
Citation: Berzal-Herranz, A.;

Romero-López, C. Aptamers’

Potential to Fill Therapeutic and

Diagnostic Gaps. Pharmaceuticals 2024,

17, 105. https://doi.org/10.3390/

ph17010105

Received: 4 December 2023

Revised: 22 December 2023

Accepted: 4 January 2024

Published: 12 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Editorial

Aptamers’ Potential to Fill Therapeutic and Diagnostic Gaps
Alfredo Berzal-Herranz * and Cristina Romero-López *

Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS
Granada, Av. del Conocimiento 17, 18016 Granada, Spain
* Correspondence: aberzalh@ipb.csic.es (A.B.-H.); cristina_romero@ipb.csic.es (C.R.-L.)

More than 30 years ago, in 1990, three independent research groups published several
papers demonstrating that genetics could be performed in vitro in the absence of living
organisms or cells [1–4]. This represented a major breakthrough in experimental Molecular
Biology, defining the basis for what we now call vitro molecular selection strategies [5].
These strategies allow the selection of nucleic acid molecules, genotype, that can express
a specific phenotype on their own. One phenotype that has attracted significant interest
and has been widely exploited is nucleic acids’ ability to bind to a specific target molecule,
to the extent that the selection of nucleic acids capable of binding specifically and with
high affinity to a defined target now constitutes its own dedicated discipline, known as
aptamer technology. These efficient nucleic acid binders are referred to as aptamers and the
procedure used to select them is known as SELEX, terms coined by Ellington and Szostak [1]
and Tuerk and Gold [2], respectively. Aptamers are short RNA or DNA oligonucleotides,
and their functionality resides in their three-dimensional structure. Although different
procedures have been developed to improve the aptamers’ efficiency and to extend the
technical procedure of SELEX [6–13], the technology adheres to the basic principles defined
by Gold and Szostak’s research groups back in 1990.

As a result of the thousands of manuscripts published in the past thirty years that
describe the selection of RNA or DNA aptamers and their applications, it is widely accepted
that they have a broad range of potential applications in different fields of knowledge re-
garding aptamers technology [14–17]. Firstly, aptamers are considered excellent candidates
for the development of therapeutic molecules to fight different diseases [18–23]. Many as-
says have been performed to investigate their potential to combat infectious diseases caused
by RNA viruses, either by targeting a variety of cellular or viral proteins, e.g., [24–28] or
by targeting structural elements of the viral RNA genome [29–39]. These publications
reported the achievement of a range of therapeutic activity levels in cell culture assays that
highlighted the potential of this molecular antiviral strategy. Cancer, in its broadest sense,
attracts a great deal of interest and many resources, and aptamer technology is no stranger
to this. Cancer treatment has also been the focus of many aptamer-based studies [40–46].
However, other diseases such as neurodegenerative or cardiovascular diseases, among
others, have also been targeted in aptamer studies [47–52]. In addition to the development
of aptamers as therapeutic molecules, other notable approaches include the applications of
aptamers as biosensors, through the development of aptamer-based devices and platforms
for disease diagnosis [53–64], and as molecular tools to deliver therapeutic drugs to spe-
cific target cells, as well as to improve access to malignant molecules whose inactivation
is desirable [65–70]. These applications have driven the significant development of the
aptamers-based discipline in recent years.

In this Special Issue, we have compiled a collection of original articles and reviews
focusing on the various factors that define aptamer technology and the main trends in
the field. Wrenger and coworkers comprehensively summarize the recent achievements
in applying aptamers to the diagnosis of infectious viral diseases, with particular focus
on review work applied to RNA viruses such as flaviviruses, influenza virus and coron-
aviruses [71]. Their review highlights the importance of this discipline aimed at applying
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aptamers to pathogen detection, which is probably one of the fastest growing applications
of aptamers.

Five original research articles included in this Special Issue cover a variety of issues
related to using aptamers to treat and diagnose cancer. Dr. González et al. provide evidence
of the potential application of selected DNA aptamers, directed against the vaccinia-related
kinase 1 (VRK1), as anti-cancer drugs [72]. VRK1 is involved in cell cycle progression [73]
and has been linked to the development of several types of cancer [74–80]. They show
inhibition of the cell cycle progression and induction of apoptosis of the MCF7 breast cancer
cell line treated with aptamers. Dr. Dubin’s group selects and characterizes DNA aptamers
targeting the human programmed death-ligand 1 (PD-L1), whose expression level reflects
the immune status of tumors [81]. The assay—both in cell culture of several human tumor
cell lines and in two mouse tumor models—of the selected fluorescently labeled aptamers
demonstrates their potential for the development of a non-invasive diagnostic method of
tumor classification based on PD-L1 status and, therefore, their usefulness for decision-
making in personalized immunotherapy. In another interesting article, Dr. Calzada’s group
reports on the optimization of the delivery system of an aptamer probe that has already
proven to be efficient in the imaging detection of a cancer biomarker. They have developed
a device that significantly improves tumor uptake of the aptamer probes in both cell culture
and BALB/c mice [82]. The last two articles within this series describe the development of
aptamer-based drug delivery devices [83,84]. In their article, Qi and coworkers describe
the design of a gemcitabine dendrimer linked to an aptamer specific for breast cancer cells.
The aptamer provides the desired cell specificity to deliver the antitumor drug, reducing
off-target cytotoxic effects and enhancing specific activity against target cells, improving
the therapeutic efficacy of the drug [83]. Heus’ group also designed a smart approach that
can be used to improve cell specificity and drug delivery efficiency [84]. They applied an
innovative 3D-SELEX strategy against cellular spheroids of breast cancer tumor cells, using
non-malignant breast cells as target for counter selection. They demonstrated the specificity
of selected aptamers for the breast tumor cells. Further, they designed aptamer multimers
which intercalate DNA boxes that efficiently bind and carry doxorubicin, a very potent
chemotherapeutic drug. This approach can significantly reduce the undesirable side effects
of the drug [84].

This Special Issue also includes two original research articles focusing on the appli-
cations of aptamers as anticoagulant tools, with demonstrable applications in the fight
against ischemic stroke. In the first of these articles, Shea and coworkers characterize the
biological activity of a previously described RNA aptamer, BB-031, targeted against the Von
Willebrand Factor (VWF), which plays a critical role in thrombosis [85]. Their study uses
a microfluidic model of arterial occlusion. They show that BB-031 induces thrombolysis
in this model, providing evidence of dose-dependent inhibition of VWF by the aptamer
that leads to a reduction in thrombus surface area and recanalization. On the other hand,
Dr. Pasternak’s group has addressed the optimization of antithrombin DNA aptamers
through the introduction of chemical modifications. In particular, they analyze the effect
of pyrrolo-2′-deoxycytidine (Py-dC) and its derivatives modifications. They demonstrate
that while all variants tested exhibited anticoagulant activity, a variant with a decyl deriva-
tive of Py-dC containing a long, linear aliphatic side chain exhibited greater thrombin
inhibition activity [86]. As indicated above, the activity of the aptamers relies on their 3D
structure. The antithrombin aptamers optimized by Pasternak and co-workers adopt a
G-quadruplex structure, whose thermodynamic stability is preserved with little variation
in the chemically modified variants tested. Interestingly, this G-quadruplex structure is
shared by other aptamers isolated in independent experiments targeting very different
molecules. This is the case for AT11-L0, a DNA aptamer targeted against the nucleolin
(NCL), a nuclear protein that plays an important role in angiogenesis in retinal neovascular
diseases, since its inhibition promotes an antiangiogenic effect [87]. This aptamer has been
used by Moreira and co-workers to functionalize liposomes that could be loaded with
antiangiogenetic drugs [88]. The authors show that the complexes allow efficient targeting
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of NCL, making liposomes functionalized with this aptamer a promising tool to enable
effective anti-angiogenic drug delivery. Recent advances in G-quadruplex-mediated cancer
therapy are described in [89].

Finally, Dr. Maher III’s group aimed to understand the biological mechanism of a
previously described DNA aptamer conjugate with streptavidine, also capable of adopting
G-quadruplex structure, shown to promote remyelination in a mouse model of chronic
spinal cord demyelination [90]. In their most recent paper, the authors provide evidence
that this macromolecular aptamer-based tool binds to the cell membrane of human and
adult rat oligodendrocytes, suggesting that binding to a membrane molecule triggers the
remyelination pathway [91].

This set of original research contributions providing evidence of the versatility of
applying aptamers for the diagnosis or treatment of complex diseases is completed by two
very interesting review articles by the groups of Drs. Ilgu and Marty, respectively [92,93].
Dr. Ilgu’s group nicely summarizes the main achievements in the application of aptamers
to the treatment or diagnosis of neurological diseases, highlighting the potential future
development of the field [92]. Meanwhile, Dr. Marty et al. present a comprehensive review
of the current state of the art in biomarker detection using electrochemical aptasensors [93].
The authors provide a very careful summary of disease diagnostic strategies by detecting
a variety of biomarkers using an electrochemical aptasensor. They provide examples of
biomarkers for the early detection of cancer, heart diseases, degenerative diseases (such
as Alzheimer’s or multiple sclerosis), diabetes or infectious diseases. The review also
includes very interesting information on the functioning mechanisms and properties of the
electrochemical aptasensors. The advantages and future perspectives of aptasensors are
also discussed [93].

Aptamers, as specific and efficient binders, have inevitably been compared to anti-
bodies in terms of their potential analytical and diagnostic applications. In relation to this,
Dr. Bruno has provided a very interesting article in which he discusses situations in which
aptamers can fill the gap left by antibodies, indicating that there is no need to compete with
antibodies and it is necessary to decide which molecule may be most appropriate for each
specific problem [94]. He offers a very interesting reflection on the futility of competing
with antibodies and the need to look and identify (using his same words) “niches were
aptamers are truly needed or wanted”. Readers can learn a lot from this interesting review
article [94]. Continuing this line of investigation, Marty and co-workers provide another
review article summarizing the applications of aptamers in the lateral flow assay procedure
for rapid detection of different analytes, biomarkers or specific molecules in point-of-care
diagnostics. The aptamers are used to substitute the antibodies in this widely used in vitro
detection platform, in which several limitations derived from the use of antibodies have
been identified. At the same time, the use of aptamers also has some drawbacks that the
authors highlight in this article.

The influence of two physical properties of protein ligands, molecular weight and
isoelectric point, on aptamers’ affinity has been studied by Fischer and co-workers. Their
study including nearly 300 target proteins and peptides spanning a wide range of isoelectric
points and molecular weight concludes that there is a significant inverse correlation between
the isoelectric point of protein ligands and aptamers’ affinity. In contrast, there appears to
be no correlation with molecular mass [95].

In a comprehensive review article, Tickner and Farzan discuss the utility of riboswitches
for optimizing adeno-associated viruses (AAV) as transgene vehicles in gene therapy [96].
Riboswitches are structural RNA elements that change their structure as a result of their
specific binding of a small molecule, leading to a change in the function of the RNA
molecules in which they are contained. Riboswitches constitute an aptamer included in an
RNA regulatory element, whose structure is sensitive to aptamer–ligand binding. Original
natural riboswitches were identified as regulators of gene expression in bacteria [97–99].
Riboswitches have been artificially engineered to develop ligand-responsive regulator
devices [100–106]. The review by Tickner and co-workers provides a detailed descrip-
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tion of different types of artificial riboswitches described to date that function in human
cells, explaining their mechanisms and their applications in the context of AAV-mediated
transgenes delivery [96].

The Special Issue concludes with a very interesting article by Andrianova and Kuznetsov,
who review a topic of great interest: Biocomputing based on the use of DNA aptamers and
their most important feature—their excellent binding abilities—for the creation of logic
gates applied to medicine and analytical chemistry [107]. A logic gate performs a Boolean
function, a basic logical function that converts the input signals into a logic output. Briefly,
an aptamer-based biosensor device constitutes a logic gate that, in the presence of the ligand,
generates an output signal. In this review, the authors summarize different biocomputing
approaches involving aptamers, describing the various methodologies applied to detect an
output signal. They distinguish between optical and electrochemical methods for obtaining
an output signal, which are also explained in detail. This represents an innovative and
growing application of aptamers, with medicine and analytical chemistry currently being
the fields in which it could have the greatest impact. Its development is supported by the
continuous identification of new aptamers against their specific ligands.

This Special Issue constitutes a representative sample of reviews and original research
articles, providing a snapshot of the current state of the art of aptamers technology. By
reading these papers, readers can get a broad idea of the possibilities of use of aptamers, of
different strategies for developing tools based on these molecules, and ways to potentially
improve their efficacy. This reinforces their potential use in the clinic, which may currently
be the most attractive and desired application for aptamer technology.
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