Macro- and microscopic leaf characteristics of six grapevine genotypes (Vitis spp.) with different susceptibilities to grapevine downy mildew

S. Boso1), V. Alonso-Villaverde1), J. L. Santiago1), P. Gago1), M. Durrenberger2), M. Duggelin2), H. H. Kassemeyer3) and M. C. Martinez1)

1) Misión Biológica de Galicia (CSIC), Pontevedra, Spain
2) Universität Basel, Zentrum für Mikroskopie, Basel, Switzerland
3) Staatliches Weinbauinstitut, Fachbereich Biologie, Freiburg, Germany

Summary

This work reports the leaf morphology of six grapevine genotypes, five belonging to Vitis vinifera and one to Vitis riparia. Earlier studies on these genotypes showed different levels of susceptibility to grapevine downy mildew (Plasmopara viticola). The aim of this work was to detect differences between the leaf morphology of these cultivars at the macro- and microscopic levels, and to characterize morphological traits which could be associated with susceptibility and resistance to downy mildew. An ampelographic description of each genotype was used to develop a scheme illustrating the characteristic leaf morphology. The density and morphology of the trichomes and the stomatal index was assessed by means of microscopical techniques. Distinct macro and microscope differences among the genotypes were seen. No clear relation between ampelographic characteristics and susceptibility to downy mildew was observed. The two cultivars that in earlier studies were found to be the least susceptible to downy mildew were the most similar in terms of their spongy mesophyll. Both showed very little or no wax on the abaxial surface of their leaves.

Key words: Vitis vinifera L., leaf morphology, spongy mesophyll cells, susceptibility, grapevine downy mildew.

Introduction

Several studies have described the cultivars of Vitis vinifera and Vitis riparia (Huglin 1986, Galet 2000) and show distinct macroscopic differences between them. Among the cultivars a great variety of leaf shape especially of the form of the leaf sinuses occur (Galet 2000, Martinez et al. 2005). Morphological observations at the macroscopic level carried out both at the field (Santiago et al. 2005) and in the laboratory (unpubl.), have led to detect differences between the grapevine cultivars 'Cabernet Sauvignon', 'Albarino', 'Tempranillo', 'Touriga Nacional' and 'Pinot noir' or in Vitis riparia. The variability in leaf morphology regarding to the size and thickness of blade, the entire limbe of the leaves or with deep lateral sinuses, the degree of opening of petiole and lateral sinuses, the goferring, undulations or blistering of blade, the profile of blade in a cross section (flat, involute, revolute, twisted), could indicate a different leaf development in each variety. These characteristics may reflect variations in the histological structure and therefore be related to different levels of susceptibility to downy mildew. The overlapped sinus, the goferring of blade, etc., could also create favourable conditions for the growth or spread of this pathogen. Differences can also be seen in terms of the types of the trichomes on the upper and lower leaf surfaces. Some cultivars ('Albarino') have only reeding threadlike trichomes of different length (Martinez et al. 2005), while others (Vitis riparia) have erect trichomes like small transparent spines (Galet 1956). Some cultivars ('Cabernet Sauvignon') have both types of trichomes (Galet 2000). The density of trichomes varies from leaves with a very dense cover resulting in a light-coloured leaf surface to nearly bare leaves. Whereas no relationship between ampelographical traits and susceptibility is known, the role of trichomes as a barrier against infections by grapevine downy mildew has been described (Kortekamp et al. 1999). Different authors have studied the histological characteristics of vine leaves at different stages in the vegetative cycle (Bernard 1978), the differences between leaves from primary green shoots and green shoots arising from axillary buds (Pallotti et al. 2000), and those between leaves of the same cultivar when cultivated in more arid or more humid climates (Ben Salem-Fnayou et al. 2005). All these studies reported differences in terms of histological parameters.

In the second half of the 20th century many histological studies were performed on grapevines with different goals in mind, although very few focused on comparing the differences between one cultivar and another. A number of observations made during work on the resistance of grapevine cultivars against fungal diseases (Gindro et al. 2003, Boso et al. 2004 b, 2006, 2007, Musetti et al. 2005, Allègre et al. 2006, Alonso-Villaverde et al. 2008) and on the water needs (Dami and Hughes 1995, Gomez del Campo et al. 2004, Soar et al. 2006), suggest that the histological characteristics of some cultivars may have a determinant effect in these respects. Studies performed on the same genotypes showed Vitis riparia and 'Cabernet Sauvignon' to be the least susceptible to downy mildew (Boso and Kassemeyer, 2008).

Correspondence to: Dr. S. Boso, Misión Biológica de Galicia (CSIC), Apartado de Correos, 28, 36080 Pontevedra, Spain. Fax: +34-986-841-362. E-mail: susanab@mbg.cesga.es
Other authors (Krostanova 1989, Gabler et al. 2003) indicate the existence of a positive correlation between resistance to cryptogamic diseases and the thickness of the epidermis, hypodermis, cuticle and wax content.

The aim of the present work was to determine whether differences between cultivars at the morphological level of the leaf are accompanied by differences at the histological level, perhaps explaining differences in susceptibility to this disease.

Material and Methods

Plant material: Five grapevine genotypes were studied: ‘Albariño’ (two clones), ‘Tempranillo’, ‘Pinot Noir’, ‘Cabernet Sauvignon’, ‘Touriga Nacional’, plus the species *V. riparia* 'Gloire de Montpellier'.

Ampelographic and histological studies were made on leaves from plants grown in the field.

Ampelographic descriptions: Ten leaves were taken from each cultivar, all from node 8 or 9 on fruiting green shoots sprouting from the current year’s wood. All leaves were pressed, dried and stored until use. By means of the Analysis v.3.0 imaging software (Soft Imaging System), leaf characteristics were measured according to Martínez and Grenan (1999) and by stereomicroscopy (Nikon SMZ 800), the density of the erect and reclining trichomes and other mature leaf parameters were determined following the method proposed by the OIV (1983) (codes OIV 072, 073, 074, 075, 084, 085, 086, 087).

Histological description; optical microscopy: Ten leaves were selected from each cultivar. Samples of leaf limbus were randomly taken from each and fixed in 4% paraformaldehyde/2.5% glutaraldehyde in PBS buffer (Phosphate buffered saline). Once fixed these samples were preserved in 0.05 M cacodylate buffer at 4 ºC (Karnovsky 1965) before setting in EPON resin. Histological sections (1 µm) were made using a Leica RM 2165 rotary microtome. All sections were stained with methylene blue and photographed using a Zeiss AxioCam camera mounted on the microscope. The upper and lower cuticle-cell wall complexes, the thickness of the upper and lower epidermis, and the thickness of the palisade and spongy mesophyll were measured.

Epifluorescence microscopy; number of stomata: Epifluorescence microscopy was used to determine the number of stomata. Three fresh leaf fragments were taken from each cultivar, cleared in 1 M KOH, autoclaved for 15 min at 121 ºC, and washed three times in deionised water. They were then stained with 0.05% aniline blue in 0.067 M K$_2$HPO$_4$ (pH 9) (Hood and Shew 1996). Observations were made using a Zeiss Axioshot microscope equipped with Plan-Neofluar objectives and with epifluorescence capability. Photographs were taken using a Zeiss Axioscam digital camera, and the images analysed using Zeiss AxioVision software. The number of stomata between the veins were counted and the inter-microvein area calculated for each specimen. The stomatal index was determined as: n° stomata / inter-microvein area.

Low temperature electron microscopy: Small pieces of fresh leaves were cut. Samples were mounted on SEM-stubs using a low-temperature mounting medium and then rapidly frozen by plunging them into liquid nitrogen. They were then placed on a Balzer’s specimen table under liquid nitrogen. Using a manipulator equipped with an anti-contamination cup, the table was transferred under nitrogen gas flow conditions to a Balzer’s SCU 020 cryopreparation unit attached to a Jeol JSM 6300 electron microscope (Müller et al. 1991). Photomicrographs were taken of the most important details in each section.

Statistical analysis: ANOVA was performed on the quantitative data recorded for the different sections and on the stomatal index figures. The GLM method of the SAS System v 9.1 software package was used to determine whether any differences between cultivars were significant. Fisher’s protected least significant differences test was performed for each fixed factor and its error.

Results and Discussion

Ampelographic description of leaf shape and structure of the trichomes: In Fig. 1 the characteristic leaf morphology is illustrated showing distinct differences in the aperture of the petiole sinus, the presence of upper and lower lateral sinuses and their depth, the number of teeth and their width, and the superimposition of the lobules. Only the two clones of ‘Albariño’ showed very similar leaf morphology; however the base of the petiole sinus in clone 1 was limited by a vein; this was not the case in clone 2. Regarding to the profile of the blade in a cross section, goffering, undulations or blistering of the blade, all genotypes showed the lowest OIV note (1). Only ‘Cabernet Sauvignon’ (medium) and ‘Pinot Noir’ (strong) showed blistering of the upper side of blade. ‘Pinot Noir’ also showed twisted profile of blade and *Vitis riparia* presented undulated leaves. In view of these results, it is not possible to determine the existence of any correlation between the ampelographic characteristics and the different levels of susceptibility to downy mildew in these genotypes, previously reported by Boso et al. (2008).

The assessment of the shape and density of trichomes on the leaves showed distinct differences among the genotypes. *Vitis riparia* had no reclining trichomes on either side of the leaf but showed a medium density of erect trichomes on the main veins of the lower leaf surface. A small number of reclining trichomes was seen between the veins on the upper side. On the lower leaf side of ‘Cabernet Sauvignon’ a medium density of reclining trichomes between the main veins occurred; on the veins the density was low. The lower side showed a medium density of erect trichomes on and between the veins. The leaves of ‘Tempranillo’ had a low density of reclining trichomes between and a very low density on the veins. Erect trichomes occurred between the veins with a high and on the veins with a medium density. The lower leaf side of ‘Touriga Nacional’ showed a medium density of reclining trichomes between and a low den-
sity on the veins. The density of erect trichomes between the veins was medium, on the veins the density was very low density. No reclining and erect trichomes between and a low to very low density on the veins was observed on the leaf lower leaf side of ‘Pinot Noir’, the two clones of ‘Albariño’ showed on the lower leaf side a medium to high density of reclining trichomes between and on the veins, and no erect trichomes These results are similar to those reported by other authors (Foex, 1891, Viala and Vermorel 1901-1910, Galet, 1956, Catalogue des Variétés et Clones de Vigne 1995, Santiago et al. 2005, Martinez et al. 2006). A dense layer of trichomes in the intercostals field of the lower leaf surface may act as a constitutive barrier against infections by grapevine downy mildew (Staudt and Kassemeyer 1995, Kortekamp and Zyprian 1999, Kortekamp et al. 1999) when they prevent a proper leaf wetness which is necessary for zoospore release and targeting of the stomata (Kiefer et al. 2002). However, the present data show no relationship between trichome density and shape and the level of susceptibility. The less susceptible cultivar ‘Cabernet Sauvignon’ (Boso and Kassemeyer 2008) has a medium density of both types of trichomes on the intercostals field of the lower leaf side comparable with ‘Touriga National’ and ‘Tempranillo’ belonging to the group with a significant higher susceptibility according to Boso and Kassemeyer (2008). ‘Albariño’, also a member of the group with a high level of susceptibility, has no erect but a medium to high density of reclining trichomes on the abaxial leaf side (Loureiro et al. 1998, Martinez et al. 1994). Müller-Thurgau’, show high susceptibility in previous works (Kortekamp et al. 1999, Boso et al. 2006), and low trichome density (Boidron et al. 1995, Ambrosi et al. 1998), or ‘Caño Blanco’, also susceptible (unpubl.), with high density of reclining trichomes (Santiago et al. 2005), could be two examples of no correlation between hair density and resistance to downy mildew.

In conclusion, a high number of hairs does not automatically lead to resistance, and plants may also be resistant without hairs, but in some cases the hairs seem to the only suitable lifesaver and they might be therefore part of a resistance mechanism (Kortekamp and Zyprian 1999). However, it is important to keep in mind that a major number of cultivars or species should be investigated to conclude if hairs play an important role or not.

Structure of epidermis and mesophyll: All the genotypes studied showed an unstratified adaxial epidermis with cells that, in transverse section, were elongated with thin walls. In the most cultivars the cuticle was very thin; however the clones of ‘Albariño’ showed a significantly thicker cuticle-cell wall complex and a thicker epidermis (Fig. 2, Table). The epidermis of both sides of ‘Tempranillo’, ‘Touriga Nacional’ and ‘Pinot Noir’ was thinner than that of ‘Cabernet Sauvignon’ and ‘Albariño’ (Table). According to Galet (2000), the epidermis of Vitis spp. is usually composed of rectangular cells, the dimensions of which vary depending on the species. According to Manzoni (1954), in V. vinifera the epidermal cells are smaller and less uniform than in V. riparia. In transverse section the abaxial epidermal cells appeared small and no differences occurred between the different genotypes. The cuticle on the abaxial leaf side was thinner than on the adaxial side.

The thickness of the palisade mesophyll cells was very similar in most of the genotypes, except in the clones of ‘Albariño’. In these clones the palisade-cells were significantly thicker (Table), more elongated, and showed abundant chloroplasts (Fig. 2). The palisade mesophyll was, only one cell layer thick in all cultivars, and in all the cells were elongated and arranged in a compact manner. In some cases (‘Albariño’ clone 1, V. riparia and ‘Touriga Nacional’), a transverse cell wall was seen towards the lower third of these cells; this was also reported by Bernard (1978) and Galet (2000). The palisade mesophyll cells of V. riparia could not be differentiated from those of the other cultivars by their thickness or any other feature (Fig. 2). Most of the cultivars showed a narrow spongy mesophyll with 4-5 layers of polygonal cells separated by an intercellular space; the exceptions were ‘Cabernet Sauvignon’ and V. riparia which had smaller, more loosely packed cells with an extended intercellular space. These results agree with those of Galet (2000) and Teixeira et al.
The leaf diameter of 'Albariño' clones was significantly higher, whereas among the other genotypes no significant differences occurred. For necrotrophic grapevine pathogens such as *Botrytis cinerea* a positive correlation between the structure of the epidermis including the cuticle and the susceptibility for the pathogen has been suggested (KROSTANOV et al. 1989, MLIKOTA et al. 2003). However, the causal agent of grapevine downy mildew, *Plasmopara viticola*, is not able to penetrate the cuticle and epidermis of its host plant, rather the biotrophic pathogen takes advantage of the stomata to invade its host plant via these natural openings (ROYLE and THOMAS 1973, RIEMANN et al. 2002, KIEFER et al. 2002). Therefore the thickness of the cuticle and epidermis is insignificant for the penetration efficacy of the pathogen, but probably the structure of the outer surface of the host plant, especially of the cuticle may play a pivotal role for the adhesion of sporangia and the attachment of zoospores around the stomata. The analysis of the mesophyll cells revealed that *V. riparia* and 'Cabernet Sauvignon' had smaller and more compact cells than the other genotypes. The pathogen colonizes the intercellular space of the mesophyll, and consequently it is highly probable that a compact mesophyll may impede the growth of the mycelium in the host tissue considerably. In fact, both cultivars with a narrow intercellular space, *V. riparia* and 'Cabernet Sauvignon', have a high resistance and lower susceptibility respectively against *P. viticola* (BOSO and KASSEMÉYER 2008). These findings confirm the suggestion of RIBEREAU-GAYON and PENAUD (1982) that the mesophyll structure may influence the spread of pathogens in grapevine. Recently UNGER et al. (2007) described the bundle sheet cells as a structural barrier within the host tissue impeding an extended spread of *P. viticola* within leaf tissue.

Morphology of the stomata and the stomatal index: Transverse sections of the leaf lamina showed stomata only on the abaxial epidermis, and as reported by BERNARD (1978) and DURING (1980), none of the genotypes showed stomata on the adaxial surface. In all the genotypes the stomata showed the characteristic morphology with two kidney shaped guard cells surrounding

Table

Comparison of average leaves in terms of leaf variables (thicknesses, µm)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Upper cuticle-cell wall complex</th>
<th>Lower cuticle-cell wall complex</th>
<th>Upper epidermis</th>
<th>Lower epidermis</th>
<th>Palisade mesophyll</th>
<th>Spongy mesophyll</th>
<th>Stomatal index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albariño Clone 1</td>
<td>3.49 a</td>
<td>2.62 b</td>
<td>16.85 a</td>
<td>15.89 a</td>
<td>81.73 b</td>
<td>141.46 a</td>
<td>1.39d</td>
</tr>
<tr>
<td>Albariño Clone 2</td>
<td>3.90 b</td>
<td>2.86 a</td>
<td>14.71 b</td>
<td>13.89 b</td>
<td>93.10 a</td>
<td>105.98 b</td>
<td>2.22a</td>
</tr>
<tr>
<td>Tempranillo</td>
<td>1.89 cd</td>
<td>0.78 f</td>
<td>10.02 de</td>
<td>8.60 c</td>
<td>20.24 cd</td>
<td>42.46 d</td>
<td>1.35d</td>
</tr>
<tr>
<td>Pinot noir</td>
<td>1.93 c</td>
<td>1.37 c</td>
<td>11.56 cd</td>
<td>8.55 c</td>
<td>18.87 d</td>
<td>45.30 cd</td>
<td>1.55bc</td>
</tr>
<tr>
<td>Cabernet Sauvignon</td>
<td>1.63 ef</td>
<td>1.08 de</td>
<td>12.24 c</td>
<td>9.94 c</td>
<td>23.94 c</td>
<td>46.47 cd</td>
<td>1.28d</td>
</tr>
<tr>
<td>Touriga Nacional</td>
<td>1.39 f</td>
<td>1.29 cd</td>
<td>9.08 e</td>
<td>8.99 c</td>
<td>23.51 c</td>
<td>48.89 c</td>
<td>1.72b</td>
</tr>
<tr>
<td>Vitis riparia</td>
<td>1.66 de</td>
<td>1.06 e</td>
<td>12.00 c</td>
<td>8.79 c</td>
<td>22.31 cd</td>
<td>44.08 cd</td>
<td>1.30d</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>0.25</td>
<td>0.23</td>
<td>1.72</td>
<td>1.46</td>
<td>4.60</td>
<td>6.28</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Values with the same letter are significantly different (P < 0.05).
the pore and a substomatal cavity underneath the stoma. The assessment of the frequency of stomata on the abaxial surface revealed distinct differences between the genotypes. The results of ANOVA showed significant different stomatal indices between the genotypes (Table). The lowest stomatal index was observed on ‘Cabernet Sauvignon’, but ‘Albariño’ clone 1, ‘Tempranillo’, and the species V. riparia had a low index significantly different from the other genotypes. The highest stomatal index, significantly different from all of the genotypes, was showed by clone 2 of ‘Albariño’. ‘Touriga Nacional’ and ‘Pinot Noir’ had a medium stomatal index. According to the findings on the stomatal targeting of the zoospores of P. viticola it can be speculated that a high density of stomata on the host surface is responsible for an increased susceptibility against the pathogen. However, as a consequence of the statistical analysis of the data it can be noticed that a low stomatal index is not related to a low susceptibility and vice versa even though the clone of ‘Albariño’ showed the highest stomatal index and is also very susceptible against P. viticola. However, the clone 1 of ‘Albariño’ and ‘Tempranillo’, also belonging to the group with a distinct susceptibility (Boso et al. 2006, Boso and Kassemeyer 2008), have a low stomatal index compared with the low susceptible ‘Cabernet Sauvignon’ and the resistant species V. riparia. Probably the high stomatal index of ‘Albariño’ clone 2 may be responsible for the high agronomic performances in the field (Boso et al. 2004 a) because a high stomata density is associated with an increased photosynthetic capacity (During and Harst 1996, Ross-Kastiens et al. 1998).

Although a high number of stomata on a given surface is not correlated with an increased level of susceptibility, there are some other resistance mechanisms implicated: the hypersensitivity reaction (HR) causing programmed cell death (PCD) around the infection site, observed in resistant genotypes like Vitis riparia (Barlass et al. 1987, Brown et al. 1999 a, Boso and Kassemeyer 2008); the resistance induced by fungal attack with synthesis of phytoalexins (Lankage and Pryce 1977); the lignification processes induced by peroxidases (Dai et al. 1995, Kortekamp and Zyphrian 2003) or the formation of callose in stomata (Gindro et al. 2003), etc. Furthermore, the specific structure of a given stoma, like the presence of an additional cuticular rim at the junction between substomatal cavity and stomatal aperture, may also act as a physical barrier towards downy mildew zoospores (Jürges et al. 2009).

The interaction “variety x leaf sample” was not significant. Kowenberge et al. (2004) and Ben Salem-Fnayou et al. (2005) reported that the stomatal index in grapevine and other plants varies depending on the developmental stage of the leaf development and whether the leaves examined come from plants grown in the field or in the glasshouse (During 1980). Wilkinson (1992) indicated a variation of the stomatal index of the genotypes among a species, and Pallioti et al. (2000) demonstrated a genetically controlled stomatal index.

Low temperature electron microscopy: The erect trichomes observed, which had the appearance of small white spines (Fig. 3 A, B), were seen on the main veins of the leaf (and frequently on the secondary and tertiary veins as well), and on different areas of the limbus. Around the base of these trichomes, especially those on the main veins, cells were arranged in a rosette (Bernard 1978, OIV 1983, Paw et al and Peterlunger 1999) (Fig. 4 A). Since several authors have attempted to classify the type of plant trichomes (Galet 1956, Upfold 1962, Johnson 1975), here we report two different types within the reclining hairs as the first time in Vitis. The reclining trichomes observed had the appearance of long filaments. Some of these filaments were cylindrical, somewhat shorter in length and rolled into a spiral, while others were longer, flattened, and formed a network over the lower limbus surface (Fig. 3 C, D). ‘Cabernet Sauvignon’ had both types of reclining hair while the longer, flattened type was more common in the other cultivars. The literature contains no references on the existence of two types of reclining hair on grapevine leaves. On the adaxial surface, cuticular striations (cuticular waxes) were seen overlying the epidermal cells in all the genotypes studied, and at similar densities. Similar striations were also seen on the abaxial surface, especially around the stomata. Disperse accumulations of wax deposits were also seen (Fig. 4), except on the abaxial surfaces of ‘Cabernet Sauvignon’ and V. riparia. Epicuticular wax protects against water loss by evaporation and against the leaching of inorganic and organic constituents from the tissues (Riederer and Markstädtler 1996). The waxes of higher plants also provide a mechanical obstacle that prevents the entry of phytopathogenic bacteria and fungi (Mendgen 1996). In addition, the cuticle plays a significant role in host recognition in certain fungi (Podila et al. 1993, Dai et al. 1995, Mendgen 1996). Wax can also be incorporated in the cuticle and in absence of inhibitory compounds, these incorporations may reduce leaf wettability and thus infection risk caused by fungal spores depending on liquid water. However, the present results show the two most resistant genotypes (‘Cabernet Sauvignon’ and V. riparia) (Boso and Kassemeyer 2008) to be those with the least wax. This might be explained by the facts that, in these earlier works, the leaves examined were infected by fungi, unlike in the present work; the majority of these papers describe the presence of wax as a response to infection. In conclusion, no clear relation between ampelographic characteristics and susceptibility to downy mildew could be determined. However, some of the macro- and microscopic differences among the leaves of the studied genotypes may be related to resistance to downy mildew. The two cultivars that in earlier studies were found to be the least susceptible to downy mildew were the most similar in terms of their spongy mesophyll. Both showed very little or no wax on the abaxial surface of their leaves. Regarding to the trichomes, although they seem the only suitable lifesaver and might be therefore part of a resistance mechanism, more studies are needed to conclude if hairs play an important role or not.

Acknowledgements

This research was supported by a fellowship from the Fundación Martin Escudero and Ministerio de Educación y Ciencia.
Fig. 3: Erect (A and B) and reclining trichomes (C and D) under low temperature electron microscopy. CR: cells arranged in a rosette.

Fig. 4: Wax on the abaxial surface of all the genotypes studied. A: 'Albariño' (1000x); B: 'Touriga Nacional' (2000x); C: 'Pinot Noir' (2000x); D: 'Tempranillo' (3000x); E: 'Cabernet Sauvignon' (500x); F: *Vitis riparia* (500x).
Leaf characteristics of six grapevine genotypes with different susceptibilities to grapevine downy mildew

(1987). The authors thank Dr. Eiras-Dias (Estación Vitivinícola Nacional Dois Portos, Portugal) and Dr. Martínez de Toda (Universidad de La Rioja) for supplying the Portuguese and some Spanish cultivars. We thank Dr. Peters and Dr. Schweikert (Staatliches Weinbauinstitut Freiburg) for his help with the German translation. The electronic microscope observations were realized in SEM-Laboratory University of Basel (Switzerland) and CACTI-University of Vigo (Spain).

References

KORTEKAMP, A.; ZYPRIAN, E.; 1999: Leaf hairs as a basic protective barrier against downy mildew of grape. Phytopatology 147, 453-459.

PODILA, G. K.; ROGERS, L. M.; KOLATTUKUDY, P. E.;
MÜLLER, T.; GUGGENHEIM, M.; DÜGGELIN, M.; S
CHEIDEGGER, C. H. MENDGEN, K
MLIKOTA G ABLER, F.; S MILANICK, J. L.; M ANSOUR, M.; R RAMMING, D. W.;
RIEDERER, M.; MARKSTÄDTER, E; RIBEREAU-GAYON, J.; PEYNAUD, E.; 1982:
MINISTERE DE L´AGRICULTURE; MINISTERE DE LA RECHERCHE ET DE LA TECH
cinerea
showing atypical symptoms of
and chemical features of grape berries with resistance to
Freeze-fracturing for conventional and field emission low-tempera
ment of current knowledge. In: G.
Vignobles. Tome 2: Culture, Pathologie, Défense Sanitaire de la
et Techniques de la Vigne. Tome 1: Biologie de la Vigne, Sols de
103
Notiziario ERSA,
73-80.
2005: Ultrastructural analysis of
161
Plasmopara viticola
(Ed.): Plant cuticles,
2003: Correlations of morphological, anatomical,
and chemical features of grape berries with resistance to Botrytis cinerea.
Phytopathology 93, 1263-1273.
Freeze-fracturing for conventional and field emission low-tempera
te scanning electron microscopy: the scanning cryo unit SCU 020.
J. Microsc. 161, 73-83.
tot, L; 2005: Ultrastructural analysis of Vitis vinifera leaf tissues
showing atypical symptoms of Plasmopara viticola. Micron 36, 73-80.
PALLIOTTI, A.; CARTECHINI, A.; FERRANTI, F.; 2000: Morpho-anatomical and
physiological characteristics of primary and lateral shoot leaves of
Cabernet Franc and Trebbiano Toscano grapevines under two irradi
129, 73-83.
PANAV, F.; PETERLUNGAR E, 1999: Densità di vegetazione e morfologia
foliare della vite: possibile influenza su fitofagi e loro antagonisti.
Notiziario ERSA, 12, 35-40.
PODLA, G. K.; ROGERS, L. M.; KOLATTUKUDY, P. E.; 1993: Chemical sig
als from avocado surface wax trigger germination and appresso
103, 267-272.
et Techniques de la Vigne. Tome 1: Biologie de la Vigne, Sols de
Vignobles. Tome 2: Culture, Pathologie, Défense Sanitaire de la
ment of current knowledge. In: G. KERSTIENS (Ed.): Plant cuticles,
RIEMANN, M.; BÜCHE, C.; KASSEMEYER, H. H.; 2002: Cytoskeletal respons
ROYLE, D. J.; THOMAS, G. G.; 1973: Factors affecting zoosporre responses
among amanota in hop downy mildew, Pseudoperonospora humuli,
including some comparisons with grapevine downy mildew, Plas
growth conditions on stomatal density, index and aperture of grape,
SANTIAGO, J. L.; BOSO, S.; MARTÍNEZ, M. C.; PINTO-CARNIDE, O.; ORTIZ, J.
M.; 2005: Ampelographic comparison of grape cultivars (Vitis vin
ifiera L.) grown in northwestern Spain and northern Portugal. Am. J.
Cary, North Carolina, U.S.A.
SOAR, C. J.; SPURS, J.; MAITEL, S. M.; PENROSE, A. B.; MCCARTHY, M. G.;
LOVEYS, B. R.; 2006: Grape vine varieties Shiraz and Grenache dif
fer in their stomatal response to VPD: Apparent links with ABA
physiology and gene expression in leaf tissue. Aust. J. Grape Wine
Res. 12, 2-12.
(Plasmopara viticola) resistance in various accessions of wild Vitis
species. Vitis 34, 225-228.
TEIXEIRA, G.; MONTEIRO, A.; NUNES, N.; LOPES, C.; 2009: Anatomia foliar
de cultivares tintas de videira (Vitis vinifera L.). Actas de Horticultu
ra. VI Congreso Ibérico de Ciencias Hortícolas, Logroño, 25-29
mayo.
Tichá, L.; 1982: Photosynthetic characteristics during ontogenesis of
leaves. 7. Stomata density and sizes. Photosynthetica 16, 375-471.
(Eds.): Handbuch der Pflanzenanatomie. Bd. 4, Teil 5: Histologie.
Gebrüder Borntraeger, Berlin.
colonization of two different Vitis genotypes by Plasmopara viticola
indicates compatible and incompatible host-pathogen-interactions.
Phytopathology 97, 780-786.
Masson et Cie, París.
Linnean Soc. 110, 1-59.
growing in the field: from leaf to whole plant response. Aust. J. Plant
Physiol. 20, 143-157.
Received May 5, 2009