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1 Introduction

The construction of an inflationary model often begins by postulating a scalar field with

the right properties to drive an approximately de Sitter phase of the universe, followed by

a graceful exit into a hot big bang. Just as it happens in other instances of model building,

there is a balance to strike between the desired economy of degrees of freedom and the

need to account for possibly intricate dynamics.

Taking the minimalistic attitude to the extreme, we could entertain the possibility

that one and the same Standard Model (SM) Higgs field may control both the vacuum

properties and the inflationary dynamics in different corners of its configuration space.

As shown in [1–4], this feat can be achieved with stunning simplicity. It suffices to add

one extra parameter to the SM, associated to a non-minimal Higgs-graviton interaction,

consisting on a Higgs mass term proportional to the background scalar curvature:

Lξ = −ξ |H|2R . (1.1)

The trick works provided the dimensionless coupling can be tuned to be parametrically

large, ξ ≫ 1. This so-called ‘Higgs-inflation’ (HI) scenario operates at large field values,

|H| > Mp/
√
ξ, a regime in which gravity is weakened in proportion to a field-dependent

Newton’s constant given by (M2
p +2ξ〈|H|2〉)−1. In this situation, it is common practice to

work in the equivalent ‘Einstein frame’, obtained by an appropriate Weyl rescaling of the

metric. In the Einstein frame one deals with a fixed Newton constant and non-minimal

couplings inside covariant derivatives. The dependence on ξ is transferred to a tower of
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effective operators which change the dynamics of the Higgs modulus field for |H| > Mp/ξ.

The most visible of these changes is a rescaling of the Higgs potential U(H) = λ|H|4 into

V (H) =
λ|H|4

(
1 + 2ξ |H|2

M2
p

)2 , (1.2)

which features an asymptotic plateau extending beyond |H| ∼ Mp/
√
ξ, with energy den-

sity V∞ = λM4
p /4ξ

2. This is the key to inflation in this model. The inflationary dynamics

implied by (1.2) is robust, since the Weyl transformation has the additional effect of de-

coupling the Higgs modulus from the rest of the SM degrees of freedom, precisely in the

‘plateau region’ of field space, |H| ≫ Mp/
√
ξ.

Detailed analysis reveals that ξ must be chosen in the ballpark of 104 to fit the correct

amplitude of cosmological perturbations, although quantum corrections to the effective

potential have a significant impact on this fit value. In particular, the top Yukawa coupling

brings down the Higgs self-coupling at high energies and, more generally, the running of the

various marginal couplings introduces a logarithmic sensitivity of inflationary physics on

low-energy parameters [1–6]. These effects result in significantly smaller fit values for ξ, but

they also introduce a tension with the measured values of the Higgs and top quark masses.

The scenario of Higgs inflation that we have described is in serious disagreement with

the ‘standard rules’ of effective field theory, since it was defined by a bold extrapolation

of an effective Lagrangian beyond its naive domain of applicability. When analyzed near

the SM vacuum, the operator (1.1) has dimension five by power counting, with an effective

cutoff scale

Λ ≡ Mp

ξ
,

well below the edge of the plateau [7, 8, 10].1 In a traditional effective field theory inter-

pretation, the operator (1.1) would arise from integrating out heavy degrees of freedom,

to be found below the scale Λ. In this situation, the extrapolation to |H| > Λ would

require detailed knowledge of all new degrees of freedom arising at the scale Λ. More-

over, perturbative renormalisation of the theory below the scale Λ will introduce a tower

of higher-dimension operators generalising (1.1) to higher-dimension curvature couplings,

together with similar corrections to the SM Higgs potential. The matching conditions for

this tower of operators at the scale Λ would depend in a detailed way on the precise nature

of the UV completion above Λ. In this context, the dominance of (1.1) over other effective

operators would require special dynamics or particular symmetries.

On the other hand, one quickly notices that the extrapolation leading to an inflationary

plateau does not work for a general effective action. Rather, it depends on a precise

correlation between the original Higgs potential U(|H|) and the non-minimal coupling,

which must be proportional to
√
U(|H|) at large values of |H|. Therefore, this functional

tuning must be incorporated as an explicit assumption, perhaps framed in the more elegant

1The operator in eq. (1.1) is actually redundant if standing alone, since it can be removed by the Weyl

rescaling combined with a further field redefinition of the scalar field. However, any O(1) interactions of

|H|, either with itself or any other degrees of freedom, activate Λ as a physical dynamical scale [10].
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statement that there exists an asymptotic shift symmetry acting on the Higgs modulus

when the theory is written in the Einstein frame. In this paper, we assume that this

condition for the existence of the plateau is implemented by a hypothetical UV completion

including gravity.

In principle, the existence of an asymptotic shift symmetry, with its associated

Einstein-frame plateau, is independent of the ξ ≫ 1 condition. Still, a parametrically large

value of ξ does play an important role in the structure of the model. First, it is required

to fit the amplitude of inflationary perturbations. Second, it is required for consistency

of the semiclassical approximation during slow-roll, ensuring that curvatures remain sub-

Planckian during inflation. To see this, notice that the Hubble constant during inflation

is given by H2
I ∼ V∞/M2

p , where V∞ is the vacuum energy density along the plateau.

Therefore we have (
HI

Mp

)2

∼ λ

ξ2
,

so that the consistency of the effective field theory of inflation requires λ/ξ2 ≪ 1. Although

the SM running of λ towards small values helps in enforcing this inequality, this argument

shows that a parametrically large value of ξ is often a useful ingredient in the construction

of these models.

On the other hand, a large value of ξ introduces a hierarchy between the naive cutoff

scale Λ and the edge of the inflationary plateau, lying at field values of O(
√
ξΛ). This

intermediate region in the Higgs configuration space,

Λ ≪ |H| ≪
√
ξ Λ , (1.3)

is characterised by large corrections to the kinetic metric of |H|, to the point of compromis-

ing the unitarization of longitudinal W -boson interactions — the very raison d’être of the

SM Higgs — in any background with |H| > Λ. This implies that the perturbation theory in

the region (1.3) becomes strongly coupled at energies lying about a factor of 4π away from

the scale of W-boson masses (cf. for example [9] and references therein for a recent analysis

of this effective field theory). If this Higgs-dependent cutoff is interpreted as a threshold

of new physics, a fortiori this new physics must couple to the Higgs, because its energy

scale depends on the value of |H|. In this situation we would expect extra contributions

to the effective potential through loop corrections involving these new degrees of freedom.

While these effects will not necessarily destabilise the inflationary plateau,2 they may affect

the precision matching between low energy parameters (Higgs and top quark masses) and

inflationary observables (spectral index and tensor ratio).

It is hard to assess the importance of these issues without some experience with con-

crete models. The purpose of this paper is to introduce one simple model of this kind,

2Notice that the strong-coupling problem in the sector of longitudinal W bosons persists in the plateau

region, but here the cutoff of the effective theory is approximately independent of the value of the inflaton.

Thus, it is consistent to assume that the unitarization of the SM will respect the shift symmetry for

|H| ≫ Λ
√
ξ. In this case, integrating out this sector will not lift the flat direction of the inflationary

potential.
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satisfying two criteria: (i) it provides a UV completion of the Higgs-inflation model at the

scale Λ, (ii) it is explicitly weakly coupled in all the intermediate region (1.3).

The model itself amounts to a simple extension of the SM by an extra scalar singlet with

carefully chosen interactions. As we will see, it allows us to separate the actual inflationary

mechanism, which operates at very large fields, from the specific problem posed by the

existence of the intermediate hierarchy in eq. (1.3).

A crucial property of the model is the absence of any large irrelevant operators below

Mp in the effective UV description. The operator in eq. (1.1) is dynamically induced at low

energies, with ξ ≫ 1, by the interplay of relevant operators acting at intermediate scales.

In this respect, the unnatural choice ξ ≫ 1 has the same character as the familiar violation

of naturalness present in the SM, in the choice of the Higgs mass parameter. Unlike the

case of other UV completions such as [11], there are no large irrelevant operators in the

UV effective theory, so that all visible energy scales appear as weakly coupled thresholds

below the Planck scale.

Viewed as an extrapolated Higgs-inflation scenario, our model is not exactly identical

to [1–4]: it does produce slightly different values for the main inflationary observables,

such as the spectral index and the tensor/scalar ratio, but it certainly falls under the same

qualitative category of models. Rather than targeting realistic phenomenology, the main

purpose of our exercise is to extract general lessons regarding the reliability of blind ex-

trapolations of effective Lagrangians with large non-minimal couplings of type (1.1). Our

analysis indicates that extrapolations are likely to behave as a ‘mirage’ of the true infla-

tionary dynamics, capturing the gross qualitative features but offering a ‘blurred’ picture

when it comes to the details.

The plan of the paper is as follows. In section 2 we introduce the basic structure of

the UV model and its low-energy approximation. In section 3 we proceed to study the

behaviour of both models when they are extrapolated to the large field regime, including

a discussion of the properties of inflation in the UV theory. Finally, section 4 is devoted to

the interpretation of our results in the light of effective field theory.

2 The model

We consider a simple extension of the Standard Model with one single new degree of

freedom: a heavy (real) scalar φ with a (Jordan-frame) Lagrangian given by3

LJordan =

[
−1

2
M2

p R− gMp φR+
1

2
(∂µφ)

2 −U(φ,H)

]
+ LSM , (2.1)

where LSM is the Standard Model Lagrangian with minimal coupling to the space-time

metric. The scalar φ has a linear non-minimal coupling to the Ricci curvature scalar, with

a dimensionless strength g. Most of our discussion will take place under the assumption

3The Jordan frame is defined by a standard minimal coupling in covariant derivatives, and a possibly

field-dependent Newton’s constant. Conversely, the Einstein frame is defined by a field-independent New-

ton’s constant and generally non-minimal couplings in covariant derivatives. The two are related by a Weyl

rescaling of the metric.
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that g = O(1), but we will find it useful to consider other dynamical regimes, involving the

tuning of g to extreme values, large or small. The scalar potential involving φ,

U(φ,H) =
1

2
m2 φ2 − µφ |H|2 , (2.2)

introduces two mass scales µ and m, while the SM Higgs potential introduces a further

energy scale µh and reads

USM(H) = −µ2
h |H|2 + λ0 |H|4 . (2.3)

We do not impose any naturalness constraints on these mass parameters. By this we mean

that we allow large hierarchies between all mass scales by explicit tuning of dimension-

less ratios, such as m/Mp, µh/m. This violation of naturalness is to be interpreted as a

generalisation of the standard tuning of µh/Mp in the minimal SM.

The compatibility with low-energy SM phenomenology imposes some constraints on

the mass parameters. For instance, the trilinear coupling µ cannot be too large as it

contributes to φ − h mixing in the electro-weak (EW) vacuum. More explicitly, the EW

vacuum determined by the above potential sits at

〈h〉2 = µ2
h

λ
= v2 , 〈φ〉 = 1

2

µv2

m2
, (2.4)

where h denotes the (real) neutral Higgs component and we have introduced

λ ≡ λ0 −
1

2

µ2

m2
. (2.5)

Assuming that the coupling λ0 is perturbative, we find an upper bound on how large µ can

be, with µ2 ≤ 2λ0m
2 <
∼ m2. The mass matrix for the CP -even scalars {h, φ} reads

M2 =

[
−µ2

h + 3λ0h
2 − µφ −µh

−µh m2

]
=

[
2λv2 + µ2v2/m2 −µv

−µv m2

]
, (2.6)

where the second expression holds at the minimum. In an expansion in powers of v/m, the

two mass eigenvalues are

m2
h ≃ 2λv2 +O(µ2v4/m4) , m2

Φ ≃ m2 +
µ2v2

m2
+O(µ2v4/m4) . (2.7)

The first corresponds to the SM Higgs and the second to a heavy singlet. Notice in

particular that the mixing angle is of order µv/m2 ≪ 1 so that the light state has SM

properties.

Turning our attention to the high energy physics, we notice that the Lagrangian (2.1) is

far from being generic at the level of marginal and irrelevant couplings: we have engineered

the complete absence of φ self-interactions, and the non-miminal coupling g φR is the only

irrelevant operator containing the new scalar field φ. Therefore, the Lagrangian (2.1)

defines a weakly-coupled effective field theory all the way up to the Planck scale, provided

g ≤ 1, a condition that we will regard as the ‘unitarity constraint’. In this case, all mass
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scales below Mp are explicitly visible in the Lagrangian, with no hidden strong-coupling

thresholds.

The concrete scenario of inflation does depend on the particular value of the non-

minimal coupling. For g ≪ 1 we have a garden-variety model of chaotic φ2-inflation. This

region of parameter space will not be our main concern in this paper, although it will serve

as an instructive toy model in section 4.

Our main interest is the case with g of O(1), where the non-minimal coupling becomes

strong precisely at the Planck scale. The precise correlation between the non-minimal cou-

pling, φR, and the highest power of the bare potential, φ2, allows us to run a rehash of the

Higgs inflation scenario, by simply extrapolating the Einstein-frame effective Lagrangian

to the positive trans-Planckian domain4 φ ≫ Mp. A crucial difference with the standard

HI scenario is the absence of any large dimensionless couplings in the action, particularly

in the non-minimal coupling of type (1.1).

A radical violation of the unitarity constraint, in the form of a large non-minimal

coupling g ≫ 1, would just reintroduce the large-ξ problem of HI into the effective UV

model (2.1). Even if such a consideration runs against the main philosophy of this work,

it is worth mentioning that the formal limit g → ∞ can be analysed from the standpoint

of (2.1) by rescaling both the field φ → Φ/g and the mass parameter m → M/g. In the

new variables, taking g → ∞ removes the kinetic action for the Φ field, which turns into

an ordinary Lagrange multiplier. In this limit (2.1) becomes equivalent to Starobinsky’s

model of inflation [12], with mass scale M .5

2.1 Low energy effective action

The simple choice of action in (2.1) allows us to integrate out the field φ exactly, leading

to the formal expression

Leff = LSM − 1

2
M2

p R+
1

2

(
µ |H|2 − gMpR

) 1

m2 +�

(
µ |H|2 − gMpR

)
+ . . . (2.8)

where the dots stand for the one-loop effective action, proportional to Tr log (� + m2),

which has no explicit dependence on the Higgs field. The inverse differential operator can

be developed in a low-energy expansion in powers of �/m2 to yield a series of corrections

to the SM Lagrangian:

Leff = −1

2
M2

pR+LSM+
1

2

µ2

m2
|H|4−g

µMp

m2
|H|2R+

1

2

µ2

m4

(
∂µ|H|2

)2
+
g2

2

M2
p

m2
R2+ . . . (2.9)

where we have neglected operators with four derivatives or more, except for the purely

gravitational Ricci-squared operator. This is justified by our interest in vacuum properties

or classical inflationary dynamics, which is usually discussed at the level of two-derivative

4Regarding extrapolations, we must stay clear of the negative trans-Planckian region, since the effective

Newton constant of the Jordan frame becomes negative for φ < −Mp/2g. We will see below that this

pathology is milder than it appears to be. Nevertheless, it does restrict the scope of (2.1) as an effective

theory in field space.
5When g is not large (the case studied in this paper) the model, and its predictions, deviate from the

Starobinsky limit.
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effective actions. The R2 term, containing four derivatives, was retained on account of its

potentially large coefficient, of order M2
p /m

2.

The first term shown in eq. (2.9) as a deviation from the SM Lagrangian is a marginal

operator that shifts the SM Higgs quartic coupling. We find that the Higgs quartic coupling

at low-energy is

λ = λ0 −
µ2

2m2
, (2.10)

in agreement with our previous definition in eq. (2.5). This shift in the quartic is simply

absorbed by a redefinition of the original UV coupling λ0 and is not an observable effect.

However, it is theoretically important in linking the Higgs mass (related directly to λ) to

the UV behaviour of the scalar potential and can be very relevant to cure the stability

problem of the Standard Model, as discussed below.

Adding the rest of operators appearing in eq. (2.9), we determine the following effective

dynamics for the Higgs-graviton sector:

Lh =
1

2

(
1 + α ξ2

h2

M2
p

)
(∂µh)

2 +
1

2
µ2
h h

2 − λ

4
h4 − 1

2

(
M2

p + ξ h2
)
R+

1

2
γ R2 , (2.11)

where h is the neutral Higgs mode. The coupling constants of irrelevant operators are

calculated in terms of ‘microscopic’ parameters as we show below.

The model (2.11) is very similar to the original model of Higgs inflation introduced

in [1–4]. In fact, it is exactly the same in the formal limit α = γ = 0. The crucial ξ

parameter (taken to be of order 104 in the original formulation), is induced dynamically in

our model and is given by

ξ ≡ µgMp

m2
. (2.12)

We can see that all it takes to generate ξ ≫ 1 is to arrange for a mass hierarchy µ <
∼ m ≪

gMp (with µ > 0 to get the right sign of ξ).

The two operators which make (2.11) deviate from the original Higgs inflation model

are a dimension-six correction to the Higgs field metric and a potentially largeR2 correction,

and are controlled by the couplings

γ ≡
g2M2

p

m2
, α ≡ 1/g2 . (2.13)

We will estimate the impact of these couplings in the extrapolated ‘Higgs inflation’ dynam-

ics in the next section. For now we just mention that the kinetic correction proportional to

α does reveal the low effective cutoff scale Λ = Mp/ξ, since αξ
2/M2

p = α/Λ2. Furthermore,

we find

γ ≡
g2M2

p

m2
=

m2

µ2
ξ2 .

Given that µ must stay below m for low-energy stability, we see that γ is large whenever

ξ is large. In fact, if we decouple the two scalars by sending µ/m → 0, the R2 interaction

is expected to become more important than the non-minimal coupling (1.1), a situation in

which (2.11) would support ‘R2 inflation’ rather than ‘Higgs inflation’.

– 7 –
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The implication is that our set up in (2.1) can be viewed as covering a large space of

inflationary models, including standard chaotic models based on a φ2 potential, Starobinski-

type inflation and Higgs inflation. Viewed through the lens of effective field theory, (2.9)

has a naive cutoff scale Λ = Mp/ξ = m2/(gµ). The phenomenological constraint µ < m,

together with the sub-Planckian unitarity constraint, g ≤ 1, imply that Λ remains slightly

above the true mass scale of new degrees of freedom, m, as expected. Hence, the transition

from (2.11) to the two-scalar model proceeds without any strong-coupling thresholds. The

UV model (2.1) is a partial UV completion of the effective action (2.9) which remains

weakly coupled all the way up to the Planck scale. In this way, we succeed in generating a

model with the crucial ingredient of HI, namely a large value of ξ, out of a standard tuning

of relevant parameters.

Before moving on to the analysis of the large field behaviour in our effective theory,

let us make a few more comments on the microscopic calculation of ξ, given in eq. (2.12).

This result can be understood as a threshold correction for the |H|2R operator. Above the

scale m only the φ field couples nonminimally to gravity. A possible nonminimal |H|2R
coupling might be present due to radiative corrections but it will be negligible. If we look

at the renormalization group (RG) evolution of ξ from Mp down to the EW scale, we will

therefore find a negligible value from Mp down to m, at which scale the potentially very

large effect in (2.12) appears. Below m, the coupling ξ will evolve with its standard RG

equation (Q is the renormalization scale)

dξ

d logQ
=

1

16π2
(ξ + 1/6)

[
12λ+ 6h2t −

9

2
g22 −

3

2
g21

]
, (2.14)

staying large all the way down to the EW scale. One might worry that a large ξ value

could jeopardize the perturbative analysis in the low-energy effective theory, e.g. if ξ2

corrections appear in the RG for ξ at two loops. However, it is easy to see that to all

orders in perturbation theory there will be no contributions to the RG of ξ higher than

linear (unless hugely suppressed by powers of µ2
h/M

2
p ).

3 Large-field behaviour

Armed with our partial UV completion for the Higgs inflation scenario we can now test

the extrapolation procedure implicit in standard treatments. The low-energy effective

actions (2.9) and (2.11) are nominally valid within a patch of radius |H| ∼ Λ in Higgs

field space. The extrapolation procedure consists on the blind continuation towards higher

values of the Higgs field, disregarding the effect of higher order corrections contained in

the formal expression (2.8). On the other hand, the partial UV completion (2.1) defines an

effective field theory free from strongly coupled operators within a patch of size Mp in field

space. Outside this region, the model (2.1) is itself extrapolated to build an inflationary

plateau. Therefore, it is the behaviour in the intermediate region, Λ ≪ |H| ≪
√
ξ Λ, that

provides a stricter test of the extrapolation procedure.

– 8 –
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3.1 Higgs field extrapolation

We begin with the extrapolation of (2.11) into the region h ≫ Λ = m2/gµ. The main

new dynamical feature of this domain is the large Higgs-graviton mixing induced by (1.1),

which forces a diagonalization of kinetic terms. More precisely, the graviton fluctuations

can be disentangled by passing to the Einstein frame with the metric field redefinition:

gµν
∣∣
Jordan

−→ 1

Ωh
gµν

∣∣
Einstein

, with Ωh ≡ 1 + ξh2/M2
p . (3.1)

The resulting potential in the Einstein frame is

V (h) =
1

Ω2
h

[
−1

2
µ2
hh

2 +
1

4
λh4

]
, (3.2)

showing the familiar flattening at large field values, with vacuum energy density V∞ =

λM4
p /(4ξ

2). This is of course exactly the same as in the original HI proposal [1–4].

As mentioned above, differences arise from the fact that, besides the crucial ξ h2R

term, decoupling φ leaves behind two other irrelevant terms not present in [1–4], namely

the R2 term and the (∂µ|H|2)2 operator appearing in eq. (2.9). Let us discuss first the

impact of this last operator. As we have seen in (2.11), it gives an h2(∂µh)
2 contribution

to the kinetic term of h, modifying the relation between the field h and the canonically

normalized field χ at large background field values. Explicitly, the kinetic part of the

effective Lagrangian in Einstein frame is

1

2

(∂µh)
2

Ω2
h

[
1 + (ξ + 6ξ2)

h2

M2
p

+ α ξ2Ωh
h2

M2
p

]
=

1

2
(∂µχ)

2 , (3.3)

where we recall that α = 1/g2 can be taken to be of O(1) in order to comply with the

‘unitarity constraint’ of the UV model. A formal limit g2 → ∞ or, equivalently α → 0,

would give us the standard kinetic term of the original HI model studied in [1–4].

The qualitative behaviour of the field metric (3.3) determines three dynamical regimes:

the low-energy one, h ≪ Λ, where there is little difference between the h field and the

canonical field χ, the intermediate regime, Λ ≪ h ≪
√
ξ Λ, where we can still approximate

Ωh ≃ 1, but (3.3) is already non-trivial, and finally the asymptotic or ‘plateau’ regime,

h ≫ Mp/
√
ξ, where Ωh ≃ ξh2/M2

p and the so-called Higgs-inflation takes place.

Approximating (3.3) in the intermediate domain we find

1

2
(∂µh)

2 (6 + α)
h2

Λ2
≃ 1

2
(∂µχ)

2

which leads to the relation χ ≃
√
6 + αh2/2Λ2. We conclude that the effect of α reduces

to a mild numerical rescaling in the intermediate regime, where the model (2.11) behaves

essentially like the original version [1–4], with an approximately quadratic potential

V (χ) ≃ λ

6 + α
Λ2 χ2 , Λ ≪ χ ≪ Mp . (3.4)
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The difference between α = 0 and α = 1 becomes more critical in the asymptotic

‘plateau’ domain, which corresponds to h ≫ Mp/
√
ξ or, equivalently χ ≫ Mp. In this case

we can approximate (3.3) by

1

2
(∂µh)

2

[
α ξ +

6M2
p

h2

]
≃ 1

2
(∂µχ)

2 . (3.5)

In the original HI model, α = 0, and the asymptotic field redefinition relating h and χ is

exponential:

h2 ≃
M2

p

ξ

[
exp

(
χ√
6Mp

)
− 1

]
, (α = 0) , (3.6)

so that V (χ) approached the asymptotic plateau at χ ≫ Mp as an exponential

V (α=0)(χ) ≃
λM4

p

4ξ2

[
1− exp

(
− 2χ√

6Mp

)]2

. (3.7)

In our case, however, the extra term modifies this behaviour, leading to the simpler relation:

h ≃ χ√
ξ
, (α = 1) , (3.8)

with the potential going as

V (α=1)(χ) =
λM4

p

4ξ2

[
1− 2

M2
p

χ2
+ . . .

]
, (3.9)

in the asymptotic region. The inflationary predictions are obviously affected. While the

Hubble rate at the beginning of inflation (when the scalar field is well into the plateau

region of the potential) is the same,

H2
I ≡ V

3M2
p

≃
λM2

p

12 ξ2
, (3.10)

the slow-roll parameters

ǫ ≡
M2

p

2

(
V ′

V

)2

, η ≡ M2
p

V ′′

V
, (3.11)

(with primes denoting χ derivatives) will scale differently with the number of e-folds

Ne = − 1

M2
p

∫ χf

χi

V

V ′
dχ , (3.12)

with χi and χf the values of the field at the beginning and end of inflation respectively.

For the original scenario (α = 0) the scaling of the slow-roll parameters is

ǫ ≃ 3

4N2
e

, η ≃ − 1

Ne
, (3.13)

so that the scalar spectral index (n=1−6ǫ+2η) and the tensor-to-scalar ratio (r=16ǫ) are,

n ≃ 0.965 , r ≃ 0.0033 , (3.14)
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for Ne ∼ 60, which is in good agreement with the latest Planck measurements, n =

0.968± 0.006 and r < 0.11 (95% C.L.) [13].

On the other hand, for our extrapolated model (α = 1) the scaling is instead

ǫ ≃ 1

(4Ne)3/2
, η ≃ − 3

4Ne
, (3.15)

leading to

n ≃ 0.973 , r ≃ 0.0043 , (3.16)

for Ne ∼ 60. We see that the value of the scalar spectral index is somewhat larger than in

the original scenario, but still in good agreement with the Planck values.

We conclude that (2.11) shares the same qualitative properties as the standard Higgs-

inflation scenario. Notably, the Einstein-frame potential has three well-separated regimes:

a low-energy one dominated by the standard scale-invariant V (χ) ∼ λχ4 dependence; an

intermediate one where the Higgs field is essentially free, V (χ) ∼ λΛ2 χ2; and a plateau

with asymptotically constant potential. There are, of course, important differences in the

plateau region when it comes to the detailed predictions for the spectral index and tensor

ratio, but the main questions of consistency faced by [1–4] can be recreated in the effective

action (2.11), providing a good laboratory for the large-field extrapolation.

Before turning to the analysis of the UV-completed model, we must face up to one

more issue. As noticed above, the R2 operator comes into (2.11) with a hierarchically

large coefficient, γ = g2M2
p /m

2 ≫ 1. This can affect the inflationary dynamics, when the

background curvature is of order H2
I . In order to estimate the relevant effects, we must

first translate the R2 term to the Einstein frame, resulting in a series of terms of the form

γ

[
R− 3

2
|∂µ log Ωh|2 + 3� log Ωh

]2
,

all of them containing two extra derivatives or one extra power of the curvature with respect

to the terms previously retained in the effective Lagrangian. During inflation, the overall

contribution of such terms is controlled by the Hubble scale HI , so that we can expect

modifications of the inflationary dynamics by a factor of order

1 +O
(
γ H2

I /M
2
p

)
,

which translates into relative corrections of size g2H2
I /m

2 when we plug in the value of γ.

Therefore, the model (2.11) is a good emulator of the original Higgs inflation scenario [1–4]

provided the Hubble scale is small compared to the φ-field mass, m. Using now (3.10), we

can translate this condition into a constraint on the Higgs coupling at the threshold:

γ
H2

I

M2
p

≃ λ

12

m2

µ2
≪ 1 , (3.17)

a condition that can be achieved easily for small λ,6 provided µ <
∼ m. Any choice of

parameters leading to a gross violation of (3.17) will correspond to a model dominated by

6Note, in particular that the SM running of λ towards lower values in the UV works in the direction

required by (3.17), which depends on the λ coupling at the scale m.
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‘R2-inflation’ rather than ‘Higgs inflation’. A simple instance leading to this situation is

the µ ≪ m limit, which effectively decouples the Higgs from the inflationary sector of the

theory. It is interesting to notice that the type of R2-inflation arising in this µ = 0 limit

is still characterised by a ‘power-like’ plateau similar to (3.9), rather than the exponential

plateau characteristic of the original model [12]. In general, the generation of exponential

plateaus, of either ‘Higgs’ or ‘R2’ type, requires what amounts to the extremely unnatural

g → ∞ limit in our UV model.

3.2 High energy theory

Let us next look at the large field behaviour of the model (2.1) to see how it compares with

the previous analysis. We begin by noticing that the presence of a φR coupling induces

again a scalar-graviton mixing in the far region of φ-field space. The diagonalization of this

mixing is accomplished, as before, by a Weyl rescaling of the metric to the Einstein frame:

gµν
∣∣
Jordan

−→ 1

Ωφ
gµν

∣∣
Einstein

, with Ωφ ≡ 1 + 2φ/Mp , (3.18)

where we have set g = 1 for simplicity. The result of this field redefinition is the following

effective action in the scalar sector:

Lscalar =
1

2

∑

i,j=h,φ

Gij ∂µϕi∂
µϕj − V (h, φ) , (3.19)

where the Einstein-frame potential is given by

V (h, φ) =
1

Ω2
φ

[
−1

2
µ2
h h

2 +
1

4
λ0 h

4 +
1

2
m2 φ2 − 1

2
µφh2

]
, (3.20)

and the metric in field space is diagonal with entries

Gφφ =
1

Ωφ

(
1 +

6

Ωφ

)
, Ghh =

1

Ωφ
. (3.21)

A basic observation is that (3.19) shows no strong-coupling thresholds directly associ-

ated to the Higgs direction in field space. This is tantamount to the successful unitarization

of the SM sector up to arbitrarily high scales. The only strong-coupling threshold visible

in the model (3.19) coupled to gravity is the usual one at the Planck scale. In particular,

we can approximate Ωφ ≃ 1 within the strip |φ| ≪ Mp/2 in field space, where there is

essentially no difference between the Jordan and the Einstein frames.

Both the potential and the kinetic field metric exhibit second order poles at the singular

line φsing = −Mp/2. The singularity in the metric means that the singular locus lies

at infinite ‘proper distance’ in field space, effectively becoming an ‘asymptotic region’

of configuration space. Moreover, the positivity of the potential ensures that the line

φ = −Mp/2 acts dynamically like a ‘repulsive wall’.

More concretely, within a narrow region of Planckian width, in the vicinity of the

singular line, the scalar potential in (3.19) grows from O(m2M2
p ) to infinity. As a result,

any large oscillations of the field φ will be efficiently bounced away from the singular

– 12 –
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line. The total energy density in any post-inflationary oscillations of φ is expected to be

somewhat below the nominal plateau energy density of O(m2M2
p ), since some energy will

be shed in couplings to other degrees of freedom, including the gravitational friction caused

by the FRW expansion. Hence large excursions of φ into the negative Planckian region are

likely to turn around even before the effects of the pole are significant.

Since (3.19) is written in the Einstein frame, the gravitational dynamics is given by

a standard expanding FRW solution, fed with the energy-momentum tensor of the fields

executing bounded oscillations. This implies that (3.19) can be used to give a self-consistent

description of post-inflationary dynamics, including potentially large oscillations of the φ

field during the reheating process.7

In order to compare with the extrapolated Higgs effective action of the previous section,

we must project the two-field model into a single-field model. Near the SM vacuum the

Higgs field is much lighter than the singlet, and the projection consists on integrating

out φ, an operation that obviously yields (2.9). Working in the static approximation, i.e.

neglecting derivatives, we can substitute φ by the classical solution

φ(h) ≃ µ

2m2
h2 =

h2

2Λ
, (3.22)

where we have also neglected µh and curvature effects. Equation (3.22) determines a

submanifold of field space which projects the two-field model into an effective theory for

the Higgs field alone, consisting on eq. (2.11). However, as soon as we enter the region

φ ≫ Λ the role of ‘lightest field’ is switched between the Higgs and the singlet. To illustrate

this, we can compare the second derivative of the potential in the φ and h directions:

∂2
hU = 3λ0h

2 − µφ , ∂2
φU = m2 .

Evaluating the ratio along the submanifold (3.22) we find

∣∣∣∣∣
∂2
hU

∂2
φU

∣∣∣∣∣
h2=2m2φ/µ

=
2φ

µ
(2λ0 + λ) =

2φ

Λ
[1 +O(λ/λ0)] ≃

2φ

Λ
.

In the last step we have incorporated the phenomenological constraint forcing us to work

with parametrically small values of λ/λ0. We see that, for φ ≫ Λ, we have ∂2
hU ≫

∂2
φU when evaluated along the line (3.22). Therefore, in the region φ ≫ Λ it is more

appropriate to integrate out h in favor of φ. Doing this in the static approximation induces

the projection to a single-field model along the submanifold

h2(φ) =
1

λ0

[
µφ+ µ2

h

]
≃ 1

λ0
µφ = 2Λφ

(
1− λ

λ0

)
, (3.23)

(we can again neglect µ2
h in this region of field space). Notice that the submanifold (3.23)

differs slightly from (3.22), by the appearance of the O(1) factor (1− λ/λ0).

7Since no finite-energy oscillation can ever reach φsing = −Mp/2, even the Jordan frame metric, obtained

by a conformal transformation of the Einstein-frame metric, will be free of curvature singularities: the

singularity of the effective action (3.19) does not imply a singular behaviour of physical solutions.
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Substituting (3.23) into the kinetic term of (3.19) gives us the effective metric on the

submanifold (3.23):

1

2
Gφφ (∂φ)

2 +
1

2
Ghh

(
∂
√
µφ/λ0

)2
=

1

2

(
Gφφ +Ghh

µ

4λ0φ

)
(∂φ)2 . (3.24)

Since Ghh ≃ 1 and Gφφ ≃ 7 as long as φ ≪ Mp, we find that the field-space metric induced

on the submanifold (3.23) is essentially trivialised by the field φ in the intermediate domain

Λ ≪ φ ≪ Mp, i.e. the canonical field is given simply by χ ≃
√
7φ. This region maps to

the ‘intermediate region’ in the extrapolated Higgs model of the previous section, and the

resulting effective potential for the canonical field is given approximately by

V (χ) ≃ λΛ2

7

(
1− λ

λ0

)
χ2 , Λ ≪ χ ≪ Mp , (3.25)

which coincides with the potential (3.4) of the extrapolated model (evaluated for α = 1), up

to the O(1) correction factor (1−λ/λ0). Notably, the light mode behaves as an essentially

free field with mass of order
√
λΛ in both cases.

As we continue to the trans-Planckian region φ ≫ Mp, the canonical light field con-

tinues to be well approximated by the trajectory (3.23), but the field metric becomes

non-trivial in the asymptotic region. Evaluating (3.24) in the asymptotic region φ ≫ Mp,

we find
1

2
(∂χ)2 ≃ 1

2
Gφφ(∂φ)

2 ,

leading to a canonical field

χ ≃
√

2Mpφ

and an associated asymptotic potential

V (χ) ≃ V∞

[
1− 2

M2
p

χ2
+O(M4

p /χ
4)

]
.

The asymptotic vacuum energy is given by

V∞ =
λM2

pm
2

8λ0
=

λM4
p

4ξ2

(
1− λ

λ0

)
, (3.26)

which, compared to the value from the effecive theory (3.9), indeed shows the same overall

correction factor as (3.25).

We conclude that the rough features of inflationary dynamics, as well as the classical

properties of the lightest fields in the intermediate region, are qualitatively well described by

the extrapolated ‘Higgs inflation’. This is happening despite the fact that the dynamics is

actually dominated by φ beyond the Λ threshold. The main difference between the models,

as described in the static approximation for heavy fields, is the emergence of a correction

factor 1−λ/λ0 in the energy density, which finds its origin in the slight mismatch between

the submanifolds (3.22) and (3.23).
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Figure 1. Illustration of the lines of flow of a slow-rolling field in the potential V (φ, h) of eq. (3.20).

The red line shows the inflationary trajectory (3.28) along the potential valley (with the transition

to yellow indicating that slow-roll no longer holds).

3.2.1 Detailed inflationary dynamics

The previous ‘broad brush’ analysis of the inflationary dynamics can be further substanti-

ated by a more careful treatment of the motion in field space. The slow-rolling fields move

along trajectories that satisfy the differential equation

dh

dφ
=

Gφφ

Ghh

(
∂V/∂h

∂V/∂φ

)
. (3.27)

For illustration, the integral curves of this equation are shown in figure 1. In the large

field region, the trajectory that asymptotically reaches the valley of the potential can be

obtained analytically in inverse powers of φ as

h2(φ) =
µφ

λ0
+

λMpm
2

4λ2
0φ

[
1− 14λ0Mp + µ

4λ0φ
+O(M2

p /φ
2)

]
. (3.28)

This particular trajectory, the inflationary attractor, is also shown in figure 1 as a red

line. Deep along the plateau, it is well approximated by the submanifold (3.23), which was

derived by freezing the classical dynamics of h.

We can calculate the slow-roll parameters in this two-field scenario using the standard

generalization to the multi-field case:

ǫ ≡
M2

p

2V 2
Gij ∂V

∂ϕi

∂V

∂ϕj
, η ≡ Min Eigenvalue

[
M2

p

V
Gik ∂2V

∂ϕk∂ϕj

]
, (3.29)

where Gij is the matrix inverse of Gij . Along the valley trajectory (3.28) we get

ǫ =
M3

p

φ3
+O(M4

p /φ
4) , η = −

3M2
p

φ2
+O(M3

p /φ
3) , (3.30)

while the number of e-folds is given by the integral

Ne = −
∫ φf

φi

1

2ǫV

dV

dφ
dφ , (3.31)
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where V is understood here as the potential along the valley, that is, V (φ) = V [h(φ), φ],

with h(φ) as given by eq. (3.28). One can easily obtain that the scaling of ǫ and η with

the number of e-folds is exactly the same found in the low-energy effective theory, given

in eq. (3.15).

The inflationary valley itself is very narrow, ensuring that no significant isocurvature

perturbations are generated during inflation. To see this, notice that Higgs fluctuations

h′ = h− h̄ around a point in the valley (h̄, φ̄), with h̄ 2 ≃ µφ̄/λ0 and φ̄ > Mp, have effective

action

Leff ≃ 1

2

(∂h′)2

Ωφ̄

− µφ̄

Ω2
φ̄

h′ 2

at the quadratic level, as determined by (3.19). This results in a mass-squared for the

Higgs field along the valley of order

m2
h

∣∣∣
valley

≃ µMp , (3.32)

which, for our choice of parameters, stays comfortably larger than the Hubble scale:

H2
I

m2
h

≃ λ

24λ0

m2

µMp
≃ λ

12

m3

µ3

m

Mp
≪ 1 .

Incidentally, it is interesting that (3.32) is asymptotically constant along the valley. There-

fore, the asymptotic shift symmetry of the inflaton extends to the transverse quadratic

fluctuations, ensuring that the flatness of the inflationary direction is stable under one

loop radiative corrections.

3.3 Potential stability

We close this section by addressing the issue of potential stability, that poses a serious

threat to the scenario of Higgs inflation. As is well known, for the central experimental

values of the Higgs and top masses, mh and mt, (and assuming no BSM physics up to the

Planck scale), the SM Higgs potential develops an instability at large field values [14, 15]

making the electroweak vacuum metastable. Although such metastability is mild and the

lifetime of the vacuum is extremely large compared with the age of the Universe, the

viability of Higgs inflation does require a positive potential at large field values.8 However,

stability of the potential at large scales requires experimentally disfavored values of mt

and/or mh (even allowing for a larger error in the determination of mt [17]) disfavoring

also the possibility of Higgs inflation [18].

A simple, generic and very efficient cure of the potential instability was proposed in

ref. [19]. The idea is to add to the SM a singlet field S with a large vacuum expectation

value and coupled to the Higgs as λHS |H|2S2. The effective theory below the singlet mass is

SM-like with a negative threshold effect on the Higgs quartic coupling that makes the Higgs

mass lower than it would be without the singlet coupling. In the low-energy effective theory

the Higgs mass looks dangerously light for stability, but the UV-complete theory above the

singlet threshold does not suffer any stability problem. This simple mechanism can be

8For another recent way to overcome this problem and to access the same parameter region, see [16].
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implemented in many different models with singlets (see [19] for a few relevant examples)

and it was indeed applied in [19] to the unitarized-Higgs-inflation scenario of [11].

In the model we have presented in this paper we have a similar kind of threshold

correction to the Higgs quartic coupling and with the right sign to help stabilizing the

potential at large field values, see eq. (2.10), even though the details of the stabilization

mechanism are not those of [19] (the threshold effect does not depend on the singlet vac-

uum expectation value and there is not a λHS coupling). The stability conditions for the

potential of eq. (3.20) are simply

m2 > 0 , λ > 0 , (3.33)

which come from requiring stability along the directions φ and h2 ≃ µφ/λ0, respectively.

The last condition is in fact the same we would impose on the low-energy effective theory so

that there is no tree-level gain from the threshold effect concerning the stability conditions.

There is however a significant gain at the loop level as the new degree of freedom φ changes

the renormalization group evolution of the Higgs quartic coupling above the φ threshold

scale. We can see this by writing

dλ

d logQ
= βSM

λ +
1

2π2
(λ0 − λ)(λ0 + 2λ) , (3.34)

that shows how the running of the quartic coupling with the renormalization scale Q

receives sizeable positive contributions from the singlet. This effect is enough to stabilize

the potential and allow to extend the scenario of Higgs inflation to the experimentally

preferred range of Higgs and top masses provided the mass of the field φ is below the SM

instability scale (Λi ∼ 1011GeV for the central values of mh and mt). For a given ξ, this

condition translates into an upper bound on µ,

µ < ξ
Λ2
i

gMp
, (3.35)

that is easy to satisfy.

4 Discussion

The model presented in this paper realizes a simple (partial) UV completion of a Higgs-

inflation (HI) scenario. Besides the Higgs field, h, the model contains an additional scalar

field, φ, coupled linearly to the Ricci curvature scalar with an strength of O(1) in Mp

units. Apart from the Einstein-Hilbert term, there are no other irrelevant operators, so

unitarity is preserved below the Planck scale. In the complete theory, inflation is driven

essentially by the φ-field. The effective theory, obtained by integrating-out φ, is very

similar to the ‘standard’ HI model postulated in refs. [1–4]. Remarkably, the abnormally

large dimensionless parameter ξ of that HI model is simply generated here as a prosaic

ratio of mass scales.

Beyond particular characteristics, our model illustrates the fact that HI, understood

as a scenario in which inflation is solely driven by the dynamics of the Higgs field, can be
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Figure 2. Global view of the (h, φ) field space. The single-field projection implied by the extrap-

olated Higgs theory is represented by the dashed line. It differs from the approximate two-field

valley (full line) for φ ≫ Λ. In the plateau region, φ > Mp, the full line is a good approximation to

the slow-roll attractor trajectory.

simply a mirage effect from the true inflationary process, in which the Higgs field might

play a rather secondary role. This is illustrated in figure 2, a qualitative rendering of (h, φ)

field space showing the comparative accuracy of the extrapolation from the low-energy

theory. The submanifold of configuration space determined by eq. (3.22), which is selected

by the extrapolation procedure, is represented by the dashed line. On the other hand, the

continuous parabolic line represents the approximate ‘valley’ of eq. (3.23), determined by

integrating out the Higgs mode in the static approximation. This approximation is very

good when it comes to slow-roll dynamics, since (3.23) reproduces the first term in the

large-field expansion (3.28) of the exact inflationary attractor. The slight difference between

the two submanifolds quantifies the ‘fidelity’ of the mirage provided by the extrapolation

of (2.11) and is responsible for the offset factors of order 1−λ/λ0, found in the computation

of the effective potential.

The global perspective offered by figure 2 implies that inflation is mostly given by

φ-field dynamics, and yet we have seen in section 3 that the HI picture gets the qualitative

features of the potential essentially right, particularly for small values of λ/λ0. All these

facts are likely to generalise beyond the particular model presented here. Actually, one

can expect that any inflation model in which the Higgs field evolves during the inflationary

process (due to some interaction with the inflaton, even if small), will show up in the

effective theory as a HI scenario, where the higher order operators play a prominent role.

The restriction to two-derivative effective actions is an implicit feature of the extrapo-

lation procedure. This restriction is actually equivalent to the projection of the dynamics

onto a one-dimensional submanifold of field space, such as the ones featuring in figure 2,

obtained by applying the static approximation to either h or φ fields.
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On the other hand, the non-local action (2.8) for the Higgs field, containing an infinite

tower of higher derivative operators, should give an exact account of the classical dynamics

of the full theory (2.1). This suggests that any mirage could be improved by going beyond

the two-derivative level. As an example of this general phenomenon, let us consider an

extremely simple situation arising in the g → 0 limit of our model, i.e. the same as eq. (2.1),

but with the non-minimal coupling to gravity turned off. The scalar sector is now given by

Lscalar =
1

2
(∂µφ)

2 +
1

2
(∂µh)

2 −
[
1

2
m2 φ2 − 1

2
µφh2 +

1

4
λ0 h

4

]
, (4.1)

where h is the (real) neutral Higgs component. We have obviated the usual Einstein term,

−M2
p R/2, and the SM mass term, −µ2

hh
2/2, that play no role in the present discussion.

Once again, we assume m ≫ v so that, for small values of h (∼ EW scale), the φ field

decouples and we recover the Standard Model, with the effective quartic coupling given by

eq. (2.5), that is, λ ≡ λ0 − µ2/(2m2). Similarly, for large field values the potential has a

valley in the h2(φ) ≃ µφ/λ0 direction. However, along this valley the potential does not

develop a plateau but rather increases quadratically, essentially along the φ-field direction,

with an effective mass,

m̃2 ≃ m2 − µ2

2λ0
= 2

λm4

µ2

(
1− λ

λ0

)
. (4.2)

For convenience we assume (as we have done throughout the paper) m̃2 ≪ m2, which is

equivalent to λ ≪ λ0, implying λ0 ≃ µ2/2m2. The direction orthogonal to the valley is

mostly h field, with a large effective mass of order 2λ0h
2. So, in the large field region the

model supports chaotic inflation, mainly along φ.

Let us now examine the single-field description obtained by the (classical) integration-

out of the φ field. Plugging the equation of motion for φ in (4.1), we get the g → 0 limit

of (2.8):

Lnl =
1

2
(∂µh)

2 +
1

8
h2

µ2

m2 +�
h2 − 1

4
λ0 h

4 . (4.3)

The solutions of the equation of motion derived from this non-local Lagrangian are simply

those of the complete Lagrangian (4.1) projected into the h axis of field space. In particular,

Lnl describes the dynamics of the lightest state, that can be extracted by expanding in

powers of �/m2,

Leff =
1

2
(∂h)2

(
1 +

µ2

m4
h2

)
− 1

4
λh4 + · · · (4.4)

where the dots denote higher-order terms in �/m2. Note that this two-derivative effective

Lagrangian is that of eq. (2.9) after switching off the non-minimal gravitational couplings.

As a matter of fact, the Lagrangian (4.4) represents a remarkably simple (and succesful)

scenario of Higgs inflation. In the small-field regime, h is canonically normalized and the

Lagrangian describes just the ordinary SM, as expected. However, when extrapolated to

the large-field regime, h ≫ m2/µ, the canonically normalized field reads

χ ≃ µ

2m2
h2 , (4.5)

– 19 –



J
H
E
P
0
9
(
2
0
1
5
)
0
2
7

so that

Leff =
1

2
(∂χ)2 − 1

2
m2

χ χ2 + · · · (4.6)

with

m2
χ =

2λm4

µ2
. (4.7)

This has the same form as the chaotic inflationary potential derived from the complete

Lagrangian (4.1), except that m2
χ replaces m̃2, the two differing by the, by now standard,

correction factor (1− λ/λ0), which measures the accuracy of the mirage extrapolation.

The simplicity of this model allows us to track the leading O(λ/λ0) corrections that

explain the difference between mχ and m̃. Conceptually, the non-local Lagrangian (4.3)

contains the same information as the ‘UV-model’ with two scalar fields (4.1), at least when

considering classical field dynamics. In order to make this more explicit, let us pick a

classical solution χc of the large-field effective Lagrangian (4.6), i.e. one that satisfies

�χc = −m2
χ χc .

The leading four-derivative correction coming from (4.3) is

µ2

8m6
h2�2 h2 ≃ 1

2m2
χ�

2 χ ,

where we have used the large-field approximation (4.5) to extract the operator in terms of

the canonical field χ. Evaluating this term as a perturbation to the on-shell value of the

Lagrangian (4.6) we find

L′
eff [χc] =

1

2
(∂χc)

2 − 1

2
m2

χ χ
2
c +

1

2m2
χc�

2 χc =
1

2
(∂χc)

2 − 1

2
m 2

χ χ2
c , (4.8)

where

m 2
χ = m2

χ

(
1−

m2
χ

m2

)
= m2

χ

[
1− λ

λ0
+O(λ2)

]
.

Hence, m and m̃ are found to coincide up to O(λ2) effects. In this way we see that one may

recover the ubiquitous 1−λ/λ0 factor when we keep track of higher-derivative corrections.

Of course, in passing from (4.4) to (4.6) we have extrapolated the Higgs field beyond

the cut-off Λ ∼ m2/µ, that can be read from the non-renormalizable operator in (4.4).

This is not different from the practice in conventional HI models. Clearly, the inclusion of

generic additional higher-order operators would render the theory out of control for such

large field values. From the pure low-energy perspective the absence of those operators

would look like a mysterious conspiracy. However, the effective origin of the low-energy

theory allows to understand their absence: namely, from eq. (4.3) one sees that all the

additional higher-order operators have the structure (µ2/m2)h2(�/m2)nh2, which in the

small �/m2 regime give small (but not necessarily negligible) corrections to the effective

Lagrangian (4.4).

The simple exercise just discussed also illustrates the limitations of playing just with the

effective theory. We have noted that the inclusion of the additional higher-order operators
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derived from the (classically) exact expression (4.3) imply an O(λ/λ0) shift of the effective

mass in the inflationary regime. From the low-energy point of view it is not possible to

guess the size of these additional operators, which, depending on the size of λ/λ0, might be

necessary to extract accurate quantitative predictions. This happened also for the model

discussed in depth along this paper, and it is likely to be a generic property of HI models,

understood as effective theories. The details of the UV completion seem necessary to

extract robust quantitative predictions.

The ‘mirage’ interpretation of Higgs inflation which we have presented here is likely to

suffer additional ‘blurring’ when the impact of radiative corrections is taken into account,

a problem of immediate interest in the light of our analysis. Furthermore, it should be

stressed that our ‘UV models’ shed no light on the actual mechanism generating the infla-

tionary plateau. The reason is of course the trans-Planckian nature of inflation in all the

models under consideration in this paper.
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