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• We unearthed survival strategies of 
Antarctic endolithic microbes. 

• We generated 4539 metagenome- 
assembled genomes (MAGs). 

• 49.3 % of MAGs were novel candidate 
species. 

• Trace gas oxidation and atmospheric 
chemosynthesis support survival. 

• Cold adaptation is pivotal for surviving 
in the coldest and driest desert on Earth.  
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A B S T R A C T   

Survival and growth strategies of Antarctic endolithic microbes residing in Earth's driest and coldest desert 
remain virtually unknown. From 109 endolithic microbiomes, 4539 metagenome-assembled genomes were 
generated, 49.3 % of which were novel candidate bacterial species. We present evidence that trace gas oxidation 
and atmospheric chemosynthesis may be the prevalent strategies supporting metabolic activity and persistence of 
these ecosystems at the fringe of life and the limits of habitability. 
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1. Introduction 

Permanently ice-free areas cover <1 % of the Antarctic continent 
(Lee et al., 2017) and include the coldest, driest and the most oligotro-
phic environments of Earth. Even so, Antarctic rocks are unexplored and 
isolated ecosystems that support highly diverse microbial communities; 
in such regions, highly adapted life forms subjected to a combination of 
poly-stresses still perpetuate (Dragone et al., 2021; Montgomery et al., 
2021). Endolithism lifestyle represents adaptation at the edge inhabit-
able conditions; it is a specialized colonization of microorganisms 
dwelling inside airspaces of rocks. Airspaces within rocks offer micro-
biota a protected and buffered microenvironment, allowing life to 
expand into different extreme conditions (Friedmann, 1982; Archer 
et al., 2017). Endolithic communities constitute simple food webs of 
varying complexity. Lichen-associated or free-living chlorophycean 
algae and Cyanobacteria function as primary producers, whilst fungi and 
more heterotrophic bacteria support key ecosystem services such as 
nutrient cycling, rock weathering, and proto-soil formation (de la Torre 
et al., 2003; Archer et al., 2017). Recent scientific studies considerably 
advanced our understanding of endolithic microbial biodiversity, envi-
ronmental preferences, and extraordinary resistance to multiple stresses 
(Archer et al., 2017; Coleine et al., 2020; Gevi et al., 2022). For instance, 
it was recently found that the majority of new bacterial species belong to 
monophyletic bacterial clades that diverged from related taxa in a range 
from 1.2 billion to 410 million of years and are functionally distinct from 
known related taxa (Albanese et al., 2021). More recently, is has been 
presented the first predicted viral catalog comprising >75,000 viral 
operational taxonomic units (vOTUS), with potential functions that 
indicate that they might influence other rock's microbial components 
(Ettinger et al., 2023). 

However, despite a number of studies being conducted at the com-
munity level, we still lack the most basic knowledge of how Antarctic 
endoliths survive the challenging conditions. A comprehensive genome 
catalog is the necessary first step to clarifying the metabolic features and 
capabilities of these microorganisms and to elucidate how they survive 
such harsh conditions. Learning more about life under the extreme 
conditions is critical towards defining the fringe of habitability on Earth 
(Merino et al., 2019). 

To address this knowledge gap, we conducted a field survey 
including 109 endolithically colonized rocks, covering a plethora of 
regions and environments found in ice-free Antarctica, which includes a 
broad range of geo-environmental (e.g. altitudinal gradient, different 
rock typologies) and geographical distributions (i.e. Antarctic Peninsula, 
Northern Victoria Land, and McMurdo Dry Valleys; Fig. 2a–c; Supple-
mentary Table S1). We herein present the first Antarctic Rock Genomes 
Catalog (ARGC), which is the most comprehensive resource of bacterial 
metagenome-assembled genomes (MAGs) from terrestrial Antarctica to 
date. 

2. Material and methods 

2.1. Study area 

Rocks colonized by endolithic communities were collected in thirty- 
eight sites in Antarctica including Antarctic Peninsula (n = 3), McMurdo 
Dry Valleys, Southern Victoria Land (n = 27), and Northern Victoria 
Land (n = 79) during >20 years of Italian Antarctic Expeditions. 
Different rock typologies (sandstone n = 59, granite n = 43, quartz n = 5, 
and basalt/dolerite n = 2) were collected along a latitudinal transect 
(ranging from − 62.10008 -58.51664 to − 77.874160.739) and selecting 

different environmental conditions: sun exposure (northern sun exposed 
and southern shady rocks), altitude, distance from sea (up to 3100 m 
above sea level (a.s.l.)). This selection has been made to provide a 
comprehensive overview of Antarctic endolithic diversity (Figs. 1, 2, 
Supplementary Table 1). The presence of endolithic colonization was 
assessed by direct observation in situ by using magnifying lens. Rocks 
were excised aseptically using a geologic hammer and sterile chisel, and 
rock samples, preserved in sterile plastic bags, and immediately pre-
served at − 20 ◦C upon collection to avoid contamination. Rocks were 
then transported to University of Tuscia and stored at − 20 ◦C in the 
Culture Collection of Antarctic fungi of the Mycological Section of the 
Italian Antarctic National Museum (MNA-FCC), until downstream 
analysis. 

2.2. DNA extraction, library preparation, and sequencing 

Metagenomic DNA was extracted from 1 g of crushed rocks using 
DNeasy PowerSoil Pro Kit (Qiagen, German), quality checked by elec-
trophoresis using a 1.5 % agarose gel and Nanodrop spectrophotometer 
(Thermofisher, USA) and quantified using the Qubit dsDNA HS Assay Kit 
(Life Technologies, USA). Shotgun metagenomic sequencing paired-end 
libraries were constructed and sequenced as 2 × 150 bp using the Illu-
mina NovaSeq platform (Illumina Inc., San Diego, CA) at the Edmund 
Mach Foundation (San Michele all'Adige, Italy) and at the DOE Joint 
Genome Institute (JGI). 

2.3. Sequencing reads preparation, assembly and binning 

The metashot/mag-illumina v2.0.0 Nextflow-based (Di Tommaso 
et al., 2017) workflow (https://github.com/metashot/mag-illumina, 
parameters: –metaspades_k 21,33,55,77,99) was used to perform raw 
reads quality trimming and filtering, assembly and contigs binning on 
the 91 metagenomic samples. In brief, adapter trimming, contaminant 
(artifacts and spike-ins) and quality filtering were performed using 
BBDuk (BBMap/BBTools v38.79, https://sourceforge.net/projec 
ts/bbmap/). During the quality filtering procedure i) raw reads were 
quality-trimmed to Q6 using the Phred algorithm; ii) reads that con-
tained 4 or more “N” bases, had an average quality below 10, shorter 
than 50 bp or under 50 % of the original length were removed. Samples 
were then assembled individually with SPAdes (Nurk et al., 2017) 
v3.15.1 (parameters –meta -k 21,33,55,77,99). 

Metagenomic contigs were binned into candidate metagenome- 
assembled genomes (MAGs) using MetaBAT 2 (Metagenome Binning 
based on Abundance and Tetranucleotide frequency) (Kang et al., 2019) 
v2.12.1. Briefly, high-quality reads were mapped on assembled contigs 
using Bowtie2 (Langmead and Salzberg, 2012) v2.3.4.3. Samtools (Li 
et al., 2009) (htslib v1.9) was used to create and sort the BAM files. The 
depth of coverage was estimated by applying the MetaBAT2 script 
“jgi_summarize_bam_contig_depths”. Finally, contigs sequences and the 
depth of coverage estimates were used by MetaBAT2 to recover the 
10,677 bins. 

2.4. Quality assessment, filtering and dereplication 

The resulting bins were combined with the 1660 metagenomic bins 
from (Albanese et al., 2021) and analyzed using themetashot/prok- 
quality (Albanese and Donati, 2021) v1.2.3 (parameters –gunc_filter 
–gunc_db gunc_db_2.0.4.dmnd) workflow. Briefly, completeness, 
redundant and non-redundant contamination (Orakov et al., 2021) es-
timates were obtained by CheckM (Parks et al., 2015) v1.1.2 and GUNC 
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(Orakov et al., 2021). Bins with completeness estimates of <50 %, >10 
% contamination and that did not pass the GUNC filter were discarded, 
resulting in a total of 4540 filtered prokaryotic MAGs. MAGs were 
classified into “high-quality draft” (HQ) with >90 % completeness and 
< 5 % contamination and “medium-quality draft” (MQ) with 
completeness estimates of ≥50 % and <10 % contamination. Species- 
level operational taxonomic units (OTUs) were identified by clustering 
HQ and MQ MAGs at 95 % average nucleotide identity (ANI) using dRep 
(Olm et al., 2017) v2.6.2, resulting in a total of 2279 OTUs. For each 
species-level OTUs, the MAG with the highest quality score was chosen 
as representative. The score was computed using the formula: score =
completeness - 5 x contamination +0.5 x log(N50) (Albanese and Don-
ati, 2021). 

2.5. Taxonomic classification of prokaryotic MAGs 

Species-level OTUs representative MAGs were taxonomically classi-
fied using the metashot/prok-classify v1.2.1 workflow (https://github. 
com/metashot/prok-classify, parameters: –gtdbtk_db release202). The 
workflow includes the genome taxonomy database toolkit (GTDB-Tk) 
(Chaumeil et al., 2020) v1.5.0 and the GTDB release 202, following the 
recently proposed nomenclature of prokaryotes (Parks et al., 2022). A 
single OTU was classified as archaea and was removed from subsequent 
analyses. Approximately-maximum-likelihood phylogenetic tree from 
the GTDB protein alignments of the 2278 bacterial OTU representatives 
was inferred using FastTree (Price et al., 2010) v2.1.11 (default 
parameters). 

2.6. Bacterial OTU coverage estimates in metagenomes 

The metashot/containment v1.0.0 workflow (https://github.com 

/metashot/containment, parameters: –min_identity 0.95 –winner_take-
s_all –sketch_size 10000) was used to determine the presence of the 
reconstructed bacterial OTU in the 109 Antarctic samples. Briefly, for 
each metagenome we applied the Mash Screen algorithm (Ondov et al., 
2019) (Mash v2.1) in order to calculate the containment score for each 
OTU (i.e., the estimate of the similarity of an OTU representative to a 
sequence contained within the metagenome), its p value and the OTU 
median-multiplicity, as a proxy for the OTU coverage. The Mash Screen 
algorithm demonstrated to be in good agreement with the mapping-and- 
consensus procedure described in (Albanese et al., 2021). 

2.7. Functional annotation of bacterial MAGs 

Functional annotation was performed using the workflow metashot/ 
prok-annotate (https://github.com/metashot/prok-annotate, commit 
da2d0bb, parameters: –run_eggnog –eggnog_db emapperdb-5.0.2). 
Input MQ and HQ bacterial MAGs (n = 4539) were processed as fol-
lows: (i) 16,830,059 translated coding DNA sequences (CDSs) were 
predicted using Prokka (Seemann, 2014) v1.14.5 which in turn wraps 
the gene predictor Prodigal (Hyatt et al., 2010) and (ii) functionally 
annotated using EggNOG-mapper (Cantalapiedra et al., 2021) (v2.1.4, 
parameters -m diamond –itype protein) against the eggNOG Ortholo-
gous Groups (OGs) database (Huerta-Cepas et al., 2019) v5.0.2. The 
eggNOG database integrates functional annotations collected from 
several sources, including Gene Ontology (GO) terms, KEGG functional 
orthologs (Kanehisa et al., 2014) and COG categories (Tatusov et al., 
2000). For each species-level OTU, a target gene/ortholog was marked 
as “present” if more or equal than 80 % of the HQ genomes which belong 
to the OTU encoded that gene/ortholog. 

Translated CDSs were de-replicated at 95 %, 80 % and 50 % identity 
and an alignment fraction threshold of 80 % using MMseqs2 (Mirdita 

Fig. 1. Examples of samples collected in the Victoria Land, Continental Antarctica. a) Finger Mt., b) Linnaeus Terrace, c) Battleship Promontory.  
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et al., 2019) v13–1 with the parameters “easy-linclust -e 0.001 –min-seq- 
id [IDENTITY] -c 0.80”. 50 % protein cluster representatives were 
searched against the UniProt Reference Clusters (UniRef50, release 
2022_01, 23-Feb-2022, http://www.uniprot.org) with an identity 
threshold of 50 % using the MMseqs2's easy-search protocol (parameters 
-e 0.001 –min-seq-id 0.5 –cov-mode 2 -c 0.8). 

Moreover, translated CDSs (n = 16,830,059) were searched against 
the “Greening lab metabolic marker gene databases” (Greening, 2021) 
using an identity threshold of 50 % (parameters: easy-search –min-seq- 
id 0.5 –cov-mode 2 -c 0.8). Best hits were further filtered for some 
marker gene according to (Chen et al., 2021): [NiFe]-hydrogenases, 
[FeFe]-hydrogenases, CoxL, AmoA, NxrA and NuoF were filtered at 

60% identity threshold, AtpA, YgfK, HbsT, ARO, and PsbA at 70 %, and 
PsaA at 80 %. For each species-level OTU, a target gene was marked as 
“present” if more or equal than 80 % of the HQ genomes that belong to 
the OTU encoded that gene. 

2.8. Phylogenetic analysis of RuBisCO and [NiFe]-hydrogenase 

A total 978 putative RuBisCO sequences and 2433 putative [NiFe]- 
hydrogenase sequences were yielded from the recovered MAGs. All se-
quences obtained were further classified into subforms using previously 
published databases and BLAST+ (ver. 2.12.0) (Camacho et al., 2009). 
In addition, separate phylogenetic analyses were conducted to visualize 

Fig. 2. Study area and MAGs characteristics. a–c, Map of Antarctica (a) and sampling sites (Victoria Land, b; Peninsula, c) (red dots). d, Number of MAGs and their 
quality-based classification. e, Upper bar plot: number of unclassified OTUs. Bottom bar plot: number of species, genera, families, orders, classes and phyla. f, 
Phylogenetic tree of the 2278 OTUs built from the multiple sequence alignment of 120 GTDB marker genes. Barplot in the outer circle indicates the number of 
samples in which each OTUs was found. g, Phylum-level Mash Screen multiplicity for each sample, indicating sequence coverage. Horizontal lines represent the 
median values. The occupancy value indicates the percentage of samples that contains the underlying phylum. h, Number of OTUs as a function of the number of 
rock samples. 
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the forms of RuBisCO and [NiFe]-hydrogenase present. The extracted 
RuBisCO sequences were analyzed against 3129 reference sequences 
obtained through previous phylogenetic analysis of the Genome Tax-
onomy Database (Ray et al., 2022). [NiFe]-hydrogenase sequences were 
analyzed against 2019 reference sequences obtained from the HydDB 
(Søndergaard et al., 2016; Søndergaard et al., 2016) and previous 
phylogenetic analysis (Ray et al., 2022). 

Multiple sequence alignment was conducted using MAFFT 
(ver.7.407), applying the L-INS-i iterative refinement method (Katoh 
and Standley, 2013). To remove poorly aligned regions, the resulting 
alignments were trimmed using trimAl (ver. 1.4.1), with a gap threshold 
of 0.5 (Capella-Gutiérrez et al., 2009). Sequences with >50 % gaps after 
alignment were removed. Maximum likelihood phylogenetic trees were 
constructed using IQ-Tree (ver. 1.6.10), applying 1000 ultrafast boot-
strap iterations, hill-climbing nearest neighbor interchange (NNI) search 
and incorporating additional SH-like approximate likelihood ratio tests 
(SH-alrt) (Guindon et al., 2010). ModelFinder was used to determine the 
best evolutionary model, which was LG + F + R10 for the RuBisCO tree 
and LG + R10 for the [NiFe]-hydrogenase tree. Sequences that failed the 
chi2 test during tree building were removed. 

The final consensus trees, comprising 1347 RuBisCO sequences and 
2706 [NiFe]-hydrogenase sequences, were uploaded to Interactive Tree 
Of Life (iTOL) v6 (Letunic and Bork, 2016) for visualization. Branches 
were color-coded according to the form of [NiFe]-hydrogenase or 
RuBisCO, and bootstrap values 90–100 were indicated by circles on the 
corresponding branches, with size corresponding to values. The phyla of 
the MAGs from which each sequence originated are displayed as a color- 
coded outer ring. In the [NiFe]-hydrogenase tree, if the RuBisCO large 
subunit co-occurred within the originating genome, then these se-
quences are marked by an outer pie chart, which depicts the proportion 
of RuBisCO forms detected. Complete trees showing all RuBisCO and 
[NiFe]-hydrogenase sequences are provided (Supplementary Informa-
tion). Collapsed versions are also provided, focusing upon clades where 
sequences from the MAGs studied here were identified, namely RuBisCO 
form I and forms 1h, 1l, 1m, 1e, 2a, 3b, 3d [NiFe]-hydrogenase. 

2.9. Downstream analysis 

Downstream analysis was performed using the R environment 
(https://www.R-project.org/) v4.0.3 and the packages tidyverse v1.3.0, 
ggtree v2.4.1 and phytools v0.7-70. 

3. Results and discussion 

Following quality filtering (see Online Methods), 2636 high-quality 
(HQ with ≥90 % completeness and < 5 % contamination) and 1903 
medium-quality (MQ with ≥50 % completeness and < 10 % contami-
nation) bacterial MAGs were classified (Fig. 2d; Supplementary 
Table S2, Supplementary Figs. S1–5). The ARGC provides a complete 
picture of sandstone microbiomes across Antarctica, as revealed by the 
accumulation curves, which indicate that most species were retrieved; 
whilst, diversity in granite requires further elucidation (Supplementary 
Fig. S5). MAGs were then grouped at 95 % average nucleotide identity 
(ANI) into 2278 species-level bacterial operational taxonomic units 
(OTUs) (Fig. 2e, f), 8.6 times more than previously reported (Albanese 
et al., 2021). All the OTUs can be assigned to known phyla, while 2277, 
2262, 2164 (95 %), and 1433 (63 %) to known classes, orders, families 
and genera, respectively. Notably, 98.3 % of species-level OTUs were 
distinct from the Genome Taxonomy Database (GTDB) reference ge-
nomes, representing 2239 new candidate species (Fig. 2e; Supplemen-
tary Table S3). On a phyla level, Actinobacteriota and Proteobacteria were 
dominant, with many new genomes of Acidobacteriota, Chloroflexota, 
and Bacteroidota also uncovered. Actinomycetia and Thermoleophilia, 
Alphaproteobacteria, and Chloroflexia classes were the most abundant 
and recurrent in the dataset (Fig. 2g, Supplementary Fig. S6; Supple-
mentary Tables S4, S5). The dominant orders were Mycobacteriales (38 

%), Actinomycetales (15 %), Solirubrobacterales (14 %), Acetobacterales 
(12 %), and Thermomicrobiales (7 %) (Supplementary Tables S6, S7). 

To predict metabolic competencies, we retrieved 16,830,059 protein 
coding sequences (CDS) based on Prodigal analysis (see Methods). These 
CDS were dereplicated into 9,632,227, 6,997,885, 4,538,534 protein 
groups using MMseqs2 with identity thresholds of 95 %, 80 % and 50 % 
respectively. Moreover, 50 % protein representatives were searched 
against the UniProt Reference Clusters (Suzek et al., 2007) (UniRef, see 
Material and methods); since only 52.4 % of the proteins displayed at 
least one match within the database, this resource should lay the foun-
dation for future Antarctic terrestrial catalog. 

During functional analysis, we focused on two widespread survival 
and growth strategies that allow microbiomes to persevere in extreme, 
oligotrophic environments: autotrophic metabolism, particularly trace 
gas based chemosynthesis, and cold resistance adaptations. In cold 
edaphic deserts, energy generation through trace gas oxidation supports 
both microbial persistence and growth, with increased carbon fixation 
activity observed with aridity (Chen et al., 2021; Ortiz et al., 2021; Ray 
et al., 2022). However, the significance of this strategy to endolithic 
microbiomes where photosynthetic microorganisms are more prevalent 
is questionable (Wierzchos et al., 2012). 

High-affinity [NiFe]-hydrogenase genes, including forms 1 h, 1 l, 1 m 
and 2a, are widely represented in our dataset, occurring in 41.1 % of all 
dereplicated MAGs, including Ca. Dormibacterota (88.9 %), Eremio-
bacterota (80.2 %), Actinobacteriota (59.1 %), Gemmatimonadota (57.1 
%), Chloroflexota (53.0 %), Acidobacteriota (43.9 %), Verrucomicrobiota 
(25.8 %), Planctomycetota (13.4 %), Cyanobacteria (7.5 %), Bacteroidota 
(7.3 %), Proteobacteria (6.1 %), and Armatimonadota (4.8 %) (Fig. 3). The 
oxidation of trace levels of hydrogen gas plays a key role for persistence 
in dormant state and is a wide- spread ability in both Bacteria and 
Archaea in terrestrial and marine ecosystems (Greening and Grinter, 
2022; Lappan et al., 2023). The same strategy may be therefore crucial 
to support endolithic microbiomes whose active metabolism is, as 
average, limited to 1000 h per year only (Friedmann et al., 1987). 

Autotrophic metabolisms are critical under such strict oligotrophic 
conditions and were indeed pervasive among the bacterial MAGs un-
covered. Specifically, representatives from 7 of the 15 phyla presented 
signatures for carbon fixation. Phototrophic metabolism, mostly largely 
present in Cyanobacteria, is based on photolysis and requires water to 
take place. Data presented here suggests that trace gas oxidation may 
produce enough energy to not only support persistence but also to fuel 
the Calvin-Benson-Bassham (CBB) cycle in a subset of the residing 
bacterial taxa, through the process of atmospheric chemosynthesis. This 
process is limited to cold soil deserts, while scarce to no carbon fixation 
activity has been observed yet in other environments (Ray et al., 2022; Ji 
et al., 2017). Here we provide clear evidence that atmospheric chemo-
synthesis could be extended to endolithic populations and may be a key 
adaptation for Carbon accumulation under highly dry conditions, with 
this process also proposed to be water-producing (Cowan et al., 2022). 
High-affinity [NiFe]‑hydrogenases co-occurred alongside light- 
independent RuBisCO (1E/D) in 72.2 % of Ca. Dormibacterota, 62.3 % 
of Eremiobacterota, 20.6 % of Actinobacteriota, 8.8 % of Chloroflexota, 2.9 
% of Gemmatimonadota and 2.5 % of Proteobacteria MAGs (Supplemen-
tary Fig. S7), with RuBisCO form IE dominant accounting for 92.7 % of 
those detected. These genetic indicators suggest that atmospheric 
chemosynthesis, as a fundamental process for primary production in 
hyper-arid cold environments, may be extended beyond soils to endo-
lithic niches. RuBisCO form ID, showing a CO2 high affinity, is better 
adapted to a higher O2/CO2 ratio and requires less energetic or nutrient 
investment to attain high carboxylation rates; this finding suggests that, 
although uncommon, other RuBisCO forms may play a role in this 
chemoautotrophic process (Rickaby and Hubbard, 2019). We propose 
that the plethora of RuBisCO forms found, displaying various efficiency, 
specificities, and affinities, enables the community to modulate its ac-
tivity shifting from dormant to active state; this is paramount to adapt 
and exploit extreme and fluctuating microenvironments. 
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Aerobic respiration was predominant among endolithic MAGs 
(Supplementary Table S8; Fig. 4); yet, the ability to use alternative e- 
acceptors via formate dehydrogenase, were limited to rare phyla, 
particularly in Thermoanaerobaculia, which was represented by one 
single family of anaerobic bacteria. The presence of additional chemo-
synthetic pathways, alternative to atmospheric chemosynthesis, using e- 
donors via Arsenate reductase were also found in a few (7) phyla, 
particularly abundant in Bacilli. This plethora of abilities to exploit 
various e- donors or acceptors increase the possibility of adaptability 
and survival of the whole community. 

Lastly, below-freezing temperatures are a main challenge to life that 
can influence metabolic activity; reaching temperatures as low as 
− 89 ◦C, Antarctica is the coldest continent on the planet. We found that 
Antarctic endolithic bacteria encompass an innate adaptive capacity to 
cope with life in the persistent cold and the associated stresses. In fact, 
well-established genes involved in cold adaptation such as anti-freezing 
proteins (AFPs; e.g. 05934, K03522, K02959, K02386, K01993, K01934, 
K00658, K00627, K00324) were ubiquitous in all rock typologies and 
across all sampled areas (Supplementary Fig. S8). This suggests the 
pivotal role of cold adaptation for survival at temperatures below 0 ◦C 
(Wong et al., 2019; Liao et al., 2021). 

4. Conclusions 

Our study provides insights on the diversity of endolithic bacterial 
taxa thriving in the prohibitive conditions of Antarctica, and further 
identified survival strategies supporting their endurance at the limit of 
habitability. This resource represents the largest effort to date to capture 
the breadth of bacterial genomic diversity from Antarctic rocks. We also 
unearthed the key and targeted adaptation strategies that allow mi-
crobes to spread and perpetuate in the harshest ecosystems. These re-
sults represent the foundation to untangle adaptability at the edge of 
sustainability on Earth and on other dry Earth-like planetary bodies. 

Ethics approval and consent to participate 

Not applicable. 

Consent for publication 

Not applicable. 

Fig. 3. Phylogenetic tree of [NiFe]‑hydrogenase. Maximum likelihood phylogenetic tree of [NiFe]‑hydrogenase gene sequences obtained from our MAGs (n = 2433), 
with reference sequences obtained from the HydB and previous phylogenetic analysis. Branches and reference gene labels are colored according to the group of 
[NiFe]‑hydrogenase. Bootstrap values >90 % are depicted as filled circles on branches, with size reflecting value, and 1000 ultrafast bootstrap iterations applied. The 
phyla of the originating MAGs assembled in this study are displayed in a color-coded outer ring. In cases where RuBisCO large subunit gene/s co-occurred within 
these genomes, the proportion of forms present is indicated by external pie charts. 
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