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Abstract: The lipases from Thermomyces lanuginosus (TLL) and Candida antarctica (B) (CALB) were
immobilized on octyl-agarose beads at 1 mg/g (a loading under the capacity of the support) and by
overloading the support with the enzymes. These biocatalysts were compared in their stabilities in
10 mM of sodium phosphate, HEPES, and Tris-HCl at pH 7. Lowly loaded CALB was more stable
than highly loaded CALB preparation, while with TLL this effect was smaller. Phosphate was very
negative for the stability of the CALB biocatalyst and moderately negative using TLL at both loadings.
The stability of the enzymes in HEPES and Tris-HCl presented a different response as a function of
the enzyme loading (e.g., using lowly loaded CALB, the stabilities were similar in both buffers, but it
was clearly smaller in HEPES using the highly loaded biocatalysts). Moreover, the specific activity
of the immobilized enzymes versus p-nitrophenol butyrate, triacetin and R- or S-methyl mandelate
depended on the buffer, enzyme loading, and interaction between them. In some cases, almost twice
the expected activity could be obtained using highly loaded octyl-CALB, depending on the buffer. A
co-interaction between the effects on enzyme activity and the specificity of support enzyme loading
and buffer nature was detected.

Keywords: enzyme stability; enzyme activity; enzyme specificity; effects of buffers on enzyme
properties; effects of enzyme support loading on enzyme properties

1. Introduction

Lipases are among the most utilized enzymes in academic and applied research [1–4]
due to their high stability under different media and conditions and their high versatility
(catalyzing hydrolysis [5–8], esterifications [9–12], transesterifications [13–15], acidoly-
sis [16–20], interesterifications [21,22], amidations [23–26], etc.). Lipases have a broad
specificity, accepting substrates with very different structures, but in many instances ex-
hibiting a high specificity or regio- or enantio-selectivity [27–31]. Lipases are among the
enzymes able to catalyze promiscuous reactions [32–35].

The catalytic mechanism of lipases is peculiar and permits them to fulfill their bio-
logical function (the hydrolysis of oils, a substrate that is almost insoluble in water). They
have the active center isolated from the medium by a polypeptide chain named lid or
flat. In some instances, the lid is unable to fully block the active center of the lipase, like
in the case of CALB [36]), while in other instances it is even more complex, with two
polypeptide chains moving simultaneously [37–41]. This closed form is in equilibrium with
a lipase conformation where the lid is shifted and makes the active center accessible to
the medium [37–41]. The lipase open form presents a huge hydrophobic pocket and it is
not stable in an aqueous homogeneous medium. This hydrophobic lipase pocket becomes
adsorbed on the external surface of triglyceride droplets and, in that way, the lipases can
interact with them. This mechanism is called interfacial activation [42–45].
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Even with their positive catalytic features, the biological origin of lipases causes some
of these properties to not fit some industrial requirements, such as ease of recovery and
reuse and stability under operational conditions measured in weeks or even months. More-
over, the high activity, selectivity and specificity of enzymes are found using a physiological
substrate; meanwhile, in some instances, the values of these features in the process of
interest, sometimes involving substrates and conditions that are far-removed from the
physiological ones, are not adequate [46]. Fortunately, there are many tools under intense
development that can solve these limitations, such as new tools for the discovery of new
enzymes (e.g., metagenomics) [47–50], protein engineering (e.g., directed evolution) [51–53],
etc. Nowadays, enzyme molecules simultaneously bearing several active centers can be
generated [54] (e.g., plurizymes [55–57] or fusion enzymes [58–70]). In this paper, we
will devote our attention to enzyme immobilization [71–74], as it is a potent tool for the
stabilization of enzymes (e.g., via multipoint covalent immobilization) [75–80] and for
improving their activity, specificity, or selectivity [81–84]. An adequate immobilization
protocol can permit an enzyme’s coupling with enzyme purification [85–89].

The immobilization of enzymes usually has an optimal result in terms of stability
when the support surface is inert after the enzyme immobilization and the enzyme is linked
to the support via multipoint covalent attachment [75]. However, this did not happen with
most lipases. The lipase immobilization on hydrophobic supports involves the adsorption
on the hydrophobic surface of the open form of the enzyme via the large hydrophobic
pocket formed by the internal face of the shifted lid and the surroundings of the active
center (similar to interfacial activation versus substrate drops) [90]. This permits the one
step purification, immobilization, hyperactivation, and stabilization of the lipases [90].
Hyperactivation is related to the stabilization of the open form of the lipases [91], while it
has been shown that this adsorbed open form of the lipase is more stable than the lipase
in the closing/opening equilibrium [92–94]. In fact, it is difficult to get an immobilized
lipase using any other strategy with higher stability than when using this immobilization
strategy, including lipase immobilization via multipoint covalent attachment [95]. The
reversibility of this immobilization protocol can be considered an advantage, as it enables
reuse of the support after enzyme inactivation, or after a problem. Although, in many cases,
the operational stability of these biocatalysts is high, the lipase may be desorbed during
utilization under certain conditions. In fact, even though it displays very strong adsorption,
enzyme release from the support in the presence of organic cosolvents, at high temperatures,
or in the presence of detergents (or substrates or products with detergent properties) may
take place [96,97]. This can be prevented by using heterofunctional supports, which are
those bearing—together with hydrophobic motifs—other groups able to establish ionic or
covalent interactions with the enzyme [96].

The immobilization of lipases on hydrophobic supports is very fast. It is so fast that,
under proper conditions (e.g., high enzyme concentration), the immobilization rate can be
higher than the diffusion of the enzyme inside the pore [98]. This has made it possible to
prepare immobilized enzyme preparations where the enzyme molecules are so near each
other that they can interact with the immobilized molecules around them, and this has been
shown to result in beneficial or negative effects on enzyme stability [99–101]. These effects
on enzyme stability of enzyme loading were attributed to the existence of protein–protein
interactions; these interactions are much less likely to occur in lowly loaded immobilized
enzyme preparations where the distance between the immobilized enzyme molecules will
be larger.

On the other hand, it has been found that these interfacially activated biocatalysts
have some special “sensibilities” to the presence of some additives in the medium. For
example, some cations have stabilizing effects mainly when the enzyme is immobilized on
hydrophobic supports, while they are not so relevant in covalently immobilized prepara-
tions [102]. Similarly, phosphate anions have a strong destabilizing effect on this kind of
biocatalyst, which is not so evident when using other lipase formulations [103]. The use
of very different enzyme loadings has been shown to alter the possibilities of obtaining
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intermolecular enzyme crosslinking, proving that when really high loadings are used, the
distance between the enzyme molecules may be lower that when using low loadings [104].
Moreover, it has been shown that the effect of the chemical modification on immobilized
enzyme stability depends on the buffer [105] and on enzyme loading [106].

In this paper, we studied if the effects of the nature of the buffer on the stability of the
immobilized enzyme can depend on the immobilized enzyme–enzyme interactions; the
intensity of these interactions should be controlled by the enzyme loading in the support.
Hence, the objective is to analyze if there are interactions between the effects of support
enzyme loading and the nature of the buffer on the features of the immobilized enzyme. No
studies have been performed to date (in fact there are just some describing the individual
effects of each of these variables) on this topic. As model support, we utilized octyl-agarose,
as this can discard some unknown enzyme–support interactions [107]. The support’s
textural properties can be modified by organic solvents [108], and more so by agarose,
which is mainly formed by water. For the enzymes, we selected two examples with very
different structures, the one from Thermomyces lanuginosus (TLL) [109], bearing a large
lid [110,111], and lipase B from Candida antarctica (CALB), [112,113] whose lid is so small
that is unable to fully block the active center of the lipase [36,114]. Using octyl agarose with
these enzymes, the high immobilization rate enables the formation of an enzyme crown on
the external part of the pores of the agarose beads, if full loading is not intended [98]. The
use of free enzymes in the case of lipases, as reference for any study, has some problems.
These enzymes have a strong tendency to form lipase–lipase aggregates, where the open
form of two lipase molecules are interacting and altering the functional properties of the
enzymes, making studies on free lipases quite unreliable [115,116]. The immobilization in
octyl-agarose guarantees the presence of lipase monomers in the open form, making much
the comparison more reliable [90,91]. Moreover, lipase molecules may interact with any
hydrophobic (even moderately hydrophobic) component of the crude and this can alter the
lipase features [117–121], making it complex to also determine the intrinsic features of the
free lipases. The use of washed immobilized enzymes prevents this situation.

2. Results
2.1. Immobilization of CALB and TLL on Octyl Agarose

Figures 1–4 show the immobilization courses of both enzymes at two different enzyme
loads. Using low enzyme loading (1 mg/g), under the capacity of the support [88,89],
TLL shows a clear hyperactivation upon immobilization, reaching an expressed activity
2.3-fold higher than that of the free enzyme. This result is described and explained by the
stabilization of the open conformation of the enzyme [71]. Using CALB, the lowly loaded
immobilized biocatalyst retains the activity of the free enzyme almost unaltered. This can
be related to the lack of a lid large enough to isolate the active center of this enzyme [36,114].
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Figure 1. Immobilization course of TLL on octyl agarose beads offering 1 mg of enzyme per g of
support. The immobilization was performed in 5 mM of phosphate buffer at pH 7.0 and 25 ◦C.
Squares: reference suspension; triangles: immobilization suspension; and circles: supernatant of the
immobilization suspension. Other specifications are described in Methods.
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Figure 2. Immobilization course of CALB on octyl agarose beads offering 1 mg of enzyme per g
of support. The immobilization was performed in 5 mM of phosphate buffer at pH 7.0 and 25 ◦C.
Squares: reference suspension; triangles: immobilization suspension; and circles: supernatant of the
immobilization suspension. Other specifications are described in Methods.
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Figure 3. Immobilization course of TLL on octyl agarose beads offering 40 mg of enzyme per g
of support. The immobilization was performed in 5 mM of phosphate buffer at pH 7.0 and 25 ◦C.
Squares: reference suspension; triangles: immobilization suspension; and circles: supernatant of the
immobilization suspension. Other specifications are described in Methods.
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Figure 4. Immobilization course of CALB on octyl agarose beads offering 24 mg of enzyme per g of
support. The immobilization was performed using 5 mM of phosphate buffer at pH 7.0 and 25 ◦C.
Squares: reference; triangles: suspension; and circles: supernatant. Other specifications are described
in Methods.

Next, we employed enzyme loadings that exceeded that of the support [88,89]: 40 mg/g
for TLL and 24 mg/g for CALB [88,89]. In the case of TLL, only 30% of the enzyme was
immobilized, and the suspension did not alter the activity, very likely because the activity
decrease caused by the substrate diffusional limitations [59] compensated the hyperacti-
vation of the enzyme molecules. Using CALB, 80% of the enzyme was immobilized and
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the suspension activity slightly decreased, very likely also due to substrate diffusional
limitations [59].

2.2. Effect of the Buffers on the Stability of the Different Biocatalysts

Using the lowly loaded TLL biocatalyst (Figure 5), it was possible to visualize a
negative effect of the phosphate buffer, previously described for other octyl-lipase biocata-
lysts [92–94], giving half the activity after 2 h of inactivation compared to the other two
buffers. HEPES permitted slightly lower enzyme stability than Tris-HCl, but the differences
are very small. Figure 6 shows the inactivation of the highly and lowly loaded biocatalyst
in the different buffers. In all cases, the highly loaded biocatalyst is more stable than the
lowly loaded biocatalyst in the first moments of the inactivation, as may be expected from
the artifacts that can be generated due to the substrate’s diffusional limitations (that can
decrease the observed activity); the inactivation of some of the enzyme molecules will
decrease mass activity and may permit that the activity of enzymes located in the internal
part of the particles can be expressed [59]. However, using HEPES and Tris-HCl, this
advantage in the first moments of the inactivation disappeared when the inactivation was
prolonged and the final residual activities were even lower than that of the lowly loaded
biocatalyst: while using phosphate, a higher residual activity after 2 h was found for the
highly loaded biocatalyst compared to the lowly loaded biocatalyst. Using Tris-HCl or
HEPES, the situation is reversed, although the differences are not very relevant.
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Figure 5. Effect of the buffer on the thermal inactivation courses of lowly loaded octyl-TLL (1 mg/g).
The inactivation was performed using 10 mM of different buffers at pH 7.0 and 72 ◦C. Squares:
Tris-HCl; triangles: Sodium phosphate; and circles: HEPES. Other specifications are described
in Methods.
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Figure 6. Effect of enzyme loading on the thermal inactivation courses of TLL immobilized on octyl-
agarose beads in different buffers. Lowly (1 mg/g) (solid symbols) and highly (40 mg/g) (empty
symbols) loaded TLL-octyl agarose biocatalysts (Figures 1 and 3) were used. The inactivation was
performed using 10 mM of different buffers at pH 7.0 and 72 ◦C. Tris-HCl (A); sodium phosphate (B);
and HEPES (C), at pH 7.0 and 72 ◦C. Other specifications are described in Methods.
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In any case, it is maintained that phosphate is the buffer where lower octyl-TLL
stability is detected also using the highly loaded biocatalyst (Figure S1), and again the
stability in HEPES is slightly lower than in Tris-HCl.

When analyzing the lowly loaded biocatalyst from CALB (Figure 7), phosphate has
a clear negative effect on enzyme stability, while the inactivation in HEPES and Tris-HCl
yielded a higher and similar stability, respectively.
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Figure 7. Effect of the buffer on the thermal inactivation courses of lowly loaded octyl-CALB (1 mg/g).
The inactivation was performed using 10 mM of different buffers at pH 7.0 and 76 ◦C. Squares: Tris-
HCl; triangles: Sodium phosphate; and circles: HEPES. Other specifications are described in Methods.

Figure 8 shows the comparison of the inactivation of the highly and lowly loaded
CALB biocatalysts in the different buffers. When the inactivation was performed in Tris-
HCl, the lowly loaded biocatalyst was slightly less stable than the highly loaded biocatalyst.
This small difference could be justified by the existence of diffusional problems in the
highly loaded biocatalyst. Using HEPES as buffer, the lowly loaded biocatalyst was clearly
more stable than the highly loaded biocatalyst, suggesting that, in the Tris-HCl buffer,
the protein–protein interactions could generate some negative effects on enzyme stability.
The comparison of the highly and lowly loaded biocatalysts in phosphate under the same
temperatures in the other buffers gave too rapid an inactivation, making the comparison
unreliable (Figure S2). For this reason, we repeated the inactivation at a lower temperature
(Figure 8C). This inactivation showed that, in phosphate buffer too, the lowly loaded
biocatalyst was more stable than the highly loaded biocatalyst; the difference being even
larger than in HEPES. Therefore, the protein–protein interactions seemed to have no effect
on octyl-CALB stability using Tris-HCl, but they were negative using HEPES or phosphate.
Figure S3 shows that, when using the highly loaded biocatalyst too, the lowest stability
was obtained in phosphate but, by using this highly loaded biocatalyst, the octyl-CALB
stability in HEPES was clearly lower than that found using Tris-HCl. It should be borne in
mind that these effects were detected using very low concentrations of buffers (10 mM).

2.3. Effect of Loading and Buffer on Enzyme Activity versus Different Substrates

If the buffers and enzyme loading can affect the enzyme stability to a great extent, as
shown in the previous sections (mainly for CALB), it is possible that they can also alter
enzyme activity, as the effects can be related to a certain alteration of enzyme–structure
mobility. Therefore, we decided to analyze the activity of the different biocatalysts with
triacetin and (R)- and (S)-methyl mandelate (Figure S4). We discarded p-NPB because
the low concentration that must be used with this compound (due to its poor solubility)
allowed us to observe substrate diffusional limitations just in the preliminary tests, and
this is not the objective of the current research.
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Figure 8. Effect of enzyme loading on the thermal inactivation courses of CALB immobilized on octyl-
agarose beads in different buffers. Lowly (1 mg/g) (solid symbols) and highly (24 mg/g) (empty
symbols) loaded CALB-octyl agarose biocatalysts (Figures 2 and 4) were used. The inactivation
was performed using 10 mM of different buffers at pH 7.0 and 76 ◦C for (A,C), and 70 ◦C for (B).
Tris-HCl (A); sodium phosphate (B); and HEPES (C). Other specifications are described in Methods.

TLL was much more active versus triacetin than versus both methyl mandelate iso-
mers (Table 1). The lowly loaded TLL-biocatalyst expressed more activity versus triacetin in
HEPES (25–40%) than in phosphate or Tris-HCl; these two buffers enable to the biocatalyst
to express very similar activities (Table 1). Phosphate was the buffer that gave the lowest
stability for this biocatalyst (see previous sections); hence, the effects of activity/stability
seemed to be related not only to an increase in the enzyme structure mobility. Different
structures of the enzyme when inactivated in different buffers have been previously re-
ported [92]. Therefore, it is not possible to discard the possibility that these different enzyme
conformations induced by the buffers can cause these different activities. The activity ver-
sus both mandelic esters was so low that it did not enable us to reach reliable conclusions.
Moving to the highly loaded biocatalyst, the highest activity versus triacetin was obtained
using Tris-HCl as the buffer, while HEPES and phosphate gave similar activities (in this
case, the two buffers that gave the lowest stabilities produced lower activities, although, in
these activity determination conditions, the enzyme activity remained unaltered for 24 h)
(Table 1). With these highly loaded biocatalysts, it was possible to analyze the activity ver-
sus the mandelic esters. Using HEPES and Tris-HCl, the biocatalyst gave similar activities
versus (R)-methyl mandelate, but lower than using phosphate (in this buffer, activity was
20–25% higher). However, using the (S)-isomer, in HEPES, 20% more activity was obtained
than in Tris-HCl, and in Tris-HCl, a 20% increase in enzyme activity was observed when
compared to the enzyme activity in phosphate. Therefore, in phosphate, the biocatalyst
preferred to hydrolyze the (R)-isomer (the R/S activity ratio was around 1.3); in the other
two buffers, the situation was different (with R/S activity ratios of 0.88 using Tris-HCl
and 0.79 using HEPES as the buffer). Therefore, the biocatalyst enantiospecificity could
be modulated and even inverted just by using a different buffer (Table 1). Similarly, the
triacetin/(R)-methyl mandelate activity ratio was altered by the buffer; this value was 3600
in phosphate, almost 5200 in Tris-HCl, or over 4300 in HEPES (Table 1). Therefore, it seems
that the different buffers produced different TLL-octyl conformations, bearing different
stabilities and activities. And the effect of the buffers on enzyme activity was tuned by
enzyme support loading.
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Table 1. Effect of enzyme loading and buffer on the CALB and TLL biocatalysts in terms of the
activity of the biocatalysts with different substrates under the defined conditions. The experiments
were conducted as described in Methods. Activity is given per gram of biocatalyst.

Biocatalyst Activity (U/g) with 50 mM
Triacetin

Activity (U/g) with 10 mM
(R)-Methyl Mandelate

Activity (U/g) with 10 mM
(S)-Methyl Mandelate

Octyl-TLL (1 mg/g)
Phosphate 18.16 ± 0.91 Under detection limit Under detection limit

Octyl-TLL (1 mg/g)
Tris-HCL 17.04 ± 0.68 Under detection limit Under detection limit

Octyl-TLL (1 mg/g)
Hepes 24.18 ± 1.21 Under detection limit Under detection limit

Octyl-TLL (40 mg/g)
Phosphate 162.04 ± 6.43 0.045 ± 0.002 0.033 ± 0.001

Octyl-TLL (40 mg/g)
Tris-HCL 187.10 ± 9.31 0.035 ± 0.001 0.040 ± 0.002

Octyl-TLL (40 mg/g)
Hepes 165.67 ± 8.22 0.038 ± 0.001 0.047 ± 0.002

Octyl-CALB (1 mg/g)
Phosphate 2.61 ± 0.11 8.86 ± 0.35 0.523 ± 0.026

Octyl-CALB (1 mg/g)
Tris-HCL 1.76 ± 0.08 6.85 ± 0.27 0.509 ± 0.025

Octyl-CALB (1 mg/g)
Hepes 1.87 ± 0.07 6.77 ± 0.33 0.516 ± 0.020

Octyl-CALB (24 mg/g)
Phosphate 82.73 ± 3.30 148.69 ± 5.95 11.06 ± 0.44

Octyl-CALB (24 mg/g)
Tris-HCL 62.89 ± 2.51 160.97 ± 8.13 15.22 ± 0.76

Octyl-CALB (24 mg/g)
Hepes 51.03 ± 2.04 177.05 ± 8.81 12.75 ± 0.63

In the case of CALB, the activity versus (R)-methyl mandelate (the preferred isomer)
was higher than versus triacetin. Lowly loaded octyl-CALB presented more activity versus
triacetin in phosphate than in HEPES or Tris-HCl (by around 45%), which gave similar
activities. Utilizing the (R)-methyl mandelate, the situation was similar, with more activity
in phosphate than in the other two buffers (by around 30%), while using the (S)-isomer
the buffers had almost no influence on activity. Therefore, the R/S activity ratio was not
very different when changing the buffer: 17 in phosphate and around 13 in Tris-HCl or
HEPES. Considering the triacetin/R-methyl mandelate activity ratio, differences were
small, ranging between 0.25 and 0.3. Again, it is not simple to correlate the effects on
activity and stability just on the basis of higher enzyme structure mobility (although here
the activity versus S-methyl mandelate is the only discrepancy).

Highly loaded octyl-CALB gave different activities using triacetin when changing
the buffer. Again, the activity was the highest in phosphate, a 75% increase was obtained
in Tris-HCl and around 60% in HEPES (as discussed above, HEPES produced a lower
stability than Tris-HCl in this biocatalyst). The situation was completely different using
methyl mandelate isomers. Using the (R)-isomer, the highest activity was obtained in
HEPES, with 90% of this activity using Tris-HCl and less than 85% using phosphate. The
activity in phosphate was the lowest using this substrate, while it was the highest using
triacetin. Using the (S)-isomer, the lowest activity was obtained again using phosphate, a
15% higher activity was observed in HEPES and almost a 40% higher activity was found
using Tris-HCl. This produced different R/S activity ratios: 13 using phosphate (slightly
lower than using the lowly loaded biocatalyst), 10 using Tris-HCl, or 14 using HEPES. The
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triacetin/R-methyl mandelate activity ratios were significantly altered by the buffer: 0.55
in phosphate, 0.4 in Tris-HCl, and 0.28 in HEPES. The values of these ratios were higher
than using the lowly loaded biocatalysts.

Next, we examined the effect of increasing CALB loading on biocatalyst activity
versus the different substrates. The lowly loaded biocatalyst presented 1 mg/g, while
the highly loaded biocatalyst presented less than 20 mg, as is shown in Figures 2 and 4.
However, the activity of the highly loaded biocatalyst was 31-fold higher using triacetin in
phosphate, 35-fold higher using Tris-HCl, and 27-fold higher using HEPES. This exceeds
the increase in the amount of immobilized enzyme. The results suggest that the protein–
protein interactions, that produced a negative effect on enzyme stability, also produced
some alteration in terms of the enzyme structure that causes the enzyme to be more active
versus triacetin. Using (R)-methyl mandelate, the increase in activity using the highly
loaded CALB-octyl biocatalyst was around 17 in phosphate, 23 in Tris-HCl, and 26 in
HEPES. Again, except in phosphate, the increase in activity was higher than expected,
even ignoring the likely existence of substrate diffusional limitations that could decrease
the activity of this biocatalyst exhibiting such high mass activity (largely exceeding the
100 U/g). Using the S-isomer, the increase in activity was 21 in phosphate, 30 in Tris-HCl,
and 25 in HEPES. Therefore, it seems that these are not only effects of the buffer, but also
of the protein–protein interactions that alter enzyme activity, as they also altered enzyme
stability (see previous sections). These effects were not identical for the different buffers.
Therefore, different R/S and triacetin/R-methyl mandelate activity ratios were obtained
when comparing the biocatalysts at two different enzyme loadings.

3. Materials and Methods
3.1. Materials

The lipase B from Candida antarctica (CALB) (24.77 mg/mL) and the lipase from Ther-
momyces lanuginosus (TLL) (38.49 mg/mL), in liquid formulations, were obtained as kind
donations from Novozymes (Madrid, Spain). The Octyl-Sepharose® 4BCL beads were
acquired from GE Healthcare. The triacetin and p-nitrophenyl-butyrate (p-NPB) were
purchased from Sigma-Aldrich (Madrid, Spain). The (R)- and (S)- methyl-mandelates were
acquired from Thermo-Fisher (Alcobendas, Spain). The Bradford method was used for
the quantification of protein concentrations [122]. All other compounds were of analyti-
cal grade.

3.2. Methods

All experiments were performed in triplicate and the values are given as average
values and standard errors.

3.2.1. Determination of Enzyme Activity with p-NPB

A volume of 2.5 mL of 25 mM sodium phosphate (in some instances changed by
Tris-HCl or HEPES) with a pH of 7.0 was added to a cuvette containing a magnetic stirrer
along with 50 µL of p-NPB solution (50 mM dissolved in acetonitrile). The absorbance was
read using a Jasco V-730 spectrophotometer (Jasco, Madrid, Spain) with magnetic stirring
and controlled temperature (25 ◦C). To start the reaction, 50 µL of the free enzyme solution
or immobilized enzyme suspension was added to the cuvette. The immobilized enzyme
suspensions were prepared by adding 1 g of the different biocatalysts to 10 mL of the
aqueous buffers. The increment of absorbance that occurs due to the released p-nitrophenol
(p-NP), caused by the hydrolysis of p-NPB, was measured at 348 nm (isosbestic point of
p-NP, ε is 5150 M−1 cm−1 under these conditions) [123] for 90 s. The activity was expressed
in units (U) defined as the micromoles of the p-NP that are produced per minute.

3.2.2. Hydrolysis of Triacetin

The reaction was performed by adding 0.1–0.25 g of biocatalysts to 5–10 mL of 50 mM
triacetin dissolved in 50 mM of sodium phosphate, HEPES, or Tris-HCl at a pH of 7.0 and
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25 ◦C) (depending of the use of highly loaded or lowly loaded biocatalysts). The enzymes
produced 1,2 diacetin, but this was subject to acyl migration, and a mixture with 1,3
diacetin was obtained [124]. The degree of conversion was calculated by HPLC (Kromasil
C18 column of 15 cm × 0.46 cm). As the mobile phase, a solution of 15% acetonitrile-85%
Milli-Q water was used. The flow rate was 1 mL/min. The UV–visible detector was settled
at 230 nm and the retention times were 4 min for diacetins (these conditions promote
the coelution of both diacetins) and 18 min for triacetin. To determine the initial rates,
conversions between 15% and 20% were utilized.

3.2.3. Hydrolysis of (R) or (S)-Methyl Mandelate

The reaction was started by the addition of 0.02 or 0.5 g of biocatalysts to 3 or 5 mL of
10 mM of (R) or (S)-methyl mandelate dissolved in 50 mM of sodium phosphate, HEPES,
or Tris-HCl buffers at pH 7.0 and 25 ◦C (depending on the use of highly loaded or lowly
loaded biocatalysts). A HPLC (Kromasil C18 column of 15 cm × 0.46 cm) was utilized to
follow the reaction. The mobile phase was a solution of 35% acetonitrile-65% Milli-Q water
with 10 mM ammonium acetate at pH 2.8. The flow rate was 1 mL/min. The compounds
were detected at 230 nm and the retention times were 2.5 min for the acid and 4.2 min for
the ester. The initial rates were calculated utilizing conversions between 15% and 20%.

3.2.4. Immobilization of the Lipases on Octyl-Agarose Beads

Both enzymes (CALB and TLL) were immobilized on octyl-agarose beads using two
enzyme loadings: one that ensures a full coating of the support surface with the enzyme
going over the loading capability of the support, and the other one using a low load of
enzyme. These loadings were selected following our previous results, where the effects of
the enzyme interactions were detected [100,101]. Consequently, in the CALB case, 24 mg
(high enzyme loading) and 1 mg (low enzyme loading) of protein were used per gram
of support; while for TLL 40 mg (high enzyme loading) and 1 mg (low enzyme loading)
per gram of support were used. The enzymes were immobilized in 5 mM of sodium
phosphate at a pH of 7.0 at 25 ◦C in a 1/10 ratio (g/mL). The whole immobilization
process was monitored by acquiring samples at different times of the suspension and
supernatant—as well as via a reference suspension under identical conditions where
agarose beads were used—and measuring their activity employing p-NPB as a substrate;
the percentage of immobilization (immobilization yield) and the percentage of expressed
activity of the immobilized enzyme (expressed activity) were supplied [125]. After one
hour, the immobilized enzymes were washed with distilled water to dispose of the excess
of lipases, vacuum filtered, and stored at 5–6 ◦C.

3.2.5. Enzyme Thermal Inactivation

The immobilized enzymes were resuspended in 10 mM of sodium phosphate, HEPES,
or Tris-HCl at pH 7.0 in different ratios depending on the enzyme loading. For the highly
loaded biocatalysts, a ratio of 1/30 (g support/mL) was employed, and for the low-
concentration supports, a ratio of 1/10 (g support/mL) was used. Then, these suspensions
were incubated in a thermostatized bath at temperatures depending on the enzyme: CALB
was incubated at 76 ◦C or at 70 ◦C (using only sodium phosphate), and TLL at 72 ◦C in
all cases. These conditions were selected to have fast but reliable inactivation courses.
Samples were taken at the indicated times to quantify the residual activity retained by the
different biocatalysts.

4. Conclusions

This paper has shown that the enzyme loading (very likely by favoring the enzyme
molecules intermolecular interactions) and the nature of the buffer greatly affect not only
enzyme stability but also other enzyme catalytic features, such as activity or specificity. The
rapid immobilization of the enzymes in octyl-agarose may be a key point in explaining
the existence of these enzyme–enzyme interactions. Furthermore, the effects of the buffers
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differ depending on support loading and vice versa, suggesting a correlation between both
phenomena. In the two enzymes used in this paper, octyl-CALB seems to be more sensitive
to these variables, but TLL is also affected. Therefore, an integral analysis of the effects of
the loading and the nature of the buffers on enzyme activity/stability/specificity should be
performed and, very likely, compromise solutions must be reached in each specific process.
The results obtained in an immobilized biocatalyst where there are no intermolecular
interactions may be very different to those where these interactions exist. However, these
enzyme–enzyme interactions only will be significant when the immobilization rate is very
high and the loading of the support is very high.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal14020105/s1, Figure S1. Effect of the buffer in the thermal
inactivation courses of highly loaded octyl-TLL (40 mg/g). The inactivation was performed using
10 mM of different buffers at pH 7.0 and 72 ◦C. Squares: Tris-HCl; Triangles: Sodium phosphate and
Circles: HEPES. Other specifications were described in Methods. Figure S2. Effect of the enzyme load-
ing on the thermal inactivation courses of CALB immobilized on octyl-agarose beads in phosphate.
Lowly (1 mg/g) (solid symbols) and highly (24 mg/g) (empty symbols) CALB-octyl agarose biocata-
lysts (Figures 2 and 4) were used, The inactivation was performed using 10 mM of sodium phosphate
at pH 7.0 and 76 ◦C. Other specifications were described in Methods. Figure S3. Effect of the buffer
in the thermal inactivation courses of highly loaded octyl-CALB (24 mg/g). The inactivation was
performed using 10 mM of different buffers at pH 7.0 and 76 ◦C. Squares: Tris-HCl; Triangles: Sodium
phosphate and Circles: HEPES. Other specifications were described in Methods. Figure S4. Schematic
representation of the enzymatic hydrolysis of (A) Triacetin and (B) (R)-(S) methyl mandelate.
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