrol
was neuroprotective even when given 24 h before the injury could either be due to its slow
metabolism in mice [105] or to its ability to mimic the effects of preconditioning, as shown in
a rat brain slice model of ischemia [106]. In rat pups, intraperitoneal injection of 20 mg/kg
resveratrol 10 min before the hypoxic insult reduced caspase-3 activation [43]. Using the
same resveratrol treatment modality and dose in P7 rat pups, Arteaga et al. [44] showed
that resveratrol could ameliorate HI-induced morphological damage, reducing infarct
volume, loss of myelination, and cell loss, especially in the cortex and the hippocampus.
The same authors showed that this resveratrol pretreatment also reduced morphological
damage and astrogliosis in the inferior colliculus and restored the auditory brainstem
functional response that was affected by HI [44]. Resveratrol prevented HI-induced long-
term cognitive impairments and functional damage in adult rats, evaluated at P90 [44]. The
authors postulated that one of the mechanisms by which resveratrol protects against HI
may be the maintenance of mitochondrial inner membrane integrity and transmembrane
potential, as well as the reduction of ROS production [44]. Similarly, Gao et al. [46] showed
that intraperitoneal administration of 20 or 40 mg/kg/day resveratrol for a week prior to HI
induction in P14 rat pups resulted in a reduction of the infarct area and HI-induced cerebral
edema. Resveratrol attenuated the HI inflammatory response, reducing the expression
of proinflammatory cytokines IL-6, IL-1β, TNF-α, and NF-κB p65 subunit. Additionally,
resveratrol reduced oxidative stress by enhancing the activities of the antioxidant enzymes
glutathione peroxidase, catalase, and superoxide dismutase. The authors suggested that
resveratrol activates the Nrf2/HO-1 (nuclear factor erythroid 2 related factor 2/heme
oxygenase 1)-dependent signaling pathway to produce endogenous antioxidants that may
contribute to its neuroprotective activity [46].

Besides the aforementioned studies, in which resveratrol was injected intraperitoneally
to pups, Isac et al. [47] investigated maternal dietary supplementation with resveratrol
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(50 mg/kg/day) in neonatal rats at P6 using a modified version of the perinatal asphyxia
model developed by Helmy et al. [89]. In this case, maternal dietary supplementation
with resveratrol was administered from a period that initiated when female rats finished
weaning, which continued while dams reached maturity for mating and during the whole
pregnancy and the first week of lactation until the offspring reached P7. The authors
assessed the hippocampal expression of neuroinflammation and neural injury markers
TNFα, IL-1β, and S-100B, as well as the expression of several small noncoding microRNAs
(miR124, miR132, miR134, miR15a, and miR146) involved in the epigenetic control of neu-
roinflammation, tolerance to asphyxia, apoptosis, angiogenesis, and neuronal maturation.
They found that maternal supplementation with resveratrol could reduce the expression
levels of TNFα, IL-1β, and S-100B, which increased secondary to perinatal asphyxia, similar
to previously observed results [46]. Although the expression of some microRNAs was
altered following perinatal asphyxia, resveratrol did not induce any significant changes
in their expression. The authors suggested that resveratrol can reduce asphyxia-related
neuroinflammation and neural injury [47]. Given the long period of resveratrol supple-
mentation employed in this study, this polyphenol may have not only interfered with
fetal development but also with maternal growth before gestation, something that was not
investigated further by the authors.

Dumont et al. [48] also followed a maternal dietary supplementation regime, initi-
ated during the last week of gestation and maintained until pups reached P9, in order
to investigate the neuroprotective role of resveratrol in the context of moderate maternal
alcohol consumption [48]. They used a nutritional dose of resveratrol of 0.15 mg/kg/day,
which, based on the content of this polyphenol present in various raisins [107], would be
equivalent to the consumption of about 22 g of grapes (30 grape berries) per day for a
pregnant woman. Contrary to other findings [43–47], in this study, resveratrol only showed
partial neuroprotection against HI. Resveratrol did not reduce HI-induced brain lesions,
but it counteracted some deleterious sensorimotor defects and hippocampal-dependent
long-term memory deficits induced by HI and alcohol consumption, respectively. Its
hydroxylated analog piceatannol displayed higher neuroprotection than resveratrol [48]
(see Section 3.2.1). The discrepancies in resveratrol’s neuroprotective properties can be
related to the concentration of the polyphenol employed, since the concentration used
by Dumont et al. [48] was up to two orders of magnitude lower than the concentrations
used in other studies [43–47] (they were all conducted using the Rice–Vannucci HI model).
Given the low oral bioavailability of resveratrol [102], the mode of administration (ma-
ternal supplementation vs. intraperitoneal injection to pups) may also interfere with
resveratrol actions.

Finally, although the scope of this review are natural preventive agents that can protect
against HI when administered before this damage occurs, it is interesting to mention that
in the studies by Arteaga et al. [44] and West et al. [43], resveratrol did not exert neuropro-
tection when administered after the hypoxic damage. However, other studies have shown
that resveratrol treatment after HI can ameliorate HI-induced brain damage [108,109] and
behavioral deficits [108] in the Rice–Vannucci rat model. These discrepancies are likely
due to the use of higher concentrations of resveratrol (20 mg/kg in [43,44] vs. 90 mg/kg
in [108] and 100 mg/kg in [109]) since the neuroprotective effects of this polyphenol are
dose-dependent in rats [46,110,111]. Hence, when administered as a therapeutic agent
rather than a preventive agent, the damage produced by the deleterious HI cascade has
already started, and the dose of resveratrol needed to revert the damage may be higher.

3.2. Resveratrol Derivatives: Piceatannol and Pterostilbene
3.2.1. Piceatannol

Piceatannol (3,3′,4′,5-tetrahydroxystilbene) is a hydroxylated analog of resveratrol
that occurs naturally in berries, grapes, passion fruit, and white tea, and it has anticancer
and anti-inflammatory properties [112]. In humans, resveratrol can be metabolized to
piceatannol by the cytochrome P450 enzyme CYP1B1 [113], which is overexpressed in
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a wide range of tumors but not in adjacent normal tissue [114]. Piceatannol has higher
biological activity and metabolic stability [115] as well as stronger antioxidant activity [116]
than resveratrol. Despite the accruing evidence indicating that resveratrol could play a neu-
roprotective role in the context of perinatal HI [44–47,108,109] (summarized in Section 3.1),
its analog piceatannol has received limited attention. Two studies by Dumont et al. [48,49]
evaluated maternal dietary supplementation with piceatannol as a preventive nutritional
approach against HI. Using the Rice–Vannucci HI model, piceatannol was administered
to the mothers in drinking water during the first week of lactation or the last week of
gestation plus the first week of lactation in a dose equivalent to one passion fruit per day
for a pregnant woman (0.15 mg/kg/day). In the short term, piceatannol reduced cerebral
edema and decreased cell death 48 h post-HI, and it also improved early reflexes evaluated
at P8–P12. The neuroprotective effects of piceatannol were still present in the longer term.
In juvenile rats, maternal piceatannol supplementation reversed anatomical brain lesions,
improved the spatial distribution of white matter fiber bundles, and counteracted sensori-
motor deficits and long-term memory impairments, which were comparable to those of
sham controls [49]. Additionally, piceatannol supplementation allowed pups to recover
their sensorimotor and cognitive functions after a HI event in a context of moderate mater-
nal alcohol consumption, whereas resveratrol only exerted partial neuroprotection when
used at the same dose of 0.15 mg/kg/day [48]. The authors explained that the increased
neuroprotective effect of piceatannol compared to resveratrol is conferred by the additional
hydroxyl group that piceatannol possesses in its chemical structure. Moreover, they also
suggested that, in addition to their antioxidant properties, piceatannol and resveratrol
neuroprotection may be multimodal and implicate the regulation of brain metabolism.
In short, Dumont et al. postulated that these polyphenols may prevent neuronal death
and reduce brain damage which leads to motor and cognitive impairments by increasing
glycolysis (and, therefore, lactate levels) in astrocytes, which could then spare glucose for
its metabolic use through the pentose phosphate pathway in neurons and enhance their
reduced glutathione levels [48,49].

3.2.2. Pterostilbene

Pterostilbene (3,5-dimethoxy-4′-hydroxystilbene) is a naturally occurring dimethoxy-
lated structural analog of resveratrol present in red sandalwood, grapevines, and blueberries,
and it is the major phenolic component in some traditional Ayurvedic medicines [117,118].
Pterostilbene has shown anticancer, cardioprotective, and neuroprotective properties [117]
and has better pharmacokinetic characteristics than its analog resveratrol due to the two
methoxy groups of its structure, which make it more lipophilic, thus increasing its oral
bioavailability (~12.5%) [119,120]. A study by Li et al. [50] analyzed the neuroprotective
properties of pterostilbene in P7 rat pups subjected to the Rice–Vannucci protocol. Pteros-
tilbene, injected intraperitoneally at 50 mg/kg 30 min prior to HI induction, decreased
brain infarct volume and brain edema and improved both motor and working memory
deficits secondary to HI. Additionally, pterostilbene pretreatment decreased the expression
of proinflammatory cytokines IL-6, IL-1β, TNF-α, and NF-κB p65 subunit (as shown for
resveratrol [46,47]) and reduced oxidative stress and apoptosis. Zinc protoporphyrin IX,
an HO-1 inhibitor, was able to inhibit the pterostilbene-induced suppression of oxida-
tive stress, programmed cell death, inflammation, and brain damage [50], indicating that
pterostilbene pretreatment may prevent HI damage through the upregulation of HO-1, as
suggested for its analog resveratrol [46].

3.3. Quercetin

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a ubiquitous flavonol present in most plants,
fruits, and vegetables. It can reach levels in the human diet as high as 3–38 mg/day [121],
with some of the major dietary sources of quercetin being onions, broccolis, apples, leeks,
kales, tea, and red wine [122,123]. Quercetin has shown anticancer, cardioprotective, and
antioxidant activities [124–126], and numerous studies have endorsed quercetin in vivo
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and in vitro neuroprotective properties in the context of focal ischemia [127–130] or oxygen–
glucose deprivation injury [130–132]. However, quercetin suffers from poor bioavailability
as it is rapidly and extensively metabolized and excreted [124], and there are contradic-
tory results on its ability to cross the BBB [133]. These pharmacokinetic properties are
not favorable for its acute intravenous administration for the treatment of perinatal HI
and, therefore, other administration strategies have been investigated, such as intragas-
tric administration [52,134,135] or the use of liposomal preparations, which facilitate its
permeability to the brain [128,136]. Regarding the latter, Blasina et al. [51] developed
nanosomes of quercetin (i.e., nanometer-sized vesicles of phospholipid bilayers) that were
administered intravenously to piglets that underwent bilateral transient carotid ligation,
followed by 40 min hypoxia 48 h after birth. Quercetin nanosomes (10 mg/kg) improved
electroencephalographic amplitude records, although no histopathological differences in
brain lesions were observed compared to untreated controls. Piglets receiving nanosomes
also stabilized blood pressure and recovered spontaneous breathing 8 h after HI and
showed better suckling and walking capacity 3 days after HI [51].

Wu et al. [52] used the Rice–Vannucci model and administered quercetin intragastri-
cally for a week prior to HI induction to P7 rats at a dose of 40 mg/kg/day. Twenty-four
hours after HI, quercetin was shown to reduce cortical cell apoptosis by modulating the
expression of proteins in the apoptotic pathway; it attenuated cortical cell microgliosis
and astrogliosis, and it partially reversed the neuroinflammation induced by HI injury by
reducing the expression of proinflammatory markers IL-6, IL-1β, and TNF-α (as shown for
other polyphenols [46,47,50]). The authors showed that one of the mechanisms involved
in quercetin neuroprotection was the suppression of the TLR4/NF-κB (Toll-like receptor
4/nuclear factor κB) signaling pathway-mediated neuroinflammatory response [52]. This
is not the only report that has suggested quercetin modulates TLR4/NF-κB signaling to
exert neuroprotection, as others have shown that quercetin suppresses the TLR4/NF-κB
pathway and oxidative stress in vitro using an oxygen–glucose deprivation injury model
in microglial cells [132].

Although not part of the scope of this review, it is worth noting that treatment with
quercetin after an HI insult has also shown to be neuroprotective in vivo. Hence, in-
traperitoneal injection of 50 mg/kg quercetin for three consecutive days after HI induction
to P7 mice reduced brain infarct volume and improved long-term motor and cognitive
function [132]. Moreover, quercetin intragastric administration at 20 or 40 mg/kg/day
for six weeks after HI insult to P3 rats resulted in a reduction of HI-induced cognitive
deficits [134,135] and also improved remyelination by promoting the proliferation of oligo-
dendrocyte progenitor cells and strengthening the survival of oligodendrocytes [135].
Based on the aforementioned observations of quercetin neuroprotective properties in the
context of neonatal HI [51,52,132,134,135] and given that this flavonoid is abundantly
present in the diet [121–123], it would be interesting to investigate its potential as a nu-
traceutical to evaluate whether maternal supplementation with quercetin could be an
effective preventive strategy against neonatal HI.

3.4. Mangiferin

Mangiferin (C-glucopyranoside 1,3,6,7-tetrahydroxyxanthone) is a natural polyphenol
from the xanthone family present in numerous plant species, and it is particularly abundant in
the fruit peels, leaves, stem bark, and roots of the mango tree (Mangifera indica L.) [137,138].
Mangiferin has known antiangiogenic, anticancer, immunomodulatory, and antioxidant
activity; the latter is related to the C-glucosyl linkage and the presence of multiple hy-
droxyl groups of its xanthonoid structure, which contribute to its free radical-scavenging
activity [139,140]. Using a neonatal rat HI model, Xi et al. [53] showed that postnatal admin-
istration of mangiferin exerted neuroprotection in a dose-dependent manner. Mangiferin
reduced brain infarct volume, improved histological changes in the hippocampus following
HI damage, reduced neuronal cell death by regulating the expression of several proteins
in the apoptotic cascade, and attenuated oxidative stress by reducing ROS and malon-
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dialdehyde levels [53]. Additionally, mangiferin potentiated the known neuroprotective
activity of the anesthetic isoflurane [53,141–143]. The authors suggested that mangiferin-
induced neuroprotection is related to the activation of the PI3K/Akt (phosphoinositide
3-kinase/protein kinase B) signaling pathway, which was downregulated following HI
insult, and concluded that mangiferin is a promising therapeutic agent in the treatment
of neonatal HI, administered alone or with isoflurane [53]. It remains to be determined
whether the neuroprotection exerted by mangiferin translates to better sensorimotor and
cognitive outcomes following HI.

3.5. Pomegranate Juice Polyphenols

Pomegranate juice has antioxidant, anti-inflammatory, antimicrobial, and antidiabetic
activities, and it possesses a higher concentration of polyphenols than juices extracted
from other fruits. Its polyphenolic composition includes tannins, anthocyanins, proan-
thocyanidins, flavonoids, and several phenolic acids [144,145]. Pomegranate polyphenols
have shown neuroprotective and antioxidant properties against ischemia in vitro [146],
in vivo [147,148], and in a randomized controlled trial in which pomegranate supplemen-
tation enhanced cognitive and functional recovery in stroke patients [149]. Loren et al. [54]
showed that supplementing the maternal diet with pomegranate juice during the peri-
partum period (for 15 or 21 days) provided significant neuroprotection from HI injury to
neonatal mice. Pomegranate juice protected against brain tissue loss in the hippocampus,
cortex, and striatum in a dose-dependent manner (at 8, 16, and 32 µmol/day), and it
reduced caspase-3 activation. These results were replicated in a later study by the same au-
thors, which showed a similar reduction in apoptotic neuronal cell death after pomegranate
juice supplementation [43]. Liquid chromatography-mass spectrometry showed that ellagic
acid, a polyphenol found in pomegranate juice, was present in pup serum, confirming the
maternal gastrointestinal absorption of pomegranate juice components and their passage
across the mouse placenta from maternal serum to pup serum [54].

In humans, a randomized, placebo-controlled, double-blind pilot study with 77 partic-
ipants investigated the impact of maternal pomegranate juice intake in pregnancies with
intrauterine growth restriction [41], a significant complication of pregnancy defined as a
pathological decrease in the rate of fetal growth [150]. Fetuses with intrauterine growth re-
striction often suffer long-term placental insufficiency, resulting in chronic hypoxia similar
to acute perinatal HI injury [150]. Maternal intake of 8 oz. of pomegranate juice (equivalent
to ~237 mL and >700 mg of gallic acid equivalent (GAE) polyphenols) for an average of
20 days until delivery did not significantly affect brain macrostructure, i.e., brain injury,
metrics, or volume. However, pomegranate juice intake was associated with altered white
matter organization in the corpus callosum and bilateral anterior and posterior limbs of
the internal capsule, as well as enhanced functional connectivity within the visual network
of the infant brain [41]. This is one of the few human studies that have examined the
effects of a gestational dietary intervention in pregnant women at risk of having a baby
affected by neonatal HI. The results from this pilot study suggest differences in brain
structure and function following in utero exposure to pomegranate juice [41], which would
require further investigation to establish its potential preventive effects against perinatal
brain injury.

3.6. Grape Seed Proanthocyanidin Extract

Grape seed proanthocyanidin extract (GSPE) is a biological polyphenolic compound
commonly used as a dietary supplement. GSPE contains flavanols that range in molecular
weight from monomers (mainly catechin, epicatechin, and their gallate forms) to long-chain
polymers primarily composed of dimeric and trimeric procyanidins [151]. Proanthocyani-
dins are also present in most fruits, especially in berries, as well as in flowers, nuts, bark,
and seeds of various plants [151]. GSPE has antioxidant, anti-inflammatory, anticancer,
antihyperglycemic, and cardioprotective properties [151]. It has been shown to be neuropro-
tective against ischemia–reperfusion brain injury in the adult brain of mice by attenuating
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oxidative stress and apoptosis and promoting angiogenesis [152]; it has also been shown to
reduce HI-induced brain injury by suppressing lipid peroxidation when administered to
neonatal rats after an HI insult [153,154]. Tu et al. [55] reported that GSPE pretreatment
was neuroprotective against HI damage using the Rice–Vannucci model in P7 mice. In-
traperitoneal administration of 30 mg/kg GSPE 20 min prior to HI damage reduced brain
infarct volume and attenuated HI-induced neuronal apoptosis. GSPE pretreatment also
potentiated functional recovery after injury and resulted in an improvement of neurobehav-
ioral outcomes compared to untreated HI controls [55]. Another study in pregnant mice
exposed to an acute intake of GSPE showed that the placenta seemed to act as a barrier for
the transport of GSPE flavanols and their metabolites to the fetus. However, trace amounts
of these compounds reached the fetus, suggesting that they could exert a biological effect
on the offspring [155]. It would be, therefore, interesting to determine whether maternal
administration of GSPE during pregnancy could be used as a neuroprotective dietary
strategy for the prevention of neonatal HI, as shown for other polyphenols [43,47–49,54].

3.7. Other Polyphenols from Traditional Chinese Medicines: Icariin and Daphnetin
3.7.1. Icariin

The flavonoid icariin is the main active component of the traditional Chinese medici-
nal herb Epimedium grandiflorum C. Morren, native to China, Japan, and Korea. Icariin is
the 8-prenyl derivative of the flavonol kaempferol 3,7-O-diglucoside, and it has shown an-
tiapoptotic, anti-inflammatory, and antioxidative properties in a wide variety of disorders,
such as neurodegenerative disease, cardiovascular disease, and osteoporosis [156,157]. For
instance, icariin attenuated neuronal damage following cerebral ischemia-reperfusion in-
jury in rats [158] and oxygen–glucose deprivation/reperfusion injury in vitro [159] through
the inhibition of inflammation and apoptosis, respectively. A study by Wang et al. [56]
showed that intraperitoneal injection of 10 mg/kg icariin 20 min before HI induction in
P7 mice resulted in a reduction of brain infarct volume as well as improved growth and
functional recovery; the latter was evaluated at 1, 3, and 7 days after the HI insult. Icariin
inhibited HI-induced apoptosis and activated the PI3K/Akt signaling pathway, which was
reduced after HI injury. These findings suggest that icariin may play a neuroprotective role
in neonatal HI via the activation of prosurvival signaling pathways and the inhibition of
proapoptotic signaling pathways [56].

3.7.2. Daphnetin

Daphnetin (7,8-dihydroxycoumarin) is a coumarin derivative extracted from several
plants and shrubs of the genus Daphne, such as D. giraldii, D. marginate, and D. odora, and it
is the major component of some traditional Chinese medicines used for the treatment of
coagulation disorders and rheumatoid arthritis [160,161]. Daphnetin displays analgesic,
anti-inflammatory, antimalarial, antimicrobial, and antioxidant properties [160,162–165]. A
study by Du et al. [57] showed that intraperitoneal injection of 10 mg/kg of daphnetin 1 h
prior to the HI insult to P7 rat pups resulted in a reduction of brain infarct volume, whereas
daphnetin administered post-treatment 4 or 6 h after HI caused partial or no reduction in
infarct volume, respectively. The same study showed that daphnetin reduced brain infarct
volume and improved neurological deficits after ischemic injury using a middle cerebral
artery occlusion mouse model [57], as shown by others [166]. Daphnetin also protected
hippocampal neurons against glutamate-induced cell death by reducing oxidative stress
in vitro [57], in agreement with another report showing that daphnetin attenuated oxida-
tive stress and neuronal apoptosis after oxygen–glucose deprivation/reoxygenation injury
in hippocampal cells through the activation of the Nrf2/HO-1 signaling pathway [167].
The latter observations suggest that the reduction of oxidative stress may be the mecha-
nism by which daphnetin exerts its neuroprotection against neonatal HI. However, this
mechanism and the putative effects of daphnetin in preventing cognitive impairments and
functional damage secondary to HI remain to be investigated in vivo. Moreover, given that
daphnetin is used for the treatment of coagulation disorders [160,161], its anticoagulant
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properties [168,169] and safety would need to be carefully evaluated in the context of
neonatal HI.

4. Omega-3 Fatty Acids

Omega-3 (n-3) fatty acids are a family of long-chain polyunsaturated fatty acids
(PUFAs) characterized by the presence in their chemical structure of a double bond three
atoms away from the terminal methyl group. Several different omega-3 fatty acids exist,
but the three main omega-3 fatty acids involved in human physiology are α-linolenic acid
(ALA; C18:3n-3), eicosapentaenoic acid (EPA; C20:5n-3), and docosahexaenoic acid (DHA;
C22:6n-3) [170]. Humans are unable to synthesize omega-3 fatty acids, and these must be
obtained from the diet; ALA is mainly found in nuts and vegetable oils such as flaxseed,
soybean, and canola, whereas DHA and EPA are primarily found in seafood and fish such
as tuna or salmon [171]. DHA and EPA are the main omega-3 fatty acids in the CNS [172]
and are known for their beneficial effects in neurodevelopment [173]. In fact, omega-3 fatty
acids deficiency is associated with several nervous system disorders [174,175]. Almost all
omega-3 fatty acids are located in the cell membrane layer and confer membrane fluidity at
synaptic regions, which is crucial for maintaining membrane integrity and, consequently,
neuronal excitability and synaptic function [176].

Omega-3 fatty acids, including ALA [177–180], EPA [181,182], and DHA [183–186],
have demonstrated beneficial effects in different adult rodent models of focal ischemia [187].
Likewise, omega-3 fatty acids —especially DHA— have shown promising neuroprotec-
tive properties in several studies with neonatal rodent models of HI, both when given
as maternal dietary supplementation during pregnancy [58,59,61–64] and when admin-
istered intraperitoneally to P7–P10 pups before a HI insult [45,60,65–67]. Several studies
followed a dietary supplementation strategy in which maternal diet was enriched with
omega-3 fatty acids and demonstrated that the consumption of omega-3 fatty acids dur-
ing pregnancy and lactation clearly modulated the fatty acid composition in maternal
milk [58] and pups’ brains [58,61,62,64]. Using the Rice–Vannucci HI rat model, a study by
de Barros Mucci et al. [58], which supplemented dams with flaxseed (rich in DHA’s precur-
sor ALA) from E1 to P21, showed that omega-3 fatty acid supplementation reduced brain
damage and improved depressive behavior and spatial memory. Suganuma et al. [64] fol-
lowed a similar dietary enrichment regime using fish oil and showed that DHA provided
neuroprotection by inhibiting oxidative stress and apoptotic neuronal death; whereas,
Decker et al. [59] supplemented dams with a menhaden fish-oil-enriched diet from E1
to P12 and, after repetitive episodes of hypoxia during the neonatal period, showed that
omega-3 fatty acids prevented apoptosis and preserved striatal dopamine levels (a neuro-
transmitter that is very vulnerable to such insults).

Through a series of studies, Zhang et al. [61–63] have shed light on the neuroprotective
mechanisms of DHA and EPA in neonatal HI. The authors supplemented dams from E2
to P14 using a fish-oil-enriched diet. DHA and EPA dietary supplementation reduced
brain tissue loss and edema [61–63], inhibited the inflammatory response secondary to
HI by reducing the levels of activated microglia and several neuroinflammatory markers
(IL-1α, IL-1β, IL-6, COX-2, and iNOS) [61], and protected against HI-induced cell death
by promoting the formation of membrane phosphatidylserine and activating the prosur-
vival PI3K/Akt signaling pathway [62]. DHA and EPA also preserved BBB integrity and
prevented the elevation of matrix metalloproteinases [63]. The neuroprotection exerted
by these omega-3 fatty acids translated into better long-term sensorimotor and cognitive
outcomes [61,62], as shown by others [58].

Besides these studies that have followed a maternal dietary supplementation ap-
proach, several authors have proved the beneficial effects of omega-3 fatty acids when
administered just prior to HI injury via intraperitoneal injection. Williams et al. [60] found
that two doses of fish oil triglyceride emulsions (rich in DHA and EPA), administered
immediately after the common carotid artery ligation and the hypoxic period, reduced
brain infarct volume. Berman et al. showed that pretreatment with 1 mg/kg DHA, injected



Int. J. Mol. Sci. 2021, 22, 2524 17 of 37

intraperitoneally 2.5 h before HI, attenuated brain damage and improved functional out-
comes following neonatal HI [65], also in the context of E. coli lipopolysaccharide-induced
systemic inflammation [66]. Arteaga et al. [67] administered the same pretreatment of
1 mg/kg DHA 10 min before HI, which reduced brain infarct volume and morphological
damage, decreasing the loss of myelination, the astroglial reactive response, and microglial
activation. DHA pretreatment also preserved synaptic function as well as mitochondrial
inner membrane integrity and transmembrane potential. DHA not only exerted neuro-
protection in the neonatal stage but also enhanced cognitive performance in adulthood,
translating into better long-term memory and behavioral outcomes [67]. The same authors
have also shown that DHA pretreatment can restore the auditory brainstem functional
response and reduce morphological damage in the inferior colliculus [45].

Overall, there is a growing body of evidence that supports the neuroprotective prop-
erties of omega-3 fatty acids, especially of DHA [187], in reducing tissue and cell damage
caused by neonatal HI and improving the neurobehavioral deficits secondary to this neu-
ropediatric pathology. The observation that maternal diet can alter the omega-3 fatty
acids content in the offspring’s brains [58,61,62,64] opens up an interesting avenue to
further investigate this nutritional and transgenerational approach for the prevention of
neonatal HI.

5. Vitamins

Vitamins are organic molecules needed for normal physiological functioning that are
emerging as potential primary therapeutics [38]. Vitamins have been largely researched
for their roles as essential nutrients in physiology, but recently, research has begun to
examine how they are involved in nervous system dysfunction, from chronic diseases to
acute insults like HI. The vitamins discussed below were selected on the basis of existing
evidence demonstrating neuroprotective benefits in the prevention of neonatal HI damage.

5.1. Vitamin A

Vitamin A is a group of fat-soluble essential nutrients that include preformed retinoids
such as retinol and its derivatives —retinal and retinoic acid— as well as a variety of
provitamin A carotenoids such as β-carotene. Vitamin A plays a pivotal role in essential bi-
ological processes as a regulator of vision, reproduction, immunity, apoptosis, growth, and
development. Retinoic acid (RA) is the active metabolite of vitamin A, and it exerts most
of the biological effects [188]. RA interacts with two major families of nuclear receptors:
retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Each family is composed of
three isotypes: α, β, and γ. RA can modulate the transcription of multiple downstream tar-
get genes and functional proteins through RAR-mediated signal transduction [189]. RA is
involved in the regulation of the specification, patterning, and differentiation of neural stem
cells in the developing mammalian nervous system [190], and RARα has been pinpointed
as the main RA receptor in the hippocampus during rat neurodevelopment [191].

Using the Rice–Vannucci method in P7 rats, two studies investigated the effects
of vitamin A deficiency and vitamin A supplementation on HI damage (using 300 or
7000 IU/kg/day, respectively). Maternal vitamin A deficiency (before and during the
whole pregnancy and lactation) impaired the learning ability and spatial memory of
pups, whereas vitamin A supplementation could alleviate these deleterious effects [68,69].
Vitamin A deficiency also aggravated hippocampal cell apoptosis induced by HI, whereas
normal vitamin A levels reduced cell death by inhibiting the apoptotic caspase-3 and
caspase-8/Bid pathways. Additionally, vitamin A activated the mitochondrial PI3K/Akt
signaling pathway via the RARα receptor [68]. Vitamin A supplementation was also
shown to increase neural stem cell proliferation in the hippocampus via RARα-mediated
modulation of β-catenin signaling [69]. These results suggest that vitamin A can exert a
neuroprotective effect in the context of neonatal HI by promoting neuronal survival and
proliferation, which positively affects neurocognitive outcomes.
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5.2. Vitamin B9

Vitamin B9 or folic acid is a water-soluble vitamin important for the correct devel-
opment of the fetus. Folic acid is naturally present in a wide variety of foods, like beef
liver and dark green leafy vegetables such as spinach and brussels sprouts. It is well
known for its role in the closure of the neural tube, and, in fact, periconceptional folic acid
supplementation has helped to reduce the incidence of some neural tube defects [24,192].
Folic acid also plays a key role in nucleotide biosynthesis, in the production of the universal
methyl donor S-adenosyl-methionine (used in the methylation of DNA, histones, proteins,
and lipids) [193], as well as in the remethylation of homocysteine, a cytotoxic amino acid
that can induce DNA strand breakage, oxidative stress, and apoptosis [193,194]. The latter
function is thought to be involved in the neuroprotection by folic acid observed in some
experimental models of neurodegenerative disorders [194], CNS injury [195], and stroke
patients [196].

Using the Rice–Vannucci method in P7 rats, two studies by Deniz et al. [71,197] ex-
amined the effects of maternal folic acid supplementation during pregnancy with 2 or
20 mg/kg/day (normal and excessive doses, respectively). Both folic acid doses prevented
long-term HI-induced memory impairments and brain-derived neurotrophic factor im-
balance in adult rats (evaluated at P60), but folic acid did not reduce hippocampal cell
death [71]. These authors had previously shown that folic acid prevented memory deficits
when administered to pups after an HI injury [198]. Conversely, gestational folic acid
supplementation did not affect somatic growth or the early neurobehavioral development
of pups (evaluated from P6 to P19). However, the high folic acid dose (20 mg/kg/day)
resulted in an impairment of Na+,K+-ATPase activity in their hippocampus, an enzyme
that has been correlated with memory and learning processes [197]. These results suggest
that folic acid may have a dual time-dependent effect; its potential neuroprotection and its
effects at an excessive dose need to be better understood during the pups’ late development.

5.3. Vitamin D

Vitamin D is a group of fat-soluble secosteroids, with vitamin D3 or cholecalciferol
being the most important of these compounds in humans. The primary source of vitamin
D is ultraviolet B radiation from sunlight, which penetrates the skin and activates the
metabolic synthesis of cholecalciferol; however, vitamin D can also be obtained from
the diet in oily fish such as salmon or tuna [199,200]. In addition to its well-established
functions in bone metabolism, vitamin D has other biological activities, including anti-
inflammatory, antioxidant, and antiapoptotic properties [199,201,202]. To our knowledge,
no studies have yet investigated vitamin D supplementation during pregnancy and its
effect on neonatal HI. In a prospective study performed in 61 neonates (30 healthy-term
neonates and 31 neonates with HI), vitamin D seemed to play a neuroprotective role as
its levels were significantly lower in infants with HI and their mothers. The control group
presented higher levels of vitamin D as well as lower levels of oxidative stress markers and
antioxidant enzyme activity [203]. These findings suggest that vitamin D may be a good
neuroprotective candidate against HI damage and may reduce oxidative stress. However,
further exploration of its effects in animal models of neonates and pregnant dams needs to
be conducted to test this hypothesis.

5.4. Vitamin E

Vitamin E is a group of eight plant-derived, fat-soluble compounds that include four
tocopherols and four tocotrienols (α, β, γ, and δ), α-tocopherol being the one with the
highest biological activity [204]. Vitamin E was first described as a dietary factor essential
for rat fertility and was soon after identified as an antioxidant of polyunsaturated lipids.
Besides its potent antioxidant properties, different forms of vitamin E act as signaling and
gene regulation molecules involved in inflammation, lipid homeostasis, and atherosclerotic
plaque stability [204]. Clinical and preclinical studies support the beneficial effects of
vitamin E in several conditions such as cardiovascular disease [205], cancer [206], or
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neurological disorders [207,208]. Studies of vitamin E deficiency in humans and animal
models have established the critical roles of this vitamin in protecting the CNS, especially
the cerebellum, from oxidative damage and motor coordination deficits [207].

In 1984, a clinical trial investigated the influence of vitamin E on the incidence of
intraventricular hemorrhage (IVH) in premature infants. A total of 134 infants with birth
weights ≤1500 g was recruited for the study and were given intramuscular injections
(10–15 mg/kg at four time points) plus oral supplementation of vitamin E (100 mg/kg/day
of α-tocopheryl acetate for 8 weeks after birth via nasogastric tube) or oral supplementation
alone. Both the incidence and severity of IVH were significantly reduced in the infants who
received intramuscular injections plus oral supplementation [42]. HI injury that occurs
in the immediate perinatal period is thought to be a major predisposing insult leading to
IVH, and the results of this study suggested that vitamin E may prevent IVH if given as
soon as possible after birth to very low-birthweight infants. Moreover, in another study of
vitamin E using a rat model of HI, 1.5 mg of α-tocopherol acetate was administered via
subcutaneous injection to female pups at P4, P6, and P8, with HI induction at P7. Vitamin
E treatment prevented the effects of HI damage on oxidative stress and inflammation
markers, including the inducible and neuronal nitric oxide synthases (iNOS and nNOS)
and some insulin-growth-factor-related proteins [70]. While vitamin E has high lipid
solubility and low toxicity, it takes a considerable amount of time to reach effective levels
in the CNS and can cause hemorrhage at very high doses [38]. These limitations should be
considered when considering vitamin E as a potential neuroprotectant.

6. Other Neuroprotective Natural Compounds
6.1. Plant-Derived Compounds

In addition to polyphenols and vitamins, there are other natural products of plant
origin that can protect the neonatal brain from HI insults. We summarize below the
findings regarding the preventive properties of tanshinones, sulforaphane, and capsaicin;
for a recent review of other plant extracts and plant-derived compounds that can be used
for the treatment of neonatal HI, see [209].

6.1.1. Tanshinones

Tanshinones (including cryptotanshinone, dihydrotanshinone I, tanshinone I, tanshi-
none IIA, and tanshinone IIB) are the main active ingredients in Salvia miltiorrhiza Bunge, a
perennial plant native to China and Japan. Tanshinones are lipophilic diterpenoids and
have the potential to penetrate the BBB [210–212]. The roots of S. miltiorrhiza, known as
Danshen, are widely used in Oriental medicine for the treatment of different pathologies
such as hyperlipidemia, stroke, and cardiovascular and cerebrovascular diseases [213].
Tanshinones—especially tanshinone IIA, which is one of the most abundant constituents
in Danshen—have demonstrated antioxidant and anti-inflammatory benefits in the pre-
vention of cerebral ischemic injury in animal models [214–216]. Beneficial results have
also been reported in neonatal HI models. In relation to tanshinone I, intraperitoneal
administration of 5 mg/kg/day from P6 to P12 significantly alleviated motor, memory, and
spatial learning deficits in the Rice–Vannucci P7 rat model. These behavioral changes were
accompanied by a significant decrease in the number of neuronal loss in the hippocampal
CA1 region. Additionally, tanshinone I displayed antioxidative activity, and it significantly
increased the production of glutathione peroxidase, superoxide dismutase, and catalase
and reduced the production of the pro-oxidants H2O2 and iNOS [72]. In another study,
Xia et al. [73] provided a daily dose of 10 mg/kg of tanshinone IIA to offspring via in-
traperitoneal injection from P5 to P9/P21 and induced HI following the Rice–Vannucci
method at P7. Tanshinone IIA reduced the severity of brain injury, increasing ipsilateral
brain weight and neuron density, and potentiated the recovery of sensorimotor functions.
Compared to vehicle-treated rats, the plasma of those pups that received tanshinone IIA
exhibited higher antioxidant capacity [73]. Notably, neuroprotection against neonatal HI
has also been reported following tanshinone IIA post-treatment in mice [217] and rats [218].
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6.1.2. Sulforaphane

Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)butane) is a naturally occurring
organosulfur phytochemical found in cruciferous vegetables such as broccoli, Brussels
sprouts, and cabbage. Sulforaphane is an isothiocyanate, plant-derived compound known
for its potent antioxidant and anti-inflammatory properties; it can reduce cytotoxicity in
the CNS with apparently very little toxicity [219,220] and is a known potent activator
of the Nrf2 transcription factor and the Nrf2/HO-1 axis, which participate in adaptive
and protective responses to oxidative stress [221–223]. Evidence of neuroprotective ef-
fects have been observed in rodents, in which sulforaphane was shown to reduce brain
infarct volume following focal cerebral ischemia [224,225] by suppressing the inflamma-
tory response [225,226]. Regarding neonatal HI, in P7 rat pups subjected to HI injury
where sulforaphane (5 mg/kg) was administered intraperitoneally 30 min before the in-
sult, sulforaphane pretreatment reduced brain infarct volume, apoptosis in the cortex and
hippocampus, and the levels of activated microglia. This was accompanied by a reduction
of caspase-3 activity and lipid peroxidation levels and an increase in the expression of
Nrf2 and HO-1 in the brain [74]. Similar results were observed when sulforaphane was
administered as a post-treatment 15 min after the insult in a piglet model of neonatal
HI; sulforaphane increased cell viability and induced Nrf2 activation in the putamen and
sensorimotor cortex [227]. These observations [74,227] suggest that sulforaphane may
protect the neonatal brain against HI injury through the induction of Nrf2. The same
neuroprotective effects appear to be true in the hypoxic conditions resulting from chronic
placental insufficiency and subsequent intrauterine growth restriction, following a ma-
ternal dietary supplementation rich in sulforaphane, consisting of 200 mg/day of dried
broccoli sprouts administered from E15 to P14 (equivalent to ~500 µg of sulforaphane per
day [75]). Histological assessment revealed diminished white matter, ventricular dilation,
astrogliosis, and a reduction in hippocampal neurons in injured animals compared to
controls, whereas broccoli sprouts supplementation improved injured pups’ outcome in all
histological assessments. This supplementation also prevented the detrimental neurocog-
nitive effects of chronic intrauterine ischemia, such as the emergence of early reflexes or
sensorimotor behaviors [75]. These results indicate that sulforaphane or sulforaphane-rich
vegetables may have the potential to be used as dietary supplementation during preg-
nancy to protect against brain tissue damage and neurobehavioral deficits secondary to
placental insufficiency.

6.1.3. Capsaicin

Capsaicin (8-methyl-N-vanillil-6-nonenamide) is an oleoresin and is the active com-
ponent of hot peppers (Capsicum annuum L.), one of the most common sources of spice
in the Solanaceae family. Capsaicin has long been known to excite nociceptive neurons
by increasing their membrane permeability to cations. Its receptor, the transient receptor
potential vanilloid 1 (TRPV1), is highly expressed in spinal and peripheral nerve terminals
and has an important role in nociception and analgesia. TRPV1 mediates an increase
in calcium influx that promotes excitotoxic cell death mechanisms in neurons when acti-
vated [228,229]. Several studies have shown that capsaicin can also activate pathways of cell
survival and decrease oxidative stress and inflammation [230–232]. In adult rodent models,
capsaicin has been proven to provide neuroprotection against excitotoxic and ischemic
brain injury through the desensitization of TRPV1 [233,234], whereas its derivative dihy-
drocapsaicin has also shown neuroprotective properties against transient focal ischemia
in vivo [235–237]. There are few studies referring to neonatal models; Khatibi et al. [76]
carried out research where capsaicin (0.2 or 2 mg/kg) was administered intraperitoneally
to P10 rat pups 3 h before HI induction. Capsaicin pretreatment reduced brain infarct
volume and improved the myogenic tone of the middle cerebral artery with either the
low-dose or high-dose treatment [76]. More studies in neonatal models of HI will need to
be conducted to determine the potential of capsaicin in the clinical setting.
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6.2. Endogenous Compounds
6.2.1. Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) is a small lipophilic indoleamine pro-
duced endogenously in the pineal gland that plays a physiological role in the regulation of
the sleep–wake cycle by controlling circadian rhythms. Melatonin easily crosses the BBB,
and its metabolites are powerful scavengers of oxygen and nitrogen free radicals [238–240].
Melatonin also acts as an indirect antioxidant by increasing the efficiency of mitochondrial
electron transport and by activating some of the major antioxidant enzymes, including
superoxide dismutase and glutathione peroxidase [241]. Melatonin has shown neuro-
protective properties against different neurological disorders such as Alzheimer’s dis-
ease [242,243], amyotrophic lateral sclerosis [244–246], and stroke [247,248]. With regards
to neonatal HI, numerous studies have investigated melatonin as a post-treatment using an-
imal models [249–253], in addition to several randomized clinical trials in humans, which
support its neuroprotective role as adjuvant therapy for the treatment of HI [254–256]
(see [257,258] for a review). The focus of this review is those studies that evaluated the
neuroprotection with melatonin as a pretreatment for neonatal HI damage, either as a
maternal supplementation regime [77,78] or when administered to the pups prior to HI
induction [36,79,80].

Regarding maternal supplementation, Hutton et al. [77] reported that in the spiny
mouse (Acomys cahirinus), supplementing the dams with 0.1 mg/kg/day of melatonin
during the last week of gestation resulted in a reduction of CNS inflammation (macrophage
infiltration and microglia) and apoptosis markers 24 h after the pups were subjected to birth
asphyxia. The authors also showed that maternal melatonin easily crossed the placenta and
reached fetal circulation, as has been shown for humans [259]. Another study performed
in rats also showed positive results when melatonin was administered as maternal dietary
supplementation during the whole pregnancy at a daily dose of 4 mg/kg/day. Pups
presented less mitochondrial damage and less degeneration in pyramidal cells in the CA1
and CA3 regions of the hippocampus after uterine fetal ischemia when compared to the
control group [78].

In other studies, melatonin was administered to the pups before HI damage. Using
the Rice–Vannucci HI model in P7 rat pups, intraperitoneal injection of 5 or 15 mg/kg
melatonin 30 min before the ischemic procedure reduced brain tissue loss [79,80] and ame-
liorated oxidative stress [80]. The same investigators also demonstrated that administration
of three doses of 15 mg/kg melatonin after the insult (at 5 min, 24 h, and 48 h post-HI)
improved long-term behavioral and learning deficits as well as brain damage in adult
rats [79]. Finally, Bouslama et al. [36] showed that in a glutamate-induced excitotoxicity
model of perinatal brain injury in P5 rats, a dose of 5 mg/kg melatonin administered
15 min before the damage reduced excitotoxic white-matter lesions and preserved the
ability to develop conditioning. Overall, melatonin is one of the most extensively studied
nutraceuticals in regard to neonatal HI. There is robust literature on its neuroprotective
properties (reviewed in [258]), including several clinical trials supporting its benefits as
adjuvant therapy in newborns affected by HI [254–256]. Preclinical studies had shown
promising results when administered as prophylactic dietary supplementation during preg-
nancy [77,78], warranting future pilot studies to study this gestational dietary intervention
in humans.

6.2.2. L-Carnitine

Carnitine (3-hydroxy-4-N-trimethylammonium-butyrate) can be obtained in the diet
from animal products like meat, fish, or milk, and it is also synthesized endogenously in the
kidney, liver, and brain. Its active stereoisomer is L-carnitine, and it has an essential role in
transporting and modulating potentially toxic activated long-chain fatty acids (long-chain
fatty acyl-CoAs) into the mitochondria matrix for degradation by β-oxidation [260]. It
has been suggested that neonates with HI suffer from carnitine deficiency [261]. In recent
years, there has been considerable interest in the therapeutic potential of L-carnitine and
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its acetylated derivative, acetyl-L-carnitine, leading to multiple studies exploring its neu-
roprotective role in repairing mitochondrial function and improving functional recovery
in various brain injuries [38,260]. Preclinical studies show that L-carnitine and acetyl-L-
carnitine can improve energy status, decrease oxidative stress, and prevent subsequent cell
death in models of adult, neonatal, and pediatric brain injury [260]. Regarding neonate
models, Wainwright et al. [81,82] demonstrated that in P7 rat pups subjected to HI, pre-
treatment with L-carnitine (16 mmol/kg) 30 min before the injury improved brain damage.
Treated pups presented less tissue loss in the ipsilateral hemisphere as well as a reduction
in neuronal cell death in the cortex and hippocampus [81]. The authors proposed that
L-carnitine could prevent the accumulation of acyl-CoAs in the mitochondria, which they
hypothesized is a key early event involved in the pathophysiology of HI injury [82]. Using
the same neonatal HI model in P7 rats, a similar reduction in apoptotic cell death in the
hippocampus and the striatum (but not in the cortex) was attributed to L-carnitine pretreat-
ment (200 mg/kg) immediately prior to HI induction [83]. However, there seems to be
no consensus on the neuroprotective effects of L-carnitine when administered after the HI
insult. Thus, while some researchers have found no obvious improvement [81,83], others
have shown that subsequent treatment with acetyl-L-carnitine resulted in a reduction of
long-term morphological and functional damage [262]. Overall, given the extensive clinical
experience of L-carnitine in the treatment of pediatric cardiopathies and its minimal toxic-
ity [263], this compound may represent an attractive candidate for neonatal HI therapy;
however, more studies are warranted.

6.2.3. Creatine

Creatine (2-[carbamimidoyl(methyl)amino]acetic acid) is a guanidine compound
found in fish and meat that is also synthesized endogenously from arginine, glycine, and
S-adenosylmethionine. Creatine is an essential compound for cellular energy metabolism
homeostasis, and its phosphorylated form (phosphocreatine) is the source of phosphate in
the conversion of ADP to ATP [264]. Creatine ameliorates oxidative stress, glutamatergic
excitotoxicity, and apoptosis in vitro and in vivo [265], and, as a supplement, it has been
shown to increase both creatine and phosphocreatine levels in the brain, providing func-
tional benefits in a great number of experimental models of neurological disease [266,267].
For instance, creatine supplementation during pregnancy was shown to positively affect
the morphological and electrophysiological development of hippocampal neurons in off-
spring rats, increasing neuronal excitability [268]. These positive effects were maintained
in adult rats, which retained enhanced neuron excitability and long-term potentiation [269].
Creatine administered during pregnancy was shown to cross the placenta and reach several
organs of the fetus, and, in fact, maternal creatine supplementation has been proposed
as prophylaxis to protect the fetus from the multiorgan consequences of severe hypoxia
at birth [270]. In the spiny mouse, maternal creatine administered from midpregnancy
increased creatine levels in the fetal brain and the ability of offspring to survive an episode
of acute birth asphyxia [84], protecting the brain from perinatal hypoxia by reducing lipid
peroxidation and apoptosis and preserving mitochondrial function [85]. In a neonatal rat
model of HI, pups received subcutaneous injections of 3 g/kg/day of creatine monohy-
drate for 3 consecutive days (P6–P8), with HI induction at P7. Creatine supplementation
significantly increased the energy potential (i.e., the levels of phosphocreatine in the brain,
measured at P9), and it showed a 25% reduction in brain edema compared with con-
trols [86]. A similar regime of creatine supplementation (subcutaneous injection of 3 g/kg
at four time points, three before HI and the latest 3 h after the injury) in rat pups that
underwent HI at P7 resulted in a reduction of brain injury severity and cell loss in the cortex
and hippocampus [87]. Moreover, several studies have shown that creatine supplemen-
tation after an HI event is neuroprotective, reducing neuroinflammation and improving
cognitive and motor functions [271–273]. In the light of the positive results available (for a
review, see [270]), it would be interesting to further investigate whether maternal creatine
supplementation may protect the fetal brain from neonatal HI.
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6.2.4. Lactate

Lactate (2-hydroxypropanoate), an intracellular metabolite of glucose, is the anion
resulting from the dissociation of lactic acid. Lactate is a source of metabolic energy re-
garded as an important supplementary fuel for neurons since the healthy brain uses lactate
rather than glucose as an efficient energy substrate to maintain synaptic transmission [274],
whereas the immature brain has a high capacity to use lactate as an energy substrate [275].
L-Lactate, both after intracerebroventricular and intravenous administration, protects neu-
rons under pathologic conditions, and it has been proven to be neuroprotective against
excitotoxicity in several preclinical models of acute brain injury, including ischemia, intrac-
erebral hemorrhage, and traumatic brain injury [276–278]. Regarding neonatal HI, a single
intraperitoneal injection of sodium lactate (2.14 mmol/kg) to P7 rats immediately before
hypoxia resulted in a 30% reduction in brain lesion volume, whereas after three injections
of lactate post-HI, the pups had the lowest brain lesion volume and no differences in neu-
rological reflexes, sensorimotor abilities, and long-term memory compared to controls [88].
Similar neuroprotection against brain lesions and behavioral deficits were also reported
by other groups when L-lactate was administered after a HI insult in neonatal rats [279].
Based on these initial promising results, it would be appropriate to further explore whether
L-lactate pretreatment could play a role in the prevention of neonatal HI.

7. Conclusions and Future Perspectives

This review summarizes the current knowledge on natural products that can prevent
the brain damage and functional impairments consequences of neonatal HI encephalopathy
when administered before the damage occurs. These nutraceuticals include polyphenols,
omega-3 fatty acids, vitamins, and several other plant-derived and endogenous com-
pounds. They share some common characteristics: most of them are obtained from the
diet or are the main active components in some traditional Oriental medicines, and they
have known antiapoptotic, antioxidant, and anti-inflammatory properties, among others.
Hence, the compounds herein reviewed are thought to exert their neuroprotection against
neonatal HI via multiple mechanisms, which have been summarized in Table 2. The most
common mechanisms involved in neuroprotection are (1) the reduction of neuronal cell
death by modulating the apoptotic cascade and activating prosurvival signaling path-
ways; (2) the reduction of oxidative stress by modulating enzymatic activity, reducing
ROS levels, and preserving mitochondrial inner membrane integrity and transmembrane
potential, and (3) the reduction of the neuroinflammatory response by ameliorating as-
trogliosis and microgliosis and decreasing the levels of proinflammatory cytokines. All
these processes —cell death [8], oxidative stress [10], and neuroinflammation [13]—are
known to contribute to different stages of HI pathophysiology [6,7]. Moreover, several of
the studies reviewed identified two signaling pathways that mediated the nutraceuticals’
neuroprotection: the PI3K/Akt signaling pathway [53,56,62,68], a prosurvival pathway
that regulates various processes, including cell growth, apoptosis or glucose metabolism,
and the Nrf2/HO-1 signaling pathway [46,50,74], which regulates mitochondrial oxidative
stress and calcium homeostasis. These intracellular cascades are also known to confer
neuroprotection against ischemic stroke [224,280], and, therefore, they represent interesting
targets for the development and evaluation of future therapeutic interventions against HI.

Some of the natural products reviewed have been extensively studied for the pre-
vention and treatment of ischemic stroke using adult rodent models. Although there are
differences between neonatal and adult brains, ischemic stroke and HI share some common
pathophysiological features, and, therefore, these studies provide additional supportive
evidence of the neuroprotective potential of nutraceuticals such as resveratrol [281–284],
quercetin [127–130], mangiferin [141–143], pomegranate juice polyphenols [147,148], omega-
3 fatty acids [177–186], tanshinones [214–216], sulforaphane [224–226], and capsaicin and
its derivatives [233–237]. Moreover, there are other natural compounds with antioxidant
and anti-inflammatory activities —not yet examined in the context of neonatal HI— that
have shown to be neuroprotective against ischemic brain injury. That is the case of olive oil
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phenols [285], a major constituent of the Mediterranean diet, the consumption of which
has been inversely correlated with the incidence of ischemic cerebrovascular disease [286].
Dietary supplementation with olive oil or some of its phenolic compounds can amelio-
rate brain damage and neurological deficits secondary to focal ischemia in vivo [287–290].
Given the positive results observed using olive oil phenols in reducing ischemic damage
in the adult brain, it would be interesting to investigate the potential of this nutraceutical
against neonatal HI.

Table 2. Possible neuroprotective mechanisms of natural products associated with benefits against neonatal HI damage.

Cell
Death

Oxidative
Stress Neuroinflammation BBB Integrity

and Edema
Excito

Toxicity
Energy

Metabolism

Synaptic
Function and

Neuroplasticity

POLYPHENOLS

Resveratrol x x x x x

Piceatannol x x

Pterostilbene x x x x

Quercetin x x x

Mangiferin x x

Pomegranate
polyphenols x ?

GSPE x

Icariin x

Daphnetin ?

OMEGA-3 FATTY ACIDS

EPA x x x

DHA x x x x x

VITAMINS

Vitamin A x x

Vitamin B9 ?

Vitamin D ?

Vitamin E x

PLANT-DERIVED COMPOUNDS

Tanshinones x x

Sulforaphane x x x

Capsaicin ?

ENDOGENOUS COMPOUNDS

Melatonin x x x

Carnitine x x x

Creatine x x x x

Lactate ? ?

Those marked with a question mark (?) indicate possible mechanisms suggested by the authors (see main text) that remain to be
experimentally validated in preclinical models of neonatal HI.

Of special interest are those natural products that can be administered as dietary
supplements to the mothers during pregnancy and/or lactation to protect the fetal and
neonatal brain from HI injury. Many brain injuries have their onset in utero [1], and diet, gut
microbiome (which affects the metabolization and absorption of macro- and micronutrients
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and determines the composition of the fetus microbiota), and other environmental factors
during early development are known contributors to lifelong disease patterns [291–293].
Thus, pregnancy may represent a therapeutic window for intervention, and several authors
have reviewed and discussed the benefits of maternal dietary interventions as prophylaxis
for perinatal brain injury, including HI encephalopathy [1,270,294].

Current preclinical evidence (Table 1) supports the neuroprotective benefits of ma-
ternal supplementation using omega-3 fatty acids [58,59,61–64], piceatannol and resver-
atrol [47–49], vitamin A [68,69], melatonin [77,78], or creatine [84,85], as well as dietary
interventions consisting of pomegranate juice (rich in polyphenols) [41,43,54] or broccoli
sprouts (rich in sulforaphane) [75]. The advantage of using nutraceuticals (over traditional
drugs) for HI prevention is that these compounds usually have low toxicity, have minimal
interactions with other drugs, and are comparatively inexpensive and broadly accessi-
ble [38–40]. However, most of the aforementioned studies did not examine embryotoxicity
or any potential detrimental effects to the mothers (or, at least, these were not reported).
The safety profile in pregnant mothers and embryos would need to be carefully evaluated
before translating their use into humans, especially for those interventions designed as
dietary supplements to be taken during pregnancy. Moreover, the Rice–Vannucci method
with injury induction at P7 (comparable to 36–40 weeks of gestation in humans [25]) is, to
date, the most widely used model for the study of neonatal HI. Still, the mode and timing
of the nutritional intervention administration varied a lot between the studies (Table 1).
It would be beneficial to standardize supplementation protocols to allow cross-study
comparisons in order to foster the advancements in this field.

To our knowledge, there have only been two human studies that have examined
the preventive effects of nutraceuticals as prophylaxis for HI-related pathologies. One
clinical trial evaluated the effects of vitamin E administration to very low-birthweight
infants on the prevalence and severity of IVH [42], and a recent pilot study examined
the benefits of pomegranate juice intake on pregnancies affected by intrauterine growth
restriction [41]. Fear of harming the developing fetus remains due to errors of the past, such
as the release of thalidomide. However, simple nutritional interventions, including mater-
nal supplementation with folic acid or iron, have been successful in reducing the risk of
neural tube defects, anemia, and low birthweight [23,24,295]. Given the inherent difficulty
of predicting the occurrence of neonatal HI, treatments that prevent, rather than rescue,
perinatal brain injury are likely to be the most effective, especially for high-risk pregnancies
(e.g., those affected by intrauterine growth restriction or placental insufficiency) as well
as in low-resource settings. It would, therefore, be convenient to conduct more human
studies to test gestational nutritional interventions in the prevention of HI, especially for
those nutraceuticals (such as omega-3 fatty acids or melatonin) that are supported by an
extensive body of preclinical evidence.

To conclude, neonatal HI is a limiting pathology that affects a young population
and is often associated with lifelong mental and physical disabilities. Given the limited
therapies currently available to treat neonates suffering from HI once the damage has
occurred, nutritional interventions may provide the ideal platform for therapies that can
be administered safely and prophylactically to prevent and reduce the brain damage and
neurological impairments consequences of HI encephalopathy in newborn babies. We
hope that this review will highlight the importance of natural product interventions during
pregnancy and lactation and encourage a much-needed preclinical and clinical research in
this field.
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ADNES Advanced neuroprotection strategy
ALA Alpha linoleic acid
BBB Blood–brain barrier
CNS Central nervous system
DHA Docosahexaenoic acid
E Embryonic day
EPA Eicosapentaenoic acid
GSPE Grape seed proanthocyanidin extract
HI Hypoxia–ischemia
i.p. Intraperitoneal
IL Interleukin
iNOS Inducible nitric oxide synthase
IVH Intraventricular hemorrhage
n-3 PUFAs Omega-3 polyunsaturated fatty acids
NO Nitric oxide
Nrf/HO-1 Nuclear factor erythroid 2 related factor 2/heme oxygenase 1
P Postnatal day
PI3K/Akt Phosphoinositide 3-kinase/protein kinase B
RA Retinoic acid
RAR Retinoic acid receptor
ROS Reactive oxygen species
RXR Retinoic acid X receptor
TLR4/NF-κB Toll-like receptor 4/nuclear factor κB
TNF-α Tumor necrosis factor α
TRPV1 Transient receptor potential vanilloid 1
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