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A B S T R A C T   

Black carbon (BC) has received increasing attention from researchers due to its adverse health effects. However, 
in-situ BC measurements are often not included as a regulated variable in air quality monitoring networks. 
Machine learning (ML) models have been studied extensively to serve as virtual sensors to complement the 
reference instruments. This study evaluates and compares three white-box (WB) and four black-box (BB) ML 
models to estimate BC concentrations, with the focus to show their transferability and interpretability. We train 
the models with the long-term air pollutant and weather measurements in Barcelona urban background site, and 
test them in other European urban and traffic sites. Despite the difference in geographical locations and mea-
surement sites, BC correlates the strongest with particle number concentration of accumulation mode (PNacc, r =
0.73–0.85) and nitrogen dioxide (NO2, r = 0.68–0.85) and the weakest with meteorological parameters. Due to 
its similarity of correlation behaviour, the ML models trained in Barcelona performs prominently at the traffic 
site in Helsinki (R2 = 0.80–0.86; mean absolute error MAE = 3.90–4.73 %) and at the urban background site in 
Dresden (R2 = 0.79–0.84; MAE = 4.23–4.82 %). WB models appear to explain less variability of BC than BB 
models, long short-term memory (LSTM) model of which outperforms the rest of the models. In terms of 
interpretability, we adopt several methods for individual model to quantify and normalize the relative impor-
tance of each input feature. The overall static relative importance commonly used for WB models demonstrate 
varying results from the dynamic values utilized to show local contribution used for BB models. PNacc and NO2 on 
average have the strongest absolute static contribution; however, they simultaneously impact the estimation 
positively and negatively at different sites. This comprehensive analysis demonstrates that the possibility of these 
interpretable air pollutant ML models to be transfered across space and time.   

1. Introduction 

Black carbon (BC) consists mostly of agglomerated sub-micron 

particulate matter (PM) generated primarily from incomplete combus-
tion of fossil fuels, biomass, and other organic materials (Bond et al., 
2013). In urban areas, BC often originates from residential burning 
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(particle size of ~ 300 nm) and vehicular combustion (~100–150 nm, 
Saarikoski et al., 2021). BC has been suggested to have strong link with 
adverse health effects, including respiratory and cardiovascular dis-
eases, which have led to increasing attention from researchers and 
policymakers for formulating effective air quality (AQ) management 
strategies and understanding climate change dynamics (Briggs and 
Long, 2016). World Health Organization (WHO, 2021) has recom-
mended regional authorities to make systematic measurements and 
subsequent reporting of BC. Besides, including BC as an additional 
component in comprehensive AQ index would allow analysis of the 
interconnected impacts of other gaseous and aerosol pollutants to AQ 
and the improved visualization of the overall AQ status to the general 
public. Following the trends of such comprehensive AQ index could be 
used by the authorities to implement policies that improve AQ and 
follow-ups with the observed impacts to the AQ index (e.g. Fung et al., 
2022a). 

To assess the concentrations of BC, various measurement techniques 
have been employed, including e.g. filter absorption photometers (FAPs) 
such as Aethalometers (AEs) and Multi-Angle Absorption Photometers 
(MAAPs) (Petzold and Schönlinner, 2004; Moosmüller et al., 2009; 
Petzold et al., 2013). These instruments measure the light absorption 
properties of particulate matter collected on filter substrate, allowing for 
the estimation of BC mass concentrations. However, the accuracy of 
these measurements depends on the specific method used. As a result, 
efforts have been made to improve these measurements and enhance 
their reliability through intercomparison of absorption photometers 
(Hitzenberger et al., 2006; Müller et al., 2011; Cuesta-Mosquera et al., 
2021). 

However, uncertainties persist due to the lack of agreement on 
methods and terminology (Petzold et al., 2013), as well as technical 
issues related to instrument software and correction algorithms (e.g. 
Weingartner et al., 2003; Collaud Coen et al., 2010; Luoma et al., 
2021b). Applicability of the data is hindered by missing data e.g., due to 
instrument malfunction (Zaidan et al., 2019). Numerous studies have 
investigated the variability and trends of BC concentrations at local and 
global scales (e.g., Ahmed et al., 2014; Grange et al., 2020; Jafar and 
Harrison, 2021; Sun et al., 2021; Savadkoohi et al., 2023). Yet, due to 
the lack of measurement sites, existing research outcomes may not fully 
capture the whole story, particularly the spatial distribution and 
evolving trends over time, which are influenced by regional and global 
mitigation policies, changes in emission patterns, and meteorological 
factors (Collaud Coen et al., 2020). 

To address these limitations, machine learning (ML) methods have 
emerged as virtual sensors for estimating BC concentrations (Zaidan 
et al., 2020). Various studies have explored the potential of ML methods 
in predicting air quality indicators and identifying emission sources, 
with a specific focus on BC emissions (e.g., Abu Awad et al., 2017; Fung 
et al., 2021b; Zhu et al., 2021; Rovira et al., 2022; Rubio-Loyola and 
Paul-Fils, 2022; Makkhan et al., 2023; Liu et al., 2023; Luo et al., 2023). 
ML algorithms can handle large datasets, identify complex patterns, and 
create predictive models with high accuracy, offering a cost-effective 
and efficient approach for real-time monitoring. The utilization of ML 
techniques in AQ research has improved due to the increasing avail-
ability of high-resolution monitoring data, advancements in computa-
tional resources, and the demand for accurate emission source 
characterization (e.g., Wang et al., 2020; Patil et al., 2022; Qiu et al., 
2022; Méndez et al., 2023). Despite the complex interactions between 
emission sources, meteorological factors and aerosol properties, 
regression-based ML methods have been employed to estimate BC levels 
accurately and reliably incorporated with these components as input 
variables (e.g., Luo et al., 2018; Fung et al., 2021b; May and Li, 2022; 
Zhang et al., 2022). 

Despite the accuracy and reliability in the abovementioned ML 
studies, ML models have been criticized, as common drawbacks for data- 
driven models, for the lack of accountability and generalizability. Data- 
driven models can be classified as white-box (WB) and black-box (BB) 

models where the classification of the two types of models is a contin-
uum depending on their computational complexity and accountability 
(Zaidan et al., 2022). Generally speaking, WB models are transparent ML 
processes and often exist as a set of mathematical equations where the 
contribution of each input variable to the output is known (Rudin, 
2019). One example is multiple linear regression (MLR, e.g., Zaidan 
et al., 2019; Liu et al., 2023). BB models, on the other hand, refer to 
systems which are viewed as deep learning processes through their in-
puts and outputs, without any knowledge of its internal workings or 
underlying principles (Rudin, 2019). The higher complexity of the 
model architecture usually results in a higher accuracy in model per-
formance. These include Random Forest (RF, e.g., Qiu et al., 2022; Yu 
et al., 2023), Support Vector Machine (SVM, e.g., May and Li, 2022; 
Rovira et al., 2022), and Neural Networks (NNs, e.g., Bekkar et al., 2021; 
Duan et al., 2023). However, the generalizability of these data-driven 
models is highly subjected to the quality and representativeness of the 
training data. Previous studies (e.g., Ameer et al., 2019; Fung et al., 
2021b) have argued that AQ models by this approach are site specific 
which fail to extend to a wider spatial context. Therefore, we strive to 
seek for transferable and interpretable ML models with high accuracy 
and, ideally consuming few computational resources. This would target 
at the core of the issue for BC models to work as virtual sensors to 
complement reference instruments in practice. 

The aim of this study is to show the transferability and interpret-
ability of selected data-driven models trained with the long-term BC 
measurements collected in an urban site in Barcelona and tested with 
four other external sites. We describe the measurement sites and 
instrumentation in Section 2.1 and 2.2 respectively. We further describe 
three WB and four BB models selected in this study and their corre-
sponding relative importance metrics in Section 2.3, followed by trend 
analysis and evaluation metrics in Section 2.4 and 2.5, respectively. As 
part of the results, we first investigate the general BC seasonal, weekly 
and diurnal characteristics, and identify the key input parameters for the 
derivation of BC proxy in Barcelona in Section 3.1. In Section 3.2, we 
illustrate the performance of the various models in terms of accuracy 
and computational resources in different seasons and optimization 
combinations in Barcelona. The study further demonstrates the trans-
ferability of the models to other sites in Section 3.3. Furthermore, the 
study quantifies the relative importance of input variables using both 
WB and BB models. The effectiveness of the accountable proxies in 
estimating BC concentrations in other urban areas or regions will pro-
vide insights into the transferability and interpretability of the devel-
oped models. 

2. Material and methods 

A simplified workflow for the work is outlined in Fig. 1. This section 
first describes the observations used regarding the measurement sites 
and instrumentation in Section 2.1. The procedures of data pre- 
processing and the description of ML models used are elaborated in 
Section 2.2 and 2.3, respectively. 

2.1. Observations 

2.1.1. Measurement sites 
The study focuses on data collected from five European monitoring 

sites covering different periods between 2009 and 2022, which were 
selected to ensure better spatial coverage and represent different climate 
zones and emission sources (Fig. S1). These sites comprise two urban 
background (UB) and three traffic (TR) sites located in Barcelona (BCN- 
UB), Helsinki (HEL-UB, HEL-TR), and Dresden (DDW-UB, DDN-TR), 
from three European countries (Spain, Finland, and Germany) where 
BCN-UB is the primary focus and serves as training data in ML modeling 
processes due to its longer term and more complete measurements. The 
other four sites are so-called external sites for testing the models. All 
these sites were selected from different geographic regions (South- 
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western, Northern and Central Europe, respectively) and are charac-
terized by aerosols with different physical and chemical properties to 
ensure better spatial coverage. Data collected include BC mass concen-
trations, particle number size distribution, meteorological data, gaseous 
pollutants, and PM concentrations. 

Barcelona urban background site (BCN-UB, 41◦23′24.01′’ N 
02◦06′58.06′’E, 64 m a.s.l.) is located in a coastal city within the 
metropolitan area with maritime Mediterranean climate (Köppen-Gei-
ger classification: Csa). Although being an urban site, this site is located 
200 m from one of the city’s busiest roads with a daily traffic count of 
>60 k vehicles. The measurements are strongly influenced by traffic 
emissions, as indicated by the daily patterns of particle number con-
centrations (PN) and BC (Rivas et al., 2020; Yus-Díez et al., 2022). 

Helsinki, a coastal city in the south of Finland, with humid conti-
nental climate (Köppen-Geiger classification: Dfb), has two measure-
ment sites: the Mäkelänkatu street canyon traffic site (HEL-TR, 60◦11′N, 
24◦57′E, 25 m a.s.l.), located 3 km from the city centre and 0.5 m from 
the nearest street lane edge, characterized by high traffic volumes (~28 
k vehicles per workday) and limited dispersion due to buildings sur-
rounding the street; and the station SMEAR III in Kumpula (HEL-UB, 
60◦12′N, 24◦57′E, 26 m a.s.l.) an urban background site situated in a 
heterogeneous environment with significant anthropogenic impacts 
with forest, buildings, parking lots, and a main road nearby, located 4 
km northeast from the city centre (Järvi et al., 2009; Luoma et al., 
2021a). 

The two sites in Germany are located in the city of Dresden, state of 
Saxony. Dresden-Nord (DDN-TR, 51◦03′54″ N, 13◦44′29″ E, 116 m a.s.l.) 
is a roadside traffic site located at 7 m away from roadways with a daily 
traffic volume of 11 k vehicles in 2022. Another site Dresden- 
Winckelmannstraße (DDW-UB, 51◦02′10″ N, 13◦43′50″ E, 120 m a.s.l.) is 
an urban background site located 1.7 km away from the city centre 
where traffic, wood combustion and long-range transport account for a 

significant portion of atmospheric pollutant sources (Birmili et al., 2016; 
Sun et al., 2019). It has an oceanic climate (Köppen-Geiger classifica-
tion: Cfb). 

2.1.2. Instrumentation 
The instrumentation covers Multi Angle Absorption Photometer 

(MAAP), scanning mobility particle sizer (SMPS), differential mobility 
particle sizer (DMPS), condensation particle counter (CPC), twin dif-
ferential mobility particle sizer (TDMPS), optical particle counters, 
tapered element oscillating microbalance (TEOM), and other conven-
tional instruments of gaseous pollutants in the urban environments. 

BC mass concentrations (in µg m− 3) were measured by a Multi-Angle 
Absorption Photometer (MAAP, Thermo Scientific model 5012) at all 
the five sites. The determination of the particle light absorption coeffi-
cient was performed using an operating wavelength of 670 nm, as 
indicated by the manufacturer. However, it should be noted that the 
actual wavelength employed by the instrument is 637 nm (Müller et al., 
2011). The optically measured absorption data was then converted to 
equivalent black carbon (eBC) mass concentrations employing the 
default mass absorption cross-section (MAC) setting of 6.6 m2/g at 
nominal wavelength of 670 nm. Furthermore, the instrument considers 
filter-loading-related artifacts that may impact the calculation of the 
absorption coefficient (Petzold and Schönlinner, 2004). The BC con-
centration measured with this technique is generally accepted to be 
named eBC; however, we unify the term to be BC in the rest of the paper 
for simplicity. 

Particle number size distribution containing various size bins was 
measured with different established instruments. At BCN-UB, they were 
measured by using a Scanning Mobility Particle Spectrometer (SMPS) 
TSI3080 with a CPC TSI3772. At HEL-UB, a TDMPS Hauke-type DMA 
10.9 cm and a CPC TSI 3025 were used. At HEL-TR, the measurements 
were conducted by a DMPS Vienna-type DMA and a CPC Airmodus A20. 

Fig. 1. Flow chart of the study.  
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At DDW-UB, a TROPOS-MPSS with Vienna-type DMA 28 cm coupled 
with a CPC TSI3772, and at DDN-TR, a TROPOS-TSMPS, Vienna DMAs 
11 and 28 cm + CPC TSI model 3025 and 3010 were used. In order to 
make the data comparable, particle number concentration (in cm− 3) is 
aggregated by their size bins: nucleation mode (PNnuc, for particle 
diameter 10 < Dp < 25 nm), Aitken mode (PNAit, 25 < Dp < 100 nm), 
accumulation mode (PNacc, Dp > 100 nm) and summation of all sizes 
(PN). As very small sized particles (e.g. Dp ~ 5–15 nm) have a significant 
impact on PN, and in particular PNnuc, a lower cut-off size of 10 nm is 
chosen for better comparison. 

Mass concentrations of PMX (PM1, PM2.5, PM10, in µg m− 3) were 
measured using Optical particle counters at BCN-UB using a GRIMM 180 
monitor. At HEL-TR and HEL-UB, concentrations of PM10 and PM2.5 
were measured by using a Tapered Element Oscillating Microbalance 
(TEOM 1405, Thermo Scientific TM). At DDN-UB and DDN-TR, PM10 
concentrations were measured by using a TEOM 1405. 

Gaseous pollutant concentrations (in µg m− 3) were measured by 
conventional instrumentation: nitrogen dioxide (NO2) was determined 
by the chemiluminescence and O3 by UV absorption (and/or IR- 
absorption) photometers. Meteorological parameters of temperature 
(T), relative humidity (RH), wind speed (WS) and pressure (P) were 
recorded with standard weather instruments. 

2.2. Data pre-processing 

The raw data stored in our database first went through pre- 
processing procedures. These include outlier removal and gap filling 
for values below detection limits. The dataset at this stage was examined 
and investigated for site characterization as described in Section 3.1. 
Data gaps of short missing period less than three hours were filled by 
simple linear interpolation. The data were then normalized and stan-
dardized such that each variable would follow a normal distribution 
with mean of 0 and standard deviation of 1 as a setup for ML process. We 
pre-selected the input variables by two steps: (1) we considered only 
parameters available at all the studied sites and (2) we removed the 
parameter with worse correlation with BC in case of collinearity. We 
finally used PM10, PN, PNnuc, PNAit, PNacc, O3, NO2, T, RH, WS and P as 
input variables. PM2.5 and NOx were once included, but the former was 
not measured at all sites and the latter had a strong collinearity with 
NO2. To increase the reliability of our comparison, we partitioned the 
first 70 % of the time series as training set and the last 30 % as testing set. 
A few combinations of training and testing proportion (1: 70 to 30, 2: 75 
to 25, 3: 80 to 20, 4: 85 to 25 and 5: 90 to 10) were applied as a 
sensitivity analysis. As precipitation is known to intensify the wet 

deposition of air pollutants in the atmosphere, we tested the model by 
filtering the data with non-negligible precipitation (Blanco-Alegre et al., 
2019). Similarly, we also tested by limiting downwind and upwind sit-
uation for traffic sites in this study (Hilker et al., 2019). Flag vectors 
were created for workdays and weekends (also includes holidays) for 
comparison. Seasons were also classified into winter (December, 
January, and February), spring (March, April, and May), summer (June, 
July, and August) and autumn (September, October, and November). 
Data analysis was conducted using MATLAB R2021a. 

2.3. Machine learning methods 

We selected seven methods (three for WB and four for BB) in this 
study due to their proven performance addressed by several researchers 
(e.g., Cabaneros et al., 2019; Fung et al., 2021b; Yu et al., 2023). The 
brief description of model architecture and their optimization criteria 
are outlined for WB and BB models in Section 2.3.1 and 2.3.2, respec-
tively. The methods to quantify the relative importance of each feature 
for individual model are elaborated in Section 2.3.3 (summarized in 
Table 1). 

2.3.1. White-box (WB) models 

2.3.1.1. Input-adaptive proxy (IAP). IAP was initially introduced by 
Fung et al. (2020), and subsequently applied for the estimation of 
various air pollutant parameters (e.g., Fung et al., 2022b). This tech-
nique effectively estimated continuous BC concentration, achieving a 
coefficient of determination (R2) exceeding 0.8. The approach involves 
selecting highly correlated input features beforehand, generating sub- 
models with a maximum of three input features each, using ordinary 
least-squares (OLS) linear regression. The method incorporates addi-
tional regularization through a ‘bisquare’ weight function, which relies 
on residuals, leverages from OLS fittings, and incorporates estimates of 
error term standard deviations, with a tuning factor of 4.685 as a robust 
alternative for datasets with numerous outliers as commonly encoun-
tered in field measurements. The regression is executed, and each sub- 
model’s performance is assessed. Sub-models are ranked based on their 
performance using the employed evaluation metrics, prioritizing higher 
performance. The model looks for the best available input features to 
impute missing data based on the ranks of the sub-models. It is impor-
tant to note that IAP is designed to handle missing data within its 
modeling process, differing from other models where missing data 
imputation is typically done prior to modeling. 

Table 1 
Summary of the machine learning methods and the corresponding relative importance approaches.  

Model 
type 

Model 
name 

Principles Missing 
data filling 

Auto- 
regressive 

Relative importance method Static Dynamic 

WB IAP Ordinary least squares (OLS) based with sub-model 
ranking and automatic input selection 

x  Pearson (r) and Spearman’s rank correlation 
coefficient (pho) 

x  

LASSO OLS with L1-norm penalty using λ as a hyperparameter   Beta-coefficients of the corresponding input 
variables 

x  
LASSO- 
ARIMA 

LASSO, with residuals modeled by autoregressive 
integrated and moving average parts  

x 

BB RF Aggregated decision trees using tree bagging 
techniques   

Out-of-bag variable importance x  

SVM Radial basis kernel with a box constraint to panelize 
observations diverging from predefined criterion using 
Lagrange multiplier   

SHapley Additive exPlanations (SHAP), 
naturally dynamic showing local 
contribution, behaving as static relative 
importance after aggregation 

(x) x 

CNN A single convolutional layer of [1,24] with kernel size 
of 3, followed by a max pooling layer of [1,2], 
optimized by five training cycles using Bayesian 
regularization as training loss minimization   

(x) x 

LSTM Neural networks of 60 hidden layers with input, output 
and forget gates to take into account of short memory 
using logistic sigmoid activation function, optimized 
by adaptive momentum with an initial learning rate of 
0.005  

x     
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2.3.1.2. Least absolute shrinkage and selection operator (LASSO). 
Initially introduced by Tibshirani (1996), LASSO gained widespread 
adoption within the realm of air pollutant prediction (e.g., Van Roode 
et al., 2019; Sethi and Mittal, 2021; Fung et al., 2023), in particular for 
BC estimation (e.g., Järvi et al., 2023). It constitutes a multiple linear 
regression technique that incorporates regularization to prevent over-
fitting. The regularization mechanism enforces penalties on different 
model parameters to curtail model flexibility and eliminate unnecessary 
predictor variables, which could be particularly beneficial when dealing 
with a large number of potential predictors. LASSO employs an L1-norm 
penalty by employing a geometric sequence of λ, where λ functions as a 
hyperparameter regulating the penalty strength. Employing a five-fold 
cross-validation, the optimal λ value is determined by identifying the 
minimum mean squared error. The selection of an appropriate λ holds 
utmost significance for LASSO’s performance, as it governs the extent of 
shrinkage and variable selection. When properly balanced, it can 
enhance both prediction accuracy and interpretability. Nonetheless, an 
excessive regularization could omit crucial variables from the model and 
excessively shrink coefficients. 

2.3.1.3. AutoRegressive integrated moving average (ARIMA). To account 
for the autoregressive characteristics of time series data, the residuals 
from the LASSO model are further addressed through an ARIMA model. 
The choice of ARIMA aims to incorporate temporal dependencies, in 
particular trends and seasonality. Researchers have utilized ARIMA to 
model and forecast temporal variations in BC concentrations, influenced 
by factors such as emission sources, meteorological conditions, and 
anthropogenic activities (e.g., Patil et al., 2022; Duan et al., 2023; Kaur 
et al., 2023; Makkhan et al., 2023). The autogressive (AR), integrated (I) 
and moving average (MA) parts have been optimized with the number of 
time lags, degree of differencing and the order of the moving average 
model, respectively. Specifically, an ARIMA(0,0,0) model seasonally 
integrated with seasonal AR(12) and MA(12), exhibited the smallest 
absolute errors in predicting residuals compared to the baseline LASSO 
model. This ARIMA-based approach serves as a comparison alongside 
one of the BB models, which similarly considers autoregressive 
properties. 

2.3.2. Black-box (BB) models 

2.3.2.1. Random forest (RF) – Bagging ensemble method. RF model is 
formulated by amalgamating outcomes from individual decision trees 
across various subsets (e.g., Yu et al., 2023). It shows good prediction 
performances with high-dimensional data inputs that has been used for 
evaluating trends in air quality under changing meteorological condi-
tions (Qiu et al., 2022). The aggregation of multiple trees reduces 
overfitting and improves the model’s generalization ability, making it 
robust for handling complex and noisy data, understanding of the rela-
tionship between BC levels and different variables. Employing a bagging 
technique, distinct random subsets are drawn with replacement from the 
original dataset. Each of these samples is subjected to the same learning 
method, culminating in the weighted combination of the resultant 
models. This ensemble method, rooted in bootstrap aggregation, serves 
to alleviate bias, reduce error variance, and enhance generalization, a 
principle outlined by Van Roode et al. (2019). The determination of split 
decisions relies on the same curvature test across the subsets. Addi-
tionally, Breiman’s random forest algorithm is implemented to ascertain 
the number of variables to be selected randomly for each decision split, 
following the principles delineated in Breiman (1996). 

2.3.2.2. Support vector machine (SVM). SVM constitutes a statistical 
learning framework formulated by Vapnik (1997), widely harnessed 
within the domain of air quality prediction (e.g., Fung et al., 2021b; May 
and Li, 2022; Rovira et al., 2022). By training the SVM on historical data 
of BC concentrations and relevant predictors, it can be used to forecast 

future BC levels. SVM can also be utilized for classification tasks to 
categorize AQ conditions based on BC concentrations and their 
threshold values. Operating on the principle of regression, SVM seeks a 
kernel function that optimizes the margin of tolerance for the regression 
fit. These pivotal vectors that define the kernel are termed support 
vectors. The underlying objectives of the SVM model are twofold: firstly, 
to identify a function that deviates from the training data’s output 
variables by no more than a specified value for each training point; and 
secondly, to minimize flatness determined by a box constraint, a positive 
numerical parameter governing the penalty applied to observations 
diverging from the predefined criterion. This is achieved through the 
utilization of two Lagrange multipliers associated with support vectors 
and a radial basis kernel function, mirroring the approach adopted in 
Fung et al., (2021b). Recent research on predicting AQ index has iden-
tified that the performance of the SVM model is significantly influenced 
by three main factors: the penalty factor, the regularization parameter, 
and the choice of kernel function (Leong et al., 2019). 

2.3.2.3. Convolutional neural network (CNN). Neural network models 
have been applied in the prediction of AQ (e.g., Cabaneros et al., 2019; 
Van Roode et al., 2019; Zaidan et al., 2019; Bekkar et al., 2021; Fung 
et al., 2021a; Duan et al., 2023). Among them, one dimensional con-
volutional neural network (1D-CNN) has been effectively applied on 
time series data mining (e.g. Zhu and Xie, 2023). A typical CNN as a 
regularized type of feed-forward neural network has three layers: con-
volutional layer, activation layer, and pooling layer. According to the 
insights shared in the review paper by Cabaneros et al. (2019), a shallow 
neural network with a solitary hidden layer containing an ample number 
of neurons can effectively model any finite input–output mapping issue 
involving non-linear relationships. To maintain simplicity, a single 
convolutional layer of [1,24] with kernel size of three was implemented. 
Maximum pooling with a sliding window of [1,2] was used as suggested 
by Mao and Lee (2019). Finally, the output was sent to a fully connected 
layer before prediction. We used ReLU as the activation function, which 
dictates the output value for each neuron, which subsequently becomes 
the input for neurons in the succeeding connected hidden layer. The 
weights were initialized randomly, and these weights were updated via 
gradient descent optimization, which might potentially lead to the 
vanishing gradient problem. To mitigate this issue, five training cycles 
were conducted, each comprising multiple iterations. The objective is to 
minimize the training loss using mean squared error function while 
incorporating Bayesian regularization with a default prior setting using 
a normal-inverse-gamma conjugate distribution within the Levenberg- 
Marquardt algorithm. 

2.3.2.4. Long short-term memory (LSTM). LSTM was initially introduced 
by Hochreiter and Schmidhuber (1997), marking the start of its exten-
sive exploration in AQ estimation (e.g., Cabaneros et al., 2019; Bekkar 
et al., 2021). On top of the architecture of neural networks, LSTM units 
effectively address the challenges of vanishing gradients and long-term 
dependencies by enabling the unhindered flow of gradients. This makes 
it potentially applicable to time series data with autoregressive prop-
erties like BC concentrations, which may exhibit complex temporal 
patterns and trends (Duan et al., 2023). A common architecture in-
corporates a cell (responsible for memory) and three regulators that 
govern information flow within the LSTM unit: an input gate, an output 
gate, and a forget gate. The cell maintains dependency relationships 
among input sequence elements. The input gate modulates the influx of 
new values into the cell, while the forget gate determines information to 
discard from the cell state. The output gate controls the cell value’s 
contribution to computing the output activation of the LSTM unit block 
at a given timestamp. In this study, we used a sequence layer with length 
of 11 (same size as the number of input parameters) and LSTM layers of 
60 hidden layers. We also used logistic sigmoid function as the activa-
tion function for the three LSTM gates. Several connections, including 

P.L. Fung et al.                                                                                                                                                                                                                                  



Environment International 184 (2024) 108449

6

recurrent ones, link into and out of the LSTM gates. The weights of these 
connections, learned during training, governed the gate behaviour. The 
output of the final step within the current LSTM block wass passed 
through two additional layers: a fully connected layer and a regression 
layer, culminating in the predicted output of the current block. For 
optimization, adaptive momentum (‘adam’, Freeman et al., 2018) with 
initial learning rate of 0.005 and gradient threshold of 1 was employed 
in this paper. Mean squared error was used as a loss function. No 
additional regularization was used. 

2.3.3. Determination of relative importance of different ML models 
To demonstrate the interpretability of the different WB and BB 

models, we introduced a set of methods to determine the relative 
importance of input variables depending on their different model 
structures. Whenever possible, static relative importance approach that 
only depends on training data should be used as this is most straight- 
forward way to explain the overall contribution of a feature to the 
output. For the OLS-based IAP, we simply used Pearson correlation co-
efficient (r) as an indicator of the importance of the input variables as 
the selection basis for the input adaptive function is determined by the 
value of r (Fung et al., 2021b). Spearman’s rank correlation coefficient 
(rs), which is less sensitive to non-linear datasets, is additionally 
included as a baseline value. For LASSO(-ARIMA), since the datasets 
were normalized and standardized, the individual coefficient of vari-
ables could reflect their relative importance in the LASSO models. 
Similar method has been applied in explaining BC (e.g. Järvi et al., 
2023). Furthermore, since RF model that used a bagging technique, an 
out-of-bag variable importance value that estimates by permutation 
measure how influential the predictor variables in the model are at 
predicting the response was used. The influence of a predictor increases 
with the value of this measure. If a predictor is influential in prediction, 
then permuting its values should affect the model error. If a predictor is 
not influential, then permuting its values should have little to no effect 
on the model error (Loh, 2002). For easier comparison, the relative 
importance of input variables calculated by individual methods were 
normalized to a range of 0 and 1 where input variable having 1 has a 
strongest contribution and vice versa. 

There are no similar simple ways to quantify the relative importance 
of parameters of BB models like SVM and CNN. In this case, we calcu-
lated SHapley Additive exPlanations (SHAP), a Shapley-value-based 
explanation method based on the coalitional game theory introduced 
by Lundberg and Lee (2017), as a unifying framework to interpret and 
compare different types of data-driven BB models. The key idea of using 
SHAP in AQ models is to calculate the Shapley values for each feature of 
the sample to be interpreted, where each SHAP value represents the 
impact that the feature to which it is associated, generates in the pre-
diction (e.g., Wang et al., 2020; Gu et al., 2021). SHAP values which 
illustrate the predictor variable’s contribution to each data point. The 
dynamic contribution to each point is dependent on each training and 
testing combination sets. 

2.4. Trend analysis 

To explore the long-term trends within air monitoring data and 
assess their significance, we employed the Mann-Kendall test and Sen’s 
slope estimator, both of which are nonparametric statistical methods 
capable of handling missing data points. These methods find widespread 
application in the analysis of environmental data (e.g., Collaud Coen 
et al., 2020; Savadkoohi et al., 2023). The Mann-Kendall test evaluates 
whether a consistent long-term trend in a given variable holds statistical 
significance and whether it demonstrates a monotonic increase or 
decrease for p < 0.05. Meanwhile, Sen’s slope estimator gauges the 
magnitude of the trend. 

To account for the challenges stemming from cyclic data patterns, 
like seasonal variations, weekend effects, and diurnal cycles linked to 
factors such as boundary layer dynamics or traffic rates, we employed a 

seasonal version of the Mann-Kendall test and Sen’s slope estimator. 
This adaptation overcomes autocorrelation concerns inherent to cyclic 
data. Our analysis focused on monthly median values. To be included in 
the trend analysis, valid data spanning a minimum of 14 days within 
each month were required; otherwise, the month was excluded. The 
trend analysis was specifically conducted for Barcelona’s measured BC 
values and their relative importance. 

2.5. Evaluation attributes 

In order to evaluate and compare the accuracy of the models, coef-
ficient of determination (R2), together with mean absolute percentage 
error (MAE) and root mean square percentage error (RMSE), are used as 
diagnostic evaluation attributes. R2 (ranged from 0 to 1) is a measure of 
how close the data lie to the fitted regression line. It, however, does not 
consider the biases in the estimation. Therefore, we further validate the 
models with MAE and RMSE. With both metrics expressed in percentage 
(ranged from 0 to 100 %), they easily show how much errors the models 
generate in comparison with the original data. The difference of them is 
that MAE measures the arithmetic mean of the absolute differences 
between the members of each pair while RMSE calculates the square 
root of the average squared difference between the estimate and the 
observation pairs. RMSE is more sensitive to larger errors than MAE. In 
addition to accuracy, the performance of a model could be described in 
respect of its simplicity/complexity as measured by the computational 
time of training the model. 

3. Results and discussion 

3.1. Site characterization at the urban site in Barcelona and other testing 
sites 

Fig. 2 presents the time series of various pollutants, including BC, 
NO2, PM10 and PN at the BCN-UB site. These data are visualized with 
daily mean, monthly mean, and yearly mean variations in pollutant 
concentrations over the period from 2013 to 2022. The figure also in-
corporates trend lines of Sen’s slope estimator, which show the overall 
magnitude of changes in pollutant levels during this timeframe, tested 
with Mann-Kendall test for their statistical significance. Notably, the BC 
concentration at the BCN-UB site exhibits a statistically significant trend 
of –0.09 µg m− 3 per year over the 2013–2022 interval. These findings 
are consistent with recent research on BC trends, which disclosed a 
decrease of approximately 4.7 % per year in BC concentrations from 
2010 to 2020 at this site (Savadkoohi et al., 2023). This trend also aligns 
with earlier reports of a substantial BC reduction of around 18 % from 
2014 to 2018 (Via et al., 2021). These observations underscore the role 
of traffic emission mitigation policies in driving the observed decrease in 
BC mass concentrations. 

Additionally, PN and NO2 concentrations display statistically sig-
nificant annual decrease of 598.63 cm− 3 and 1.52 µg m− 3, respectively. 
The latter trend agreeing with previous research over the period 
2003–2014 reported significant declining trends in Barcelona of up to 
30 % of NO2 (Casquero-Vera et al., 2019). While O3 and PM10 concen-
trations also showed decreasing trends, these trends are not statistically 
significant (h = 0). Regarding O3, previous studies have revealed an 
increase of urban O3 concentrations within the Barcelona metropolitan 
area ranging from 0.4 % per year to 3.2 % per year. The spatio-temporal 
distribution of O3 hotspots in Spain has not been exhibited clear trends 
in previous studies, emphasizing the need for targeted local and regional 
mitigation measures to address chronic and episodic O3 exposure 
(Massagué et al., 2023). 

In order to compare the training site BCN-UB with other external 
sites, we illustrated the distribution of data points for BC (Fig. S2). They 
all appear to follow a log-normal distribution. The highest average of 
hourly BC concentrations over the whole period was detected in BCN-UB 
(1.31 µg m− 3), followed by the two traffic sites HEL-TR (1.04 µg m− 3) 
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and DDN-TR (0.97 µg m− 3). DDW-UB comes fourth (0.74 µg m− 3) and 
HEL-UB appears to record the lowest average BC (0.48 µg m− 3). Besides, 
time series plots (daily mean and monthly mean) of air pollutants BC, 
NO2, O3, PM10 and PN in these testing sites site are presented in Fig. S3 
in the year between 2017 and 2019. It is worth noting that these datasets 
lasted for less than three years; therefore, it is not statistically significant 
to make direct comparison with the dataset retrieved in BCN-UB. The 
potential for analysing long-term trends in pollutant concentrations at 
these sites is also hindered for the same reason. 

Fig. 3 represents the diurnal cycles of BC concentrations across the 
five urban traffic sites in Europe in different seasons during both 

workdays and weekends. Notably, BC exhibits diurnal cycles charac-
terized by peak concentrations during traffic rush hours on workdays, 
particularly evident at the BCN-UB site. This site, located along one of 
the city’s busiest roads, is marked by the direct emission of particles 
from vehicle exhausts (Rivas et al., 2020). These diurnal cycles are most 
pronounced in the autumn and winter seasons. Similar but less 
distinctive diurnal patterns were also observed at the Northern and 
Central European TR sites with slightly lower BC concentrations 
(Savadkoohi et al., 2023). Conversely, at HEL-UB and DDW-UB, varia-
tions in the BC diurnal cycles are less pronounced on weekdays. How-
ever, evening peaks appear to be more distinctive, primarily attributed 

Fig. 2. Timeseries (daily mean, monthly mean, yearly mean and trend) of air pollutants BC, NO2, O3, PM10 and PN in BCN-UB. Similar timeseries plots for testing 
sites could be found in supplementary materials. 

Fig. 3. Diurnal cycles of BC concentrations at five locations (columns) and in four seasons (rows) during workdays (shaded in blue) and weekends (shaded in red). 
Similar graphs for NO2, O3, PM10 and PN could be found in supplementary materials. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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to the elevated residential burning (Fung et al., 2020). Similar diurnal 
cycles of NO2, O3, PM10 and PN are also, respectively, presented in 
Fig. S4–S7. 

Despite the difference in geographical locations and measurement 
sites, the BC concentrations measured at the individual site show high 
correlation with other aerosol and gaseous compounds measured at the 
same site (Fig. 4). The strongest correlation on average is, in descending 
order, PNacc (r = 0.73–0.85) and NO2 (r = 0.68–0.85), followed by PM10 
(r = 0.54–0.76) and PN (r = 0.48–0.72), with the weakest correlation 
being O3 (|r| = 0.36–0.58), PNAit (r = 0.39–0.66) and PNnuc (r =
0.11–0.61). Among them, the correlations with PNnuc have a strongest 
variability within the five sites, scattering from HEL-TR with r of 0.61 to 
DDW-UB of r being 0.11. PM10 in the two sites in Dresden also have a 
considerably stronger correlation with BC compared to the sites in other 
location. While in Helsinki the road dust induced PM10 is very high in 
the springtime (Fig. S6) due to studded winter tyres and winter sanding 
of the streets, the PM10 concentrations in Barcelona could be attributed 
to Saharan dust and re-suspension of urban dust. Dresden, on the other 
hand, is less impacted by dust but more by emission from traffic and 
wood combustion, as indicated by the stronger correlation with BC. 
These show that the particle size distribution constituting the BC con-
centrations is different to a certain extent depending on their geographic 
locations and types of sites. Furthermore, weather conditions correlate 
less well with BC. While wind speeds demonstrate a substantial negative 
correlation of r between –0.52 and –0.29, temperature, RH and P 
correlate much less with BC either positively or negatively (|r| =
0.04–0.27). That being said, the overall strong correlation of BC with 
other parameters suggests the potentiality for the estimation proxies 
using ML methods. 

3.2. Comparison of different ML methods to derive the BC concentration 

Table S1 presents the best combination of proportion of training and 
testing set in different measurement sites and different seasons using 
different ML methods. None of the selected combinations dominates in 
all groups. Combination 4 appears to outperform in CNN while combi-
nation 1 and 5 are often found to generate results of higher accuracy in 
some specific measurement sites. Overall, the mode of the best combi-
nation is 2 across all measurement sites, seasons and ML methods. 
Therefore, for easier comparison, combination 2 of training and testing 
proportion will be adopted in the rest of the paper. Furthermore, based 
on our prior knowledge that BC concentrations would be strongly 
influenced under certain weather conditions, such as precipitation 
which enhances the deposition and scavenging process of BC (Blanco- 
Alegre et al., 2019) and downwind situation for street canyon type of TR 
sites which restricts the dispersion of air pollutants (Hilker et al., 2019), 
we tried to optimize the estimation by excluding data with precipitation 
for all measurement sites and including data only with downwind con-
ditions for TR sites. However, these procedures did not show distinct 
improvement to the models; therefore, we only show the results without 
these considerations. 

Graphically, the BC concentrations by all the models tested in Bar-
celona mostly follow the 1:1 line as shown with a dark red color indi-
cating the highest density of data points (Fig. 5). In the meantime, scarce 
amounts of points scatter from the central line as outliers. All the seven 
models illustrate similar patterns. Statistically, Tables 2, S2 and S3 show 
that the four BB models perform better on average (R2 = 0.78–0.83, 
MAE = 4.23–4.61 %, RMSE = 5.00–5.75 %) compared to the three WB 
models (R2 = 0.75–0.76, MAE = 4.93–5.01 %, RMSE = 6.02–6.15 %). 
Among them, LSTM outperforms the rest in all the four seasons plausibly 
because this model considers the time-dependency properties of the 
dataset. In general, estimations in winter and summer (R2 > 0.8) surpass 
those in autumn and the worst is in spring (R2 = 0.67–0.70). 

Fig. 6 compares and evaluates the seven ML methods in terms of their 
accuracy indicated by R2 (x-axis) and complexity indicated by compu-
tation time (y-axis). Each dot with solid color representing the overall 
performance of individual machine learning method is the average of 
the dots with the corresponding oblique color that represent individual 
runs for each season of that method. The figure demonstrates that the 
more complex the model is, the better the estimates the model calcu-
lates. The cluster of the simpler models (average computation time < 50 
s), IAP, LASSO and CNN, shows a lower accuracy (R2 < 0.775) compared 
to the other cluster of more complex models (average computation time 
> 50 s), RF, SVM and LSTM. Among all the models used, LASSO-ARIMA 
behaves as an outlier such that it has a relatively long computation time, 
yet the accuracy performance is not as good as some of the less complex 
models. This is because, on top of LASSO, ARIMA was built based on the 
model residuals and its optimization of the three components of ARIMA 
consumed an extensive period of computing time. In addition, all except 
LSTM have a consistent performance within all the individual runs. 
Although all runs for LSTM have similar computation time, their accu-
racy in terms of R2 range from 0.76 to 0.81 which are more scattered 
compared to the other methods. 

3.3. Upscaling the BC proxies to different environments 

It is obvious that the models trained with BCN-UB data work well for 
the BCN-UB testing data as these models have learnt the site-specific 
data. The transferability to the other sites has been demonstrated to 
be relatively uncertain with different site classification and geographical 
locations (e.g., Ameer et al., 2019; Fung et al., 2021b). Surprisingly, the 
models in our study work well also in other testing sites. In particular 
locations, the performance is even better than the one at BCN-UB (HEL- 
TR: R2 = 0.80–0.86; MAE = 3.90–4.73 %; RMSE = 4.92–5.89 % and 
DDW-UB: R2 = 0.79–0.84; MAE = 4.23–4.82 %; RMSE = 5.26–5.92 %). 
Fig. 7 show the scatter plots of calculated BC trained with BCN-UB data 
against measured BC at the two respective testing sites. The former 
shows the models work typically well at the testing site HEL-TR where 
most data points lie along the 1:1 line. The other one representing DDW- 
UB show a cut-off of measured BC concentration at the detection limit of 
the instrument 0.1 µg m− 3, which is coarser than the one used at BCN- 
UB. However, this did not hinder the model performance in terms of 

Fig. 4. Pearson correlation (r) of BC with other pollutant and meteorological parameters measured at the same site.  
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accuracy. The models manage to catch the BC diurnal patterns both 
during workdays and weekends at the two locations. Results by LASSO 
and LSTM representing WB and BB models can be seen in Fig. 8. The 
other two testing sites with less prominent results are HEL-UB (R2 =

0.61–0.68; MAE = 7.06–7.99 %; RMSE = 8.74–9.77 %) and DDN-TR (R2 

= 0.59–0.67; MAE = 4.59–5.13 %; RMSE = 5.63–6.30 %) where the 
models trained in BCN-UB could still explain more than 60 % of the data 

at these two sites. This very good transferability across space and time 
could be attributed to the similar strong correlation of BC with other 
pollutant parameters measured at the same site. This similarity in cor-
relation behaviour provides a strong basis for the machine learning 
models to work as they learn the hidden trends and patterns from the 
training dataset. This strong yet hidden patterns of BC in turn trivialize 
the external factors such site location and measurement time. In respect 

Fig. 5. Scatter plots of the testing data at BCN-UB calculated BC against measured BC for different methods used colored by the point density. R2, MAE and RMSE are 
presented on the subplot titles. Similar scatter plots of the training data at BCN-UB can be found in Fig. S8. 

Table 2 
R2 of models trained in BCN-UB and tested in various sites in different seasons using different ML models.    

IAP LASSO LASSO-ARIMA RF SVM CNN LSTM 

BCN-UB Winter  0.83  0.85  0.85  0.87  0.88  0.87  0.88 
Spring  0.67  0.68  0.68  0.69  0.67  0.67  0.70 
Summer  0.80  0.82  0.82  0.84  0.85  0.84  0.87 
Autumn  0.75  0.77  0.77  0.80  0.79  0.80  0.82 
All  0.75  0.76  0.76  0.79  0.80  0.78  0.83  

HEL-TR Winter  0.91  0.90  0.90  0.89  0.88  0.86  0.88 
Spring  0.88  0.88  0.88  0.86  0.85  0.83  0.85 
Summer  0.82  0.83  0.83  0.84  0.83  0.78  0.83 
Autumn  0.82  0.83  0.83  0.83  0.81  0.76  0.82 
All  0.86  0.85  0.85  0.85  0.83  0.80  0.84  

HEL-UB Winter  0.77  0.77  0.77  0.74  0.74  0.76  0.72 
Spring  0.86  0.87  0.87  0.84  0.82  0.86  0.81 
Summer  0.58  0.63  0.63  0.62  0.59  0.61  0.56 
Autumn  0.60  0.62  0.62  0.6  0.57  0.57  0.57 
All  0.66  0.68  0.68  0.66  0.65  0.65  0.61  

DDN-TR Winter  0.64  0.67  0.67  0.69  0.70  0.70  0.67 
Spring  0.71  0.73  0.72  0.74  0.73  0.75  0.72 
Summer  0.60  0.62  0.61  0.66  0.68  0.66  0.63 
Autumn  0.25  0.30  0.30  0.36  0.39  0.35  0.35 
All  0.59  0.62  0.62  0.65  0.67  0.66  0.63  

DDW-UB Winter  0.85  0.85  0.85  0.84  0.84  0.82  0.85 
Spring  0.85  0.86  0.85  0.84  0.83  0.81  0.86 
Summer  0.79  0.80  0.79  0.79  0.77  0.74  0.78 
Autumn  0.67  0.69  0.68  0.73  0.72  0.71  0.76 
All  0.82  0.82  0.82  0.82  0.81  0.79  0.84  

P.L. Fung et al.                                                                                                                                                                                                                                  



Environment International 184 (2024) 108449

10

with which individual model work best for these external testing sites, 
the results show inconsistency. The two WB models IAP and LASSO 
works best at HEL-TR and HEL-UB, respectively, while the two BB 
models SVM and LSTM has the highest R2 at DDN-TR and DDW-UB, 
respectively. Unlike testing at BCN-UB described in Section 3.2, esti-
mations in spring show the highest R2 when upscaling to the other 
testing sites while the trained models explain only 25–39 % of the testing 
data at DDN-TR in the autumn. 

3.4. Relative importance of input data to ML derived BC 

In addition to the model transferability, we improved the interpret-
ability of models, both WB and BB models, by calculating the relative 
importance of the input variable using various methods for individual 
model. Fig. 9 illustrates the normalized static relative importance of 
each input variables calculated for individual model based on the 
training data. They are presented in descending order where PNacc is the 
most important input variable in all models used evaluated by their 
respective metrics. This parameter was also found to have played a 
consistently major role in estimating BC for the past decade, as 
demonstrated in the trend analysis of its yearly relative importance. 
Although vehicular emission reduction technologies have been 
advancing in recent years (e.g. Brewer, 2019; Xu et al., 2021), no sta-
tistically significant trends of relative importance were found. NO2 ranks 
the second on average (~0.6) where LASSO, SVM and IAP consider NO2 
as the second important variable. Although the correlation is high be-
tween BC and NO2, CNN does not consider NO2 to explain the variability 
of BC at all. This is due to the high collinearity of PNacc and NO2, both of 
which come from similar anthropogenic source that constitutes a 
considerate proportion of BC. By first examining these two input vari-
ables, the variability of BC is already well explained by PNacc in CNN, 
and NO2 fails to supply new information to contribute to the estimation. 
The other ML models, on the other hand, might have taken the approach 
to retrieve the patterns partially from both input variables; therefore, 
both normalized relative importance values are high. Moreover, the 
other aerosol variables PM10 and PN, although having a relative strong 
correlation with BC, contribute very little to the estimation, as the in-
formation they could provide overlap with PNacc and NO2. Another 
interesting point from Fig. 9 is that O3 has similar relative contribution 
(~0.2) in all the models. This indicates that O3 is able to supplement 
moderately to the BC variability. Although the contribution being 
moderately low, it provides unique piece of information to the estima-
tion regardless of model architecture. Ground-level O3 is a secondary 
pollutant formed through chemical reactions (Massagué et al., 2023), 

which is different from the emission source of other aerosol and gaseous 
compounds used in the study. However, similar to BC measurements, 
particle size distribution is not always included as part of the regulated 
pollutants within cities’ air monitoring network. The construction of the 
BC estimation models could be more useful yet less accurate in practice 
if only regulated pollutants, such as O3, NO2 and PM2.5. 

As expected, meteorological parameters contribute a relatively 
trivial part of the estimation for most of the models. Although WS cor-
relates negatively at a moderate degree, the relative importance analysis 
indicates its negligible contribution, let alone the other meteorological 
parameters of even lower correlation. However, unlike the other models, 
RF acknowledges meteorological conditions as important parameters 
(>0.6). This is plausibly due to its unique model architecture that RF 
consists of many decisions trees that use bagging and feature random-
ness when building each individual tree to try to create an uncorrelated 
forest of trees whose prediction by committee is more accurate than that 
of any individual tree (Yu et al., 2023). 

As for dynamic relative importance, which indicates the local 
contribution of each input variable to each data point, Fig. 10 presents 
the average of SHAP values of two BB models, SVM and CNN, with error 
bars for all testing sets. Although LSTM has an overall higher accuracy 
(see Fig. 6), the performance over different cross validation runs is 
inconsistent. This inconsistency might impose significant uncertainties 
on the SHAP analysis. Therefore, we chose to present the SHAP values of 
SVM and CNN over LSTM. The results of static relative importance are 
comparable with the dynamic relative importance at BCN-UB with 
aerosol parameters like PNacc the strongest and meteorological param-
eters like P the lowest. However, when it comes to other external testing 
sites, contrasting results are found at individual sites. For example, the 
best predictor deduced from the static relative importance, PNacc, 
demonstrates to have a highly positive SHAP values at the two TR sites 
using both SVM and CNN while it has an overall negative SHAP value at 
the two UB sites. These values represent the local contribution of a 
feature to the output of a model. This serves as one of the limitations of 
SHAP values, which is the fact that factor contributions could not be 
represented as a single digit, meaning that the outcome of factors in a 
model is usually impacted by the other factors so that all the factors in a 
model will not have a constant impact on the output of a model 
(Lundberg and Lee, 2017). The representation of SHAP values would be 
a better choice if the purpose is to understand the feature importance at 
a particular timestamp or for a certain period which could be contra-
dictory from the static importance. With that said, the introduction of 
SHAP values in explaining the local impacts a feature exert on the output 
of a model provides an alternative and new insights into the interpret-
ability of a model. Furthermore, with the elevated interpretability of BB 
models, aerosol scientists might be able to find out the unknown pat-
terns or rules that are learned by the more complex yet accurate algo-
rithms. BB models would become more generalizable through transfer 
learning based on the hidden patterns. Therefore, model interpretability 
could benefit in updating and upscaling the model to other environ-
ments. The results from the model transferability could in turn further 
validate the model interpretability. This synergy might require several 
stages of trial and error, but the co-benefits it brings would be significant 
in explaining the characteristics of air pollutants like BC. 

4. Conclusion 

Receiving increasing attention from health experts and policy-
makers, black carbon (BC) as an air pollutant has gained recognition of 
its health impact, and thus its importance to be recommended as one of 
the regulated parameters within air quality (AQ) monitoring network. 
Machine learning (ML) models, although being criticized for its lack of 
generalizability and accountability, have been suggested to supplement 
BC reference measurements as virtual sensors in the absence of data due 
to financial constraints or instrument failure. In this study, we aim to 
show the transferability and interpretability of the selected data-driven 

Fig. 6. Comparison of different methods used in terms of accuracy (x-axis, R2) 
and complexity (y-axis, computation time in logarithm scale). 
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models using long-term BC measurements collected in an urban site in 
Barcelona (BCN-UB). We investigated the general BC characteristics and 
tested the feasibility of BC proxies by calculating the correlation of BC 
with other parameters measured at the same site. Trained using the data 
at BCN-UB, we tested the machine learning models of different archi-
tectures at four external sites in Northern and Central Europe. We 
evaluated which ML model works best and which parameters contribute 
most to the estimation. 

The dataset in BCN-UB shows a statistically significant declining 
trend for BC, NO2 and PN in the interval of 2013–2022, which are in 
alignment with previous studies. BC exhibits diurnal cycles character-
ized by peak concentrations during traffic rush hours on workdays, 
particularly evident at BCN-UB and two traffic (TR) sites. Regardless of 
the geographic locations and types of sites, BC has high correlation with 

other aerosol and gaseous compounds measured at the same site, with 
the strongest being accumulation mode (r = 0.73–0.85) and NO2 (r =
0.68–0.75) and the weakest being the meteorological parameters. The 
strong correlation suggests the potentiality for the estimation proxies 
using different machine learning methods. 

Four BB models perform better on average (R2 = 0.78–0.83, MAE =
4.23–4.61 %, RMSE = 5.00–5.75 %) compared to the three WB models 
(R2 = 0.75–0.76, MAE = 4.93–5.01 %, RMSE = 6.02–6.15 %). Among 
them, LSTM outperforms the rest in terms of accuracy, yet consumes 
most computational time, in all the four seasons plausibly because this 
model includes additional layers for the consideration of the time- 
dependency properties of the dataset. From the perspective of trans-
ferability, the model performs even better in some external locations 
(HEL-TR: R2 = 0.80–0.86; MAE = 3.90–4.73 %; RMSE = 4.92–5.89 % 

Fig. 7. Scatter plots of the testing data at HEL-TR (upper panel) and DDW-UB (lower panel) calculated BC against measured BC for different methods used colored by 
the point density. R2, MAE and RMSE are presented on the subplot titles. 
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and DDW-UB: R2 = 0.79–0.84; MAE = 4.23–4.82 %; RMSE = 5.26–5.92 
%) than the one in BCN-UB. This very good transferability could be 
attributed to the similar strong correlation of BC with other parameters 

measured at the same site. 
In terms of interpretability, the static normalized relative importance 

that tells the overall contribution using respective metrics show PNacc 

Fig. 8. Diurnal cycles of calculated BC by LASSO (red) and LSTM (blue) in comparison with the measured BC concentration (black) at two testing sites with 
prominent results in the form of box plot. The first row is the cycles for HEL-TR and the second row is DDW-UB while the first column illustrates workday condition 
and the second is weekend. The box plot has the component of lower whisker, lower box, median, upper box and upper whisker, which correspond to 10th, 25th, 
50th, 75th and 90th percentiles of the BC distribution, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 9. Static relative importance of explanatory parameters using different machine learning methods.  
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and NO2 are the two most important parameters for the estimation 
(>0.6). However, the dynamic relative importance SHAP values that 
represent the local contribution of a feature to the output of a model give 
varying results. They demonstrate to have positive impacts on BCN-UB 
and the two TR sites using both while it has an overall negative local 
impact at the two urban background (UB) sites. The introduction of 
SHAP values provides new insights into the overall and local interpret-
ability of a BB model. 

Although data-driven models have been long regarded to be site 
specific and lack of accountability, this comprehensive analysis shows 
that the BC model trained in Barcelona works well in terms of accuracy 
in other European sites with comprehensive information to explain the 
model. This transferable and interpretable proxy serves as an important 
supplement in case of missing data due to instrument failure. So far, the 
model transferability and interpretability were only tested at four 
external sites (urban background and traffic) in Europe. To enhance the 
generalization and representativeness of the model to the next level, it 
would be valuable to include sites with diverse emission profiles (e.g. 
detached housing areas with residential wood combustion, harbours and 
airports) in Europe and on other continents. 
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Tarkoma, S., Petäjä, T., Kulmala, M., Hussein, T., 2021b. Evaluation of white-box 
versus black-box machine learning models in estimating ambient black carbon 
concentration. J. Aerosol Sci 152, 105694. https://doi.org/10.1016/j. 
jaerosci.2020.105694. 

Fung, P.L., Al-Jaghbeer, O., Pirjola, L., Aaltonen, H., Järvi, L., 2023. Exploring the 
discrepancy between top-down and bottom-up approaches of fine spatio-temporal 
vehicular CO2 emission in an urban road network. Sci. Total Environ. 901, 165827 
https://doi.org/10.1016/j.scitotenv.2023.165827. 

Fung, P.L., Sillanpää, S., Niemi, J.V., Kousa, A., Timonen, H., Zaidan, M.A., Saukko, E., 
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Input-adaptive linear mixed-effects model for estimating alveolar lung-deposited 
surface area (LDSA) using multipollutant datasets. Atmos. Chem. Phys. 22, 
1861–1882. https://doi.org/10.5194/acp-22-1861-2022. 

Grange, S.K., Lötscher, H., Fischer, A., Emmenegger, L., Hueglin, C., 2020. Evaluation of 
equivalent black carbon source apportionment using observations from Switzerland 
between 2008 and 2018. Atmos. Meas. Techol. 13, 1867–1885. https://doi.org/ 
10.5194/amt-13-1867-2020. 

Gu, J., Yang, B., Brauer, M., Zhang, K.M., 2021. Enhancing the evaluation and 
interpretability of data-driven air quality models. Atmos. Environ. 246, 118125 
https://doi.org/10.1016/j.atmosenv.2020.118125. 

Hilker, N., Wang, J.M., Jeong, C.H., Healy, R.M., Sofowote, U., Debosz, J., Su, Y., 
Noble, M., Munoz, A., Doerksen, G., White, L., Audette, C., Herod, D., Brook, J.R., 
Evans, G.J., 2019. Traffic-related air pollution near roadways: discerning local 
impacts from background. Atmos. Meas. Technol. 12, 5247–5261. https://doi.org/ 
10.5194/amt-12-5247-2019. 

Hitzenberger, R., Petzold, A., Bauer, H., Ctyroky, P., Pouresmaeil, P., Laskus, L., 
Puxbaum, H., 2006. Intercomparison of thermal and optical measurement methods 
for elemental carbon and black carbon at an urban location. Environ. Sci. Tech. 40, 
6377–6383. https://doi.org/10.1021/es051228v. 

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9, 
1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. 

Jafar, H.A., Harrison, R.M., 2021. Spatial and temporal trends in carbonaceous aerosols 
in the United Kingdom. Atmos. Pollut. Res. 12, 295–305. https://doi.org/10.1016/j. 
apr.2020.09.009. 

Järvi, L., Hannuniemi, H., Hussein, T., Junninen, H., Aalto, P.P., Hillamo, R., Mäkelä, T., 
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Querol, X., Reche, C., Ivančič, M., Rigler, M., Pandolfi, M., 2022. Absorption 
enhancement of black carbon particles in a Mediterranean city and countryside: 
effect of particulate matter chemistry, ageing and trend analysis. Atmos. Chem. Phys. 
22, 8439–8456. https://doi.org/10.5194/acp-22-8439-2022. 

Zaidan, M.A., Wraith, D., Boor, B.E., Hussein, T., 2019. Bayesian proxy modelling for 
estimating black carbon concentrations using white-box and black-box models. Appl. 
Sci. 9, 4976. https://doi.org/10.3390/app9224976. 

Zaidan, M.A., Motlagh, N.H., Fung, P.L., Lu, D., Timonen, H., Kuula, J., Niemi, J.V., 
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