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Abstract: Molecular techniques are offering new insights on the feeding strategy and diets of 12 

planktonic organisms such as the larvae of marine fish. We applied multiplex PCR to provide the 13 

first estimates of the diets of the larvae of European sardine (Sardina pichardus) in the Alboran Sea 14 

(SW Mediterranean), where this species represents an important fishery resource. The feasibility of 15 

this technique was tested in a 26-hour continuous survey of a shoal of larvae (mean±SD, 16 

10.80±0.73 mm in standard length). Multiplex PCR was designed to detect the presence of five 17 

copepod species, a microplanktonic dinoflagellate (Gymnodinium) and the picoeukaryote algae 18 

family Prasinophyceae in larval guts. We simultaneously sampled sardine larvae and their potential 19 

prey (pico- to mesoplankton) and compared diel variability of the prey field and ingested items. 20 

Microplankton was dominated by flagellates and copepods represented the most abundant 21 

mesozooplankton, reaching peak abundance at night. Prey DNA was detected throughout the entire 22 

diel cycle, despite no visible prey in the guts of larvae collected at night. Sardine larvae preyed on 23 

early life stages of the most abundant copepod species (Oncaea waldemari, Paracalanus indicus 24 

and Temora stylifera), suggesting an opportunistic foraging behavior. The use of multiplex PCR 25 

allowed species-level identification of ingested nauplii and protists, which otherwise would remain 26 



unidentified. 27 
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Introduction 30 

Small pelagic fish (SPF) play a central role in the structuring of the marine food webs where they 31 

can exert top-down control of mesozooplankton and bottom-up control on their predators (this 32 

double role is known as wasp-waist control, Cury et al. 2000). Thus, small pelagic fish (SPF) 33 

species, such as sardines and anchovies, play a critical role in transferring the energy from plankton 34 

to large vertebrate predators in marine ecosystems. 35 

In the Mediterranean Sea, the Bay of Málaga (located in the central part of the north Alboran Sea), 36 

is the most important nursery site for the European sardine (Sardina pilchardus) and anchovy 37 

(Engraulis encrasicolus) (García et al. 1988, García 2010, Giannoulaki et al. 2013). The bay is an 38 

essential habitat for these SPF species as it fulfills the Bakun triad, a set of conditions needed for 39 

larvae survival (Agostini & Bakun 2002), including high abundances of phytoplankton and 40 

zooplankton (Mercado et al. 2007, Yebra et al. 2017). These conditions are promoted by mesoscale 41 

hydrographic structures such as fronts and gyres caused by the influx of Atlantic water through the 42 

Gibraltar Strait (Parrilla & Kinder 1987) and upwelling events induced by westerly winds (Sarhan 43 

et al. 2000, Mercado et al. 2012). Sardine displays an extended spawning season in this region 44 

(Rodríguez 1990, Tendero 2016) where its larvae are often dominant members of the 45 

ichthyoplankton (Palomera et al. 2007). Despite its numerical abundance, no previous studies have 46 

reported on the diet and feeding habits of sardine larvae in the Alboran Sea.  47 

Although the diet of a fish larva depends on the abundance and diversity of prey encountered 48 

(García et al. 2003), the larvae of most marine fish selectively feed on specific prey species (Peck et 49 

al. 2012).  To date, studies on the diet of various life stages of European sardine have shown that 50 

mesozooplankton (>200 µm, mostly copepods and cladocerans) comprises the major food source 51 

for larvae (e.g. Conway et al. 1994, Morote et al. 2010, Costalago & Palomera 2014). In the NW 52 

Mediterranean Sea, tintinnids and copepod nauplii form the largest proportion of the gut content of 53 

the smallest pre-flexion larvae while larger larvae preferentially consumed nauplii and copepodites 54 

of calanoid copepods (Morote et al. 2010). However, important regional differences in diet and/or 55 



omnivorous foraging may exist since Rasoanarivo et al. (1991) found sardine larvae consuming 56 

exclusively phytoplankton, from 5 µm (Chlorella spp.) to 130 µm (Synedra acus) in the Gulf of 57 

Lions (NW Mediterranean). Small microzooplankton (i.e. protozoan) might be important prey for 58 

ichthyoplankton (Bils et al. 2017), however, the protozooplankton-ichthyoplankton link remains 59 

largely unexplored, as most field studies employ microscopic analysis of gut contents of larvae 60 

preserved in formaline (Peck et al. 2012). This traditional approach presents several limitations, 61 

which include the difficulty of identifying early developmental stages (e.g. nauplii), soft body 62 

organisms or partly digested items. Stable isotope analysis provides another technique to infer larval 63 

feeding habits (Bode et al. 2004, Costalago et al. 2012, Laiz-Carrión et al. 2011) but this technique 64 

provides no information on prey species or prey preference. 65 

To overcome the limitations of using microscopic identification of gut contents to identify the diets 66 

of marine fish larvae, molecular tools have been developed in recent years. These new techniques 67 

not only complement to traditional microscopy counts, but are also useful tools that improve the 68 

accuracy of identification of organisms at species level (even criptic ones or partly digested 69 

remains) and increase the volume of samples that can be analysed in a cost-effective manner. Due to 70 

their precision and sensitivity both PCR (Polymerase Chain Reaction) and quantitative PCR (qPCR) 71 

have been applied to detect and quantify species from water samples (Vadopalus et al. 2006, 72 

Miyaguchi et al. 2007, Pan et al. 2008), and have been successfully applied to examine the diet of 73 

zooplankton (Nejstgaard et al. 2003, 2008, Troedsson et al. 2007, Simonelli et al. 2009). Moreover, 74 

metabarcoding assays employed on gut contents of European sardine adults (Albaina et al. 2016) 75 

and European eel (Anguilla anguilla) larvae (Ayala et al. 2018) identified the main taxonomic 76 

groups, including protists and soft bodied organisms, not identifiable by microscopic examination. 77 

The present study is the first to examine the diet of sardine larvae in the Alboran Sea and one of 78 

only a handful of studies to apply molecular markers on larval fish gut contents. We tested two 79 

hypotheses. First, sardine larvae feed on the most abundant prey at the beginning of the spawning 80 

season to maximize rates of growth and development. Second, diel differences in the diet of sardine 81 



larvae explain day/night differences in the nutritional condition of larval sardine (Conway et al. 82 

1994, Cortés com. pers.). We quantified the taxonomic composition of the Alboran Sea plankton 83 

community and designed and applied species-specific molecular markers to detect the presence of 84 

selected target organisms within sardine larval guts (Hernández de Rojas et al. unpubl. data).  85 

Based on i) the dominant phyto- and zooplankton in the Bay of Málaga during autumn, (e.g. small 86 

flagellates (Mercado et al. 2005, 2007) and copepods (Rodríguez 1983, Sampaio de Souza et al. 87 

2005)), and ii) gut contents of sardine larvae in other areas of the NW Mediterranean (Rasoanarivo 88 

et al. 1991, Morote et al. 2010), molecular markers were developed for five mesozooplankton 89 

copepod genus (Oncaea, Acartia, Temora, Clausocalanus and Paracalanus), a microplanktonic 90 

dinoflagellate (Gymnodinium) and the picoeukaryote algae family Prasinophyceae, as representative 91 

of Chlorophyta. 92 

 93 

Material and Methods 94 

Sampling 95 

Sampling took place on board R/V Francisco de Paula Navarro, on 8-9th November 2014, during a 96 

26 hours diel cycle within the Bay of Málaga (Fig. 1). Every 2 hours (T1 to T13, Table 1), Bongo 97 

nets (60 cm diameter, 500 µm mesh) were deployed to collect sardine larvae by means of oblique 98 

hauls down to 5 m above the seafloor. Sampling started at midday in shallow shelf waters (70-80 m 99 

depth) where adult sardine are known to spawn, and we gradually moved towards nursery shallow 100 

inshore waters (18-22 m depth), where larvae concentrate at nighttime (García et al. 1988). On 101 

board, a subset of 351 individuals were sorted, identified, visually examined for gut contents and 102 

photographed with a Leica EZ4HD, for later measurement of standard length (SL), and immediately 103 

preserved in undenatured ethanol 96% for molecular assays. Larvae handling time between 104 

collection and preservation did not exceed 5 minutes. 105 

After each ichthyoplankton sampling, a CTD SBE-25 was used to obtain vertical profiles of 106 

temperature and salinity at each sampling site. Then, Niskin bottles were used to collect seawater at 107 



surface and close to the seafloor. Samples to determine the abundance and taxonomic composition 108 

of phytoplankton >5 μm were fixed in dark glass bottles with Lugol’s solution (2% final 109 

concentration). Samples for determination of eukaryotic pico- and nanoplankton abundance were 110 

fixed with glutaraldehyde (1% final concentration) and immediately frozen in liquid nitrogen 111 

(Vaulot et al. 1989). Finally, a WP2-double net (200 µm mesh) was deployed vertically to collect 112 

mesozooplankton, from 3 m above the bottom to the surface, at a speed of 0.5 m·s-1. Zooplankton 113 

was carefully rinsed and preserved with 96% non-denatured ethanol for taxonomic analyses. 114 

 115 

Plankton community composition  116 

In the laboratory, 100 ml of each phytoplankton >5 μm sample were sedimented in a composite 117 

chamber for 24 h, following the technique developed by Utermöhl (1958). Cells were counted at 118 

200× and 400× magnification with a Leica DMIL inverted microscope. The species nomenclature 119 

was validated using Tomas (1997). Pico- and nanoplankton Samples for determination of eukaryotic 120 

pico- and nanoplankton abundance were fixed with glutaraldehyde (1% final concentration) and 121 

immediately frozen in liquid nitrogen (Vaulot et al. 1989). samples were analysed with a Becton 122 

Dickinson FACScan flow cytometer. Cell counting was performed based on the forward-light 123 

scatter and the orange and red fluorescence signals. BD TrueCOUNT Tubes were used to determine 124 

absolute counts.Finally, a WP2-double net (200 µm mesh) was deployed vertically to collect 125 

mesozooplankton, from 3 m above the bottom to the surface at a speed of 0.5 m·s-1. Zooplankton 126 

was carefully rinsed and preserved with 96% non-denatured ethanol for taxonomic analyses. 127 

Copepod abundance and taxonomic composition were determined using a stereomicroscope (Leica 128 

M165C). Taxonomic identification was made to the lowest possible level according to Rose (1933), 129 

Trégouboff & Rose (1957), and Razouls et al. (2005). Copepods identification to species level was 130 

not always feasible, as some genera present cryptic species in the study area (e.g. Kasapidis et al. 131 

2018). Thus, we report field copepod abundance data at genus level. 132 

 133 



Molecular analyses of larvae gut content 134 

In the laboratory, sardine larvae were dissected for gut DNA extraction. Prior to extraction, 135 

individuals were washed three times with sterilized water and all the material, forceps and scalpels 136 

were flame sterilized before and after each dissection. From each sampling (T1 to T13), the gut 137 

content of 10 larvae were pooled together and total DNA was extracted using DNeasy Blood & 138 

Tissue kit (Qiagen), following the manufacturer’s instructions, except for the proteinase K 139 

incubation which was done overnight at 37 ºC. DNA pools were stored at -20 ºC until their assay, 140 

and DNA purity and concentrations were assessed using NanoDrop 1000 (Thermo Scientific) in 1 141 

µl of sample (DNA in each pool is shown in Table 3). In order to assess the presence/absence of 142 

potential preys within the larval guts, 5 µl of total DNA from each pool were assayed in triplicate by 143 

means of a species-specific multiplex PCR designed ad hoc for this purpose (Hernández de Rojas et 144 

al. unpubl. data). In brief, a multiplex PCR was designed to detect, in a single assay, the DNA of the 145 

5 most abundant copepod species found in the study area, by targeting short fragments (100 - 200 146 

bp) of their mitochondrial COI (mtCOI) gene. The potential preys targeted were Clausocalanus 147 

parapergens, Acartia clausi, Paracalanus indicus, Temora stylifera and Oncaea waldemari. PCR 148 

melting temperatures (Tm) ranged from 42 to 50 ºC, and amplicon lengths varied from 104 to 193 149 

bp. PCR products were separated and analysed using Bioanalyzer 2100 (Agilent), using the DNA 150 

1000 kit (Agilent).  Electropherograms were analysed with the 2100 Expert Software (Agilent), and 151 

fragments of the expected length and that yielded ≥1 fluorescent unit (FU) were counted as positive. 152 

Likewise, phytoplankton gut content was studied by means of a second multiplex PCR. In this case, 153 

group-specific primers were designed (Table 2) to detect the dinoflagellate genus Gymnodinium 154 

(105 bp amplicon) and the picoeukaryote family Prasinophyceae (155 bp amplicon). The LSU 155 

rDNA marker is preferentially used for dinoflagellates species identification due to its high 156 

variability in some domains (Gomez et al. 2011). Thus, for Gymnodinium primer design, sequence 157 

alignment of available (GenBank, October 2015) G. catenatum mitochondrial large subunit 158 

ribosomal (LSU rDNA) gene sequences was performed. To ensure the detection of dinoflagellate 159 



DNA partially digested, primers were designed for the amplification of a small fragment (between 160 

100-200 pb) according to King et al. (2008) recommendations. Regarding to Prasinophyceae, 161 

primers were designed for PCR amplification of the rbcL (ribulose-1,5-diphosphate carboxylase) 162 

gene fragment, a core plant DNA barcode (Worden & Not 2008). All Prasinohyceae sp. sequences 163 

available (GeneBank, October 2015) were aligned to design a family-specific primer following the 164 

same procedure as for Gymnodinium. For sequence alignment Unigene software was used 165 

(Okonechnikov et al. 2012) and primers were designed with Oligo 7 software (Molecular Biology 166 

Insights, Inc.). As for copepods, three total DNA aliquots (5 µl) of each pool were assayed. 167 

Amplicons were analysed as explained above. 168 

 169 

Larvae prey size estimations 170 

In order to estimate which copepod developmental stages could be potentially consumed by sardine 171 

larvae within the size range collected in our study, we used the relationship by Morote et al. (2010) 172 

between sardine larval standard length and prey width: 173 

Prey width (µm) = 10.028·Larval SL (mm) + 5.747, r2 = 0.137, p<0.001 174 

 175 

Results 176 

Hydrography 177 

The mean±SD sea surface temperature was 15.9±0.2ºC, varying between 15.6 and 16.4ºC during 178 

the diel cycle. The mean±SD sea surface salinity was 37.08±0.12, ranging from 36.92 to 37.22 179 

(Table 1). The water column was not stratified and temperatures in bottom to surface waters was 180 

similar by day (13.6-16.5 ºC) and night (14.5-16.3 ºC); as well as the salinity (36.9-38.2 by day and 181 

37.1-37.7 at night). 182 

 183 

Plankton community composition 184 

Mesozooplankton was dominated by copepods, which accounted for 74.1±16.2% (45-94% range) of 185 



the total abundance, followed by cladocerans (12.8±12.6%) and appendicularians (4.1±3.7%). The 186 

most abundant copepod genus in the field was Oncaea (25.2±18.3%), with up to 2,880 ind·m-3 at 187 

T5; while Paracalanus, Temora, Acartia and Clausocalanus adults represented from 7.9±4.9 to 188 

5.0±3.5% of the total copepod abundance. The dominant species within these genera were: Acartia 189 

clausi (99.93% of Acartia counts), Temora stylifera (96.92% of Temora), and Paracalanus cf. 190 

parvus (88.37% of Paracalanus). Clausocalanus and Oncaea individuals were identified at genus 191 

level, therefore comparison between field abundances and gut content contributions were done at 192 

genus level. Unidentified copepodites and nauplii accounted for 20.1±15.1% and 4.0±3.3%, 193 

respectively; and the remaining copepod species identified comprised a 25.5±10.9%. Copepods 194 

were most abundant at night (T5-T7), when the community was dominated by Oncaea and Acartia; 195 

also a diurnal increase was seen at T12-T13, except for Acartia whose abundance was very low by 196 

day (Fig. 2a).The most abundant microplankton group was flagellates, followed by diatoms. 197 

Dinoflagellates abundance was dominated by <20 µm cells, followed by Gymnodinium catenatum 198 

which represented up to 58% of dinoflagellates counts. Abundance of cells <5 µm was dominated 199 

by picoeukaryotes. Maximum abundances were observed at T10-T13 for microplankton, at T6 for 200 

picoplankton and at T3-T4 for nanoplankton. All these fractions presented minimum abundances at 201 

T5 (Fig. 2b), the beginning of the night period, coinciding with the highest copepod abundance.  202 

 203 

Sardine larval standard length 204 

The standard length (SL) of sardine larvae ranged from 5.9 to 20.8 mm, with a mean±SD of 205 

10.64±2.15 mm (Fig. 3).  There were no significant differences in the size distribution of the larvae 206 

among sampling stations (Kolmogorov-Smirnov tests, p >0.05), indicating that we were sampling 207 

the same population. Only T5 distribution differed from some day and night stations probably due 208 

to a larger contribution of larvae with SL >13 mm. The subset of sardine larvae selected for 209 

molecular analyses showed a mean±SD SL of 10.80±0.73 mm. Of these, a 71% ranged between 9 210 

and 13 mm (47% 9-11 mm, 24% 11-13 mm), 14% were <9 mm and 13% were >13 mm. 211 



  212 

Sardine larval gut contents 213 

We visually observed the presence of gut content in sardine larvae collected from mid-day (11:30 h) 214 

until dusk (18:00 h). Feeding incidence estimated from photographs was 46% by day. However, 215 

during the night and early morning hours guts seemed empty (Fig. A1). Larvae with visible gut 216 

content were selected for molecular assays when available. Multiplex PCR results also showed day-217 

night differences in the presence/absence of the target copepod species within the guts of the sardine 218 

larvae. Temora stylifera and Oncaea waldemari were detected during nearly the whole cycle; 219 

whereas Acartia clausi was intermittently and poorly detected during the diel cycle (Table 3). 220 

Paracalanus indicus and Clausocalanus parapergens were not found at night (T5 to T9), despite 221 

their night abundances in the field accounting for up to 17.7 and 10.1% of total copepods, 222 

respectively. Phytoplankton taxa were found during the entire cycle, although Prasinophyceae were 223 

not detected at the end of the night (T9-T10).The relative contribution (ng DNA) of each prey 224 

within the sardine larval guts was also different. T. stylifera, P. indicus and O. waldemari showed 225 

the highest average contribution (42.1, 27.9 and 25.7 % of copepod DNA detected, respectively), 226 

whereas A. clausi and C. parapergens represented a low percentage (2.6 and 1.7% of copepod DNA 227 

detected, respectively, Fig. 4). Furthermore, we observed that peaks in Oncaea and Acartia relative 228 

field abundance were significantly correlated to increases in their contribution to the DNA 229 

concentration in larval gut contents 4 hours later (Fig. 4, p<0.05). Temora and Clausocalanus peaks 230 

showed a positive, although not significant, relationship between field and gut contribution with a 2 231 

hours delay (p>0.05). In the case of Paracalanus this coincidence was only observed during 232 

daytime and the correlation was negative and not significant (p>0.05) during the diel cycle. 233 

 234 

Discussion 235 

Given that starvation is one of the main causes of mortality of the larvae of SPF and other marine 236 

fish species (Hjort 1914), it is crucial to understand how plankton abundance and diversity affect 237 



the diets of young fish larvae. In the Bay of Málaga, interactions among phytoplankton, ciliates and 238 

zooplankton appear to play a central role in regulating the pelagic food web (Mercado et al. 2007) 239 

and the role of sardine larvae as predators of these groups has not been previously investigated. This 240 

study is the first to successfully combine traditional (microscopy) and molecular (multiplex PCR) 241 

techniques to estimate the diet of sardine larvae. 242 

The present study identified copepods as a main target of foraging by sardine larvae including four 243 

calanoids (Acartia clausi, Paracalanus indicus, Clausocalanus parapergens, Temora stylifera) and 244 

one poecilostomatoid (Oncaea waldemari). These copepods are cosmopolitan species distributed 245 

across tropical and temperate oceans and seas (Razouls et al. 2005). The four calanoids are 246 

epipelagic (Scotto di Carlo et al. 1984, Steinberg et al. 1994, Brugnano et al. 2012) and most 247 

frequently sampled in the upper 200 m of the water column while Oncaea waldemari occurs across 248 

a wider range in depths, from the deep-sea to the surface (Böttger-Schnack & Schnack 2013). As 249 

hypothesized, we found that the three most frequently detected copepod within the guts of sardine 250 

larvae (Temora, Paracalanus and Oncaea) were also the most abundant in the study area. However, 251 

we cannot rule out preferential feeding on Temora whose DNA was the most abundant in guts (42% 252 

T. stylifera, 26-28% P. indicus and O. waldemari) but was not the most numerically dominant 253 

copepod in the field (25% Oncaea, 5-8% Paracalanus, Acartia and Temora). An important 254 

limitation, however, is that the abundance of copepods in the field was based on adults identified to 255 

the species or genus level using microscopy. Early copepodite and naupliar stages were not 256 

identified (20 and 4% of total copepod counts, respectively) and the mesh of our sampling gear (200 257 

µm) was not fine enough (e.g. 60 µm) to quantitatively sample these smaller life stages. Thus the 258 

relative abundance of the adults of a species may not reflect the actual contribution of their nauplii 259 

and copepodites to the suit of prey available to sardine larvae. 260 

In the pelagic ecosystem, there is a tight relationship between the trophic position and the size of an 261 

organism (Sharf et al. 2000). Also, the relationship between predator and prey sizes is the main 262 

factor determining capture success (Hansen et al. 1994, Neubert et al. 2000). Hence, predation has 263 



been considered opportunistic rather than taxon selective (Lundvall et al. 1999). Laboratory and 264 

field studies on young European sardine larvae revealed that prey size significantly increased with 265 

increasing larval length (Morote et al. 2010, Caldeira et al. 2014). Based on the model by Morote et 266 

al. (2010) for sardine larvae in the NW Mediterranean and widths of potential prey estimated during 267 

our field sampling, larvae up to 20 mm SL would be able to ingest adults of O. waldemari and early 268 

copepodite stages and nauplii of the larger calanoid species detected in sardine gut contents (Table 269 

4). Our results agree with microscopic observations of the gut contents of sardine larvae in the NW 270 

Mediterranean and Cantabrian Seas, where 46-52% of the prey ingested by <10-13 mm sardine 271 

larvae was copepod nauplii (Munuera Fernández & González-Quirós 2006, Morote et al. 2010).  272 

Furthermore, The use here of a species-specific multiplex PCR assay has allowed, for the first time, 273 

the identification to species level of the nauplii ingested by sardine larvae, which otherwise would 274 

remain unidentified. However, apart from size, other factors such as nutritional quality or prey 275 

motility can condition prey selection (Bautista & Harris 1992, Gragnani et al. 1999). Borme et al. 276 

(2013) observed that post-flexion sardine larvae in the Adriatic Sea not only fed on the most 277 

abundant copepods (Temora longicornis and Paracalanus spp.) but also Temora stylifera, Acartia 278 

spp. and other copepod species which were rare in plankton samples. The positive selection of these 279 

rare species was probably related to the poor alertness and weak escape response of these copepods 280 

(Viitasalo et al. 2001). In the Bay of Málaga, despite the fact that Oncaea adults were more 281 

abundant than other species, sardine larvae (as indicated by the DNA found in the guts) seemed to 282 

prefer to prey on easier targets such as nauplii of Temora or Paracalanus, suggesting that motility 283 

rather than nutritional quality was an important factor influencing prey selection by these larvae. 284 

Phytoplankton DNA of bot taxa tested, Gymnodinium and Prasinophyceae, was also present in the 285 

gut contents of sardine larvae.  One previous study reported hervibory by sardine larvae in the NW 286 

Mediterranean under a spring bloom situation (Rasoanarivo et al. 1991). However, several studies 287 

in highly productive eastern boundary current systems have categorized larvae of SPF as passive 288 

phytoplankton consumers, criticizing the assumption of phytophagy for this and other clupeid 289 



species (Konchina et al. 1991, Van der Lingen 2002). In our study, we cannot ascertain whether 290 

phytoplankton cells found in the guts were eaten directly by the sardine larvae or whether 291 

phytoplankton DNA originated from the copepods ingested by these larvae. Sardine larvae lacked 292 

the DNA of Prasinophyceae (<2 µm cells) at the end of the night (T9) when the lowest amounts of 293 

copepod DNA were detected and when only Oncaea was detected (Table 3). Preliminary tests of the 294 

phytoplankton primers showed that both phytoplankton taxa were not only detectable within the 295 

guts of sardine larvae but also inside the copepod species preyed upon by larvae (data not shown). 296 

Of the target copepods, all have been described as omnivores (Ohtsuka et al. 1993, Kouwenberg 297 

1994, Mauchline 1998, Razouls et al. 2005, Benedetti 2016). However A. clausi, P. indicus, C. 298 

parapergens and T. stylifera are predominantly herbivores (Wickstead 1962, Kouwenberg 1994, 299 

Calbet & Saiz 2005) whereas O. waldemari is preferentially a detritivore (Wickstead 1962, Razouls 300 

et al. 2005). The co-occurrence of the DNA of phytoplankton and herbivorous copepods in the guts 301 

of sardine larvae, coupled with the weakest Prasinophyceae signal when the detritivore Oncaea 302 

dominated gut contents, suggests that sardine larvae were most probably not consuming these 303 

pigmented cells, but that we detected phytoplankton inside the guts of herbivore copepods eaten by 304 

the larvae. 305 

There was high day/night variability in the copepod field community as well as in the gut contents 306 

of larvae; with a marked decrease at night in the number of species and DNA concentration 307 

detected, suggesting a preferential diurnal feeding. This agrees with previous studies reporting that 308 

the larvae of other clupeid species are visual predators (Arthur, 1976). Also, circadian variation in 309 

the nutritional condition of sardine larvae (assessed as RNA:DNA) was suggested to be driven by 310 

diel changes in larval diets (Conway et al. 1994, Cortés com. pers.). Total copepod DNA 311 

concentration within the guts of sardine larvae did not match prey field abundance during the diel 312 

cycle; we found higher DNA concentrations by day (T12-T13, >5 ng DNA·µl-1), but highest 313 

copepod numbers at night (T5-T6, >5,000 ind·m-3). Further, O. waldemari and T. stylifera presented 314 

a higher night signal within the guts along the diel cycle, whereas P. indicus and C. parapergens 315 



were only detected by day. These differences might be explained by the diel variability of the 316 

zooplankton community composition observed during the migration of the shoal of sardine larvae 317 

towards shallow waters at dusk. Moreover, PCR is not quantitative and a high relative concentration 318 

of DNA might be due to the presence of one entire (recently ingested) prey or the sum of several 319 

heavily digested organisms. Nevertheless, it stands out that peaks of relative abundance of some 320 

copepod species in the field were followed in time by increases in relative DNA concentration of 321 

the same species within the guts of sardine larvae, irrespective of the time of the day (e.g. Acartia, 322 

Fig. 4); supporting the idea of opportunistic feeding by these larvae. 323 

The results of this molecular assessment of the diet of sardine larvae in the field support our initial 324 

hypothesis, that sardine larvae have an opportunistic rather than selective feeding behavior. 325 

Nevertheless, among these copepods, sardine larvae (mean SL of 10 mm) may select nauplii of 326 

large copepods (i.e. Temora) likely because they are easier targets than adults of small-bodied 327 

species (such as Oncaea). Also, in this work we studied predation on copepods, the most abundant 328 

zooplankton group in the study area during autumn. In order to fully comprehend the trophic 329 

ecology of sardine larvae, further molecular assays (e.g. metabarcoding) need to be conducted to 330 

detect other potential planktonic prey, such as microplanktonic protists and gelatinous organisms. 331 

The development and application of further genomic tools, such as the ad hoc designed multiplex-332 

PCR assays applied here, will facilitate the study of the autoecology of planktonic species and their 333 

trophodynamimc role in the marine ecosystems. Furthermore, the species-specific multiplex PCR 334 

used on sardine larvae can be applied, as a low cost, complementary or alternative tool to 335 

microscopy, to detect a suit of 5 common copepods within guts of other SPF which are known to 336 

prey on nauplii. These SPF would include species of commercial interest, such as anchovy 337 

(Engraulis encrasicolus, Tudela et al. 2002, Morote et al. 2010), round sardinela (Sardinella aurita, 338 

Morote et al. 2008) or European sprat (Spratus spratus, Conway et al. 1991); but also other fish 339 

larvae for which there is no information on their diet, like the boarfish (Capros caper), which new 340 

fishery has increasing commercial interest in the N Atlantic (Stange 2016). 341 
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Tables 543 

Table 1. Sampling stations location (position of the zooplankton vertical haul) and bottom depth 544 

(Depth, m), sea surface (5 m depth) temperature (SST, ºC) and salinity (SSS), and larvae and 545 

zooplankton sampling time (local time: GMT+1). Bold font indicates night period. 546 

Station Latitude Longitude Depth SST SSS Larvae Zooplankton 
T1 36° 38.37 -4° 21.18 80 15.78 37.01 11:30 12:38 
T2 36° 39.47 -4° 22.00 64 16.44 36.93 13:30 14:51 
T3 36° 38.79 -4° 20.71 73 15.90 36.93 16:00 17:07 
T4 36° 40.74 -4° 23.32 47 16.24 36.97 18:00 18:36 
T5 36° 42.60 -4° 24.14 20 15.67 37.22 19:50 20:26 
T6 36° 42.76 -4° 24.16 18 16.13 37.10 22:10 22:34 
T7 36° 42.52 -4° 24.28 21 15.74 37.20 24:10 00:34 
T8 36° 42.53 -4° 24.19 22 15.90 37.13 02:15 02:44 
T9 36° 42.47 -4° 23.75 22 16.04 37.07 04:15 04:39 

T10 36° 42.33 -4° 24.11 22 15.75 37.20 06:10 06:40 
T11 36° 40.88 -4° 22.89 48 15.84 36.92 08:30 09:08 
T12 36° 40.76 -4° 22.94 46 15.58 37.18 10:30 10:58 
T13 36º 40.54 -4º 22.93 47 15.70 37.20 12:15 12:49 

 547 

Table 2. Sequences of the phytoplankton primers designed for this study. Tm: primer melting 548 

temperature (ºC). 549 

Taxa Target gene Primer 
name Primer sequence (5’-3’) Amplicon 

size (bp) Tm 

Gymnodinium 
catenatum LSU rDNA 

Gymno-F TGT GAA ACC GAT AGC 
AAA CAA GT 105 

51.7 

Gymno-R ATC CTT CGC TTC CAG 
TTC AGC 54.3 

Prasinophyceae rbcL 
Cloro-F CCA GCT CTA GTT GAG 

ATC TTC G 155 
55.3 

Cloro-R CGA AGC TAA GTC ACG 
TCC TTC 56.5 

 550 

 551 



Table 3. Presence/absence of prey detected by multiplex PCR within guts of sardine larvae during 552 

the diel cycle. +: positive replicates, -: non detected, [DNA]: DNA concentration (ng µL-1) of each 553 

sardine gut pool, assessed using NanoDrop 1000. Bold font indicates night period. 554 

Sample Oncaea Temora Paracal. Acartia Clausocal. Gymno. Prasino. [DNA] 
T2 +++ +++ +++ + - +++ +++ 200.95 
T3 - +++ +++ - + +++ +++ 134.35 
T4 - +++ +++ + ++ +++ +++ 185.60 
T5 ++ +++ - ++ + +++ +++ 287.65 
T6 + +++ - - - +++ +++ 257.10 
T7 + + - - - +++ +++ 247.00 
T8 ++ +++ - + - +++ ++ 303.75 
T9 + - - - - +++ - 137.55 

T10 + +++ ++ ++ ++ +++ - 398.45 
T11 ++ +++ + + + +++ +++ 188.10 
T12 +++ +++ +++ - - +++ +++ 175.45 
T13 - +++ +++ - + +++ +++ 184.90 

Image analyses of the larvae pools revealed that 2 larvae in T1 were Engraulis encrasicolus, thus 555 
we discarded T1 gut content results. 556 
 557 

 558 



Table 4. Mean length (mm) and width (mm) of the five target copepod species. Corresponding 559 

standard length (SL, mm) of potential predator (Sardina pilchardus) was calculated as in Morote et 560 

al. 2010. Bold font indicates developmental stages falling within the expected prey size for the 561 

sardine larvae in our study (SL <20 mm). 562 

Species   Length Width Sardine SL Reference 
Acartia clausi CI  0.48 0.14 13.39 (1) 
 CII  0.58 0.16 15.38 (1) 
 CIII  0.70 0.19 18.37 (1) 

 CIV 
CIV 

♂ 
♀ 

0.93 
0.88 

0.23 
0.24 

22.36 
23.36 

(1) 
(1) 

 CV 
CV 

♂ 
♀ 

1.04 
1.06 

0.28 
0.26 

27.35 
25.35 

(1) 
(1) 

 CVI 
CVI 

♂ 
♀ 

1.16 
1.13 

0.28 
0.28 

27.35 
27.35 

(1) 
(1) 

Clausocalanus 
parapergens 

CVI 
CVI 

♂ 
♀ 

1.10 
1.31 

0.38 
0.27 

37.78 
26.02 

(2) 
(2) 

Paracalanus 
indicus 

CVI 
CVI 

♂ 
♀ 

0.85-1.02 
0.85-0.95 

0.29 
0.26 

28.35 
25.35 

(2)(3) 
(3) 

Temora stylifera CI  0.29 0.19 18.57 (4) 
 CII  0.41 0.24 23.36 (4) 
 CIII  0.51 0.32 31.24 (4) 
 CIV  0.59 0.34 33.23 (4) 
 CV  0.69 0.34 33.43 (4) 

 CVI 
CVI 

♂ 
♀ 

0.88 
0.93 

 

0.42 
0.48 

41.51 
47.29 

(4) 
(4) 

Oncaea 
waldemari 

CVI 
CVI 

♂ 
♀ 

0.37-0.58 
0.49-0.76 

- 
0.16 

- 
15.58 

(2) 
(2) 

1Conway 2012, 2Razouls et al. 2005, 3Bradford 1978, 4Shmeleva 1965. C. parapergens and O. 563 
waldemari female sizes were extracted from taxonomical plates. 564 

 565 



Figure legends 566 

Figure 1. Sampling stations location and Alboran Sea surface circulation. WAG: West anticyclonic 567 

gyre, EAG: East anticyclonic gyre.  568 

Figure 2. Trophic conditions during the diel cycle. Field abundance of a) copepods (ind·m-3), b) 569 

microplankton (cells·mL-1, left axis), picoeukaryotes (103·cells·mL-1, right axis) and 570 

nanoeukaryotes (cells·mL-1, right axis). Grey shadow indicates night period.  571 

Figure 3. Frequency distribution of sardine larval size classes (standard length, mm). 572 

Figure 4. Diel variation of relative copepod field abundance (%, left axis, closed circles) and 573 

relative prey concentration within sardine larvae guts (%, right axis, open circles). Grey shadow 574 

indicates night period. 575 

Appendix figure A1. Photographs of Sardina pilchardus larvae caught during a 26 hours diel cycle 576 

within the Bay of Málaga. Larva caught at day showing gut content (a) and larva caught at night 577 

void of gut content (b).578 
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Appendix.

Figure A1. Photographs of Sardina pilchardus larvae caught 
during a 26 hours diel cycle within the Bay of Málaga. Larva 
caught at day showing gut content (a) and larva caught at 
night void of gut content (b).
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