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 16	  

Abstract: Inferring biotic interactions from functional, phylogenetic and geographical 17	  

proxies remains one great challenge in ecology. We propose a conceptual framework to 18	  

infer links among species within regional species pools. Firstly, the framework starts with 19	  

a characterisation of the backbone of biotic interaction networks. In this step, functional 20	  

groups are identified to order links and remove forbidden interactions between species. 21	  

Secondly, additional links are removed by examination of the geographical context in 22	  

which species co-occur. Thirdly, hypotheses are proposed to establish interaction 23	  

probabilities between species. We illustrate the framework using published food webs in 24	  

terrestrial and marine systems. We conclude that preliminary descriptions of the web of 25	  

life can be made by careful integration of data with theory.  26	  



 27	  

Why inferring interactions? 28	  

Even if serious gaps in knowledge of biodiversity remain, much progress has been made 29	  

in determining how many different types of organisms exist (the Linnaean shortfall[1]), 30	  

what evolutionary relationships connect different lineages to a common ancestor (the 31	  

Darwinian shortfall[2]), and where different species are distributed (the Wallacean 32	  

shortfall[3]). Much less is known about the types of interactions that exist among species 33	  

(the Eltonian shortfall[4]) and the importance of such interactions for the maintenance 34	  

and evolution of life on earth. One reason why the Eltonian shortfall is so prevalent is that 35	  

detection of direct and indirect interactions requires significant empirical efforts, even in 36	  

simple systems. For example, identifying direct species interactions within an ecosystem 37	  

with only seven species, would require accounting for forty-two potential links and up to 38	  

13,650 links if indirect interactions are considered [5]. Given that most systems have 39	  

more than seven species, documenting all biotic interactions at any site (let alone across 40	  

the world) would be a considerable undertaking. Furthermore, the widespread idea that 41	  

biotic interactions affect ecological processes mainly at local scales of resolution and 42	  

extent [6-8] has discouraged researchers working at biogeographical scales to address 43	  

them: why deal with biotic interactions if they do not contribute to understanding the 44	  

bigger ecological picture? Recent evidence, however, has shown that biotic interactions 45	  

can affect species ranges [9-11] and co-distribution of species [12] at regional to 46	  

continental scales, thus potentially mediating biological responses to environmental 47	  

changes [13]. There is a demand for predictions about the dynamics and functioning of 48	  

novel ecosystems emerging from differential responses of species to global changes [14, 49	  

15]. Therefore, and since determining the nature of all interactions among species is 50	  

currently beyond reach, the development of a methodological framework for inferring 51	  

interactions from proxies is a timely alternative. 52	  



 53	  

But can biotic interactions be inferred? It has been argued that the study of pairwise 54	  

interactions between species has failed to provide general principles about the dynamics 55	  

and organization of communities [16], but the recent upsurge of interest in ecological 56	  

networks [17] is gradually changing this perspective. We propose that, if appropriately 57	  

analysed, existing data on functional traits, geographical distributions, and phylogenies, 58	  

provides a starting point for making predictions about the likelihood of pairwise biotic 59	  

interactions among species and the general properties of the interaction networks. The 60	  

proposed framework is complementary to empirical approaches for network construction 61	  

(whereby links are established only after observations are made [18]), and can be useful 62	  

when empirical data on interactions are not accessible. Our approach leads to generating 63	  

the backbone of an interactions network that can be used to identify plausible links 64	  

among species in a given regional species pool. 65	  

 66	  

What interactions to infer?  67	  

There are many different ways to describe a biotic interaction. Interactions may vary in 68	  

their type (e.g., antagonistic or facilitative), their strength (e.g., weak or strong 69	  

interactions), or their symmetry (e.g., symmetrical or asymmetrical). An important step 70	  

for inferring biotic interactions is to determine what information is to be inferred. We 71	  

propose building interaction networks bottom-up, i.e., predicting the links among species 72	  

and then explore the collective properties of the networks (e.g., connectance, degree 73	  

distribution, or distribution of motifs) emerging from these links [see also 13]. In the 74	  

proposed framework, four key metrics are the focus of inference:  75	  

 76	  

(i) The probability of occurrence of a link - The first step is to infer whether an 77	  

interaction between any given pair of species is possible. Many species co-occur without 78	  



interacting with each other [4] and  while detection of links is the focus of much research 79	  

in community ecology, predicting if a link is absent is of equal importance. Forbidden 80	  

interactions, such as small fish eating big fish or grassland herbivores eating leaves in 81	  

trees, can be easily identified thus helping to remove links from a full set of candidate 82	  

links. Such process of pruning forbidden links from potential networks of interactions 83	  

helps to limit the scope of inference to possible interactions alone (see Fig. 1). After 84	  

removing the forbidden links from the tree, the next step is to calculate the probability 85	  

with which possible links occur using a combination of data that can include traits, 86	  

phylogenies and geographical features [19]. 87	  

 88	  

(ii) The type of interaction - Once a link between two species is deemed probable, the 89	  

next step is to determine the expected type of interaction involved (e.g., antagonistic, 90	  

facilitative, direct, and indirect). Such inference is not always straightforward. Out of the 91	  

myriad of interactions in nature, not all are equally prevalent and not all are equally 92	  

detectable. Variation in the prevalence and detectability of interactions partly explains 93	  

why different interactions have received different attention. For example, in the past 20 94	  

years, competition attracted ca. 50% of all citations in the biotic interactions literature 95	  

with commensalism and amensalism being almost residual (see Box 1). Species can also 96	  

interact in more than one way making the classification of interaction particularly 97	  

complex. For example, barnacles facilitate establishment of mussels in the rocky 98	  

intertidal, while simultaneously competing with them for space. Whether (+/- vs. -/-) 99	  

interactions are prevalent will depend on the net effect of the interactions, which will in 100	  

turn determine the resulting pattern of attraction or repulsion [20]. Focusing on easily 101	  

inferable direct interactions as a starting point (e.g., predator-prey interactions) can help 102	  

because it will resolve the major interacting groups of the network. 103	  

 104	  



(iii) The strength of the interaction - The direct effect that species have on one another’s 105	  

demography is termed interaction strength. Determining the strength of interactions 106	  

between species is essential to understanding network dynamics, stability and robustness 107	  

[21]. Approaches for measuring strength of interactions will vary with the specific types 108	  

of interactions involved. Whereas interaction strength in a plant-pollinator network can 109	  

be measured based on the frequency of visits between species pairs [22], in a food web it 110	  

can be measured by the amount of energy ingested by the predator [23]. More generally, 111	  

interaction strength can be measured as the total effect of a population on another (per 112	  

population) or the effect of each individual of a population on another (per capita). Most 113	  

attempts to estimate strength of interactions in the field will mix both. Here, we focus on 114	  

strength of interactions at the population level. 115	  

 116	  

(iv) Asymmetry of interactions – the degree to which the strength of the interaction 117	  

between two species varies from one another is termed asymmetry. Interactions are 118	  

generally asymmetrical [13, 22, 24], so that if one species A depends strongly on species 119	  

B, species B depends weakly on species A. For instance, plants and pollinators vary in 120	  

their degrees of mutual dependence with pollinators being typically more specialized than 121	  

plants [22]. Another example is provided by predator-prey interactions, whereby only a 122	  

fraction of the prey biomass consumed by the predator is converted into predator 123	  

biomass. Failure to acknowledge these asymmetries will necessarily lead to 124	  

overestimating the importance of particular links.  125	  

 126	  

How to infer interactions?  127	  

The proxies 128	  

When direct information about biotic interactions is unavailable, we must resort to 129	  

indirect information or proxies to get insight about them. Three classes of proxies can 130	  



help inferring interactions between species: traits, phylogenies, and geographical data (for 131	  

review of examples see Table 1). Traits are usually defined as morphological, 132	  

physiological, phenological, or behavioural characteristics of species that directly impact 133	  

their fitness [25]. However, they are also expected to influence how species interact with 134	  

one another. When information on traits is unavailable, or is incomplete, one option is to 135	  

use phylogenies measuring evolutionary relationships among species as a surrogate for 136	  

trait similarity. This approach is useful as long as there is phylogenetic signal in the traits 137	  

of interest [26], and strong phylogenetic signals are more likely to exist when lineages are 138	  

examined across broader geographical scales of extent or large the environmental 139	  

gradients. Finally, in addition to information on traits, the geographical co-distribution of 140	  

species, complemented with analysis of species-environment/species-habitat relationships 141	  

can also be considered.  142	  

 143	  

The three classes of proxies are not expected to provide equally valuable information (see 144	  

Table 1). Traits ultimately determine if a given interaction is probable, or even possible, 145	  

as they mediate species relationships with the environment. For example, different 146	  

species might occupy a particular microhabitat differently and this can determine whether 147	  

they are likely to compete for a particular resource. When trait information is lacking, 148	  

phylogenies and geography can help filling the gaps; for example, by determining which 149	  

species are likely to co-occur in the same parts of the world. We illustrate below how 150	  

these proxies (e.g., body size, abiotic requirements, phylogenetic distance, spatial co-151	  

occurrence) can be utilized to infer species interactions.  152	  

 153	  

Building the backbone of interaction networks 154	  

We propose a hierarchical approach to infer biotic interactions from proxies that is 155	  

analogous to reconstructing large phylogenies based on collating smaller phylogenies on 156	  



the top of a structuring backbone (i.e., ‘super trees’ or ‘meta trees’). Broad groups of 157	  

interacting species would, ultimately, form a ‘super network’ or ‘meta web’ of 158	  

interactions. The analogy with a super tree or meta tree is not new as it is implicit in the 159	  

compilation of several networks of interactions [27], but it formalizes what is typically 160	  

done for network construction.  161	  

 162	  

The backbone of an interaction’s network starts with the identification of species more 163	  

likely to share similar interactions. The concept is similar to modules [28], but we avoid 164	  

this terminology as they are usually determined a posteriori and can also refer to simple 165	  

assemblages of species such as linear food chains or apparent competition [29]. Instead, 166	  

we define interacting groups based on a priori expectations of interactions. The concept 167	  

is also analogous to that of guilds [30]. Guilds, however, are restricted to species sharing 168	  

similar resources thus not encompassing non-consumptive interactions such as 169	  

competition or niche construction [27]. A flexible definition of interacting groups based 170	  

on traits, phylogenies and geographical distributions would enable combination of 171	  

heterogeneous information. Such flexibility can be critical when inferring interactions 172	  

with information that is not required across all species (e.g., foliage chemical defence 173	  

compounds are not relevant to infer predator-prey interactions).  174	  

 175	  

As an example of implementation of these ideas, we infer the backbone of food webs for 176	  

two ecosystems: the Serengeti [31]; and the Cuban coral reef [32] (Fig. 1). Interacting 177	  

groups of species are defined a priori in order to simplify the removal of forbidden links. 178	  

The groups were defined based on the trophic hierarchy of the different species within the 179	  

ecosystem (e.g., primary producers, grazers, small and large carnivores). This process of 180	  

trophic classification of species led to identification of forbidden links and removal of 181	  

~30% of all potential direct links in the coral reef, and ~22% in the Serengeti (e.g., 182	  



herbivores eating predators; Fig. 1). Refinement of the species groupings was achieved 183	  

by considering the characteristics of the consumer species (e.g., distinguishing small vs. 184	  

large carnivores in the Serengeti example, or separating invertebrate feeders, omnivorous 185	  

and carnivore fish in the coral reef example; Fig. 1). Geography was then used to 186	  

subdivide the producer groups, defining environments where only certain consumer 187	  

species feed (e.g., grassland, woodland and shrubland are differenced in the Serengeti, 188	  

and coral reefs and seagrasses are distinguished in the Cuban network). This step led to 189	  

reducing up to 50% of the remaining links (Fig. 1). Notice that the proportion of links 190	  

removed by the implementation of the framework was similar despite the distinct nature 191	  

of the ecosystems and the reversed structure of the trophic networks (Fig.1). 192	  

There are few attempts in the literature that use trait-matching constraints to infer links. 193	  

For example, Gravel et al. [25] used predator-prey body-size relationships to calibrate the 194	  

niche model [26] and infer potential predator-prey interactions among pelagic 195	  

Mediterranean fishes. Eklof et al. [33] showed that usually less than five dimensions were 196	  

required to represent the structure of 200 networks of different types. When direct 197	  

measurements of traits are unavailable, latent traits or phylogenetic information can also 198	  

be used [27]. The ability to establish empirical relationships between traits (measured 199	  

trait, latent traits, or phylogenetic relationships) and interactions will be key to predict 200	  

whether different species coming into contact will interact or not. This would be the case 201	  

when spread of exotic species leads them to colonizing new environments or when 202	  

species shift their ranges in response to climate change. 203	  

 204	  

Even though we illustrated our framework with examples of food webs (see Fig. 1), the 205	  

framework is general and can be applied to other types of interactions. For example, after 206	  

direct trophic interactions are mapped into the backbone of an interactions’ network, 207	  



potential indirect interactions, such as exploitative and apparent competition [34, 35], or 208	  

trophic cascades [36], can be inferred [27].  209	  

 210	  

We note that theoretical [37] and experimental [38] studies have shown that pairwise 211	  

interactions and network structure can be constrained by the environment, which leads to 212	  

significant spatial variability in network structure [39]. Additionally, phylogenetic signal 213	  

in networks can increase with increasing environmental stress as shown by parasitoids 214	  

narrowing down their host-genotype niche breadth when temperature increases [40]. 215	  

Further studies will need to address the relationship between the environment and 216	  

network structure, as it is essential to predict feedbacks among species co-distributions, 217	  

biotic interactions, and environmental change.  218	  

 219	  

Assigning interaction probabilities 220	  

Identifying forbidden links in a network is relatively straightforward compared to the 221	  

more subtle exercise of assigning probabilities of interactions between species. The null 222	  

expectation is that, all other things being equal, the probability of interaction between two 223	  

species is given by their prevalence (i.e., proportion of an area occupied by the species in 224	  

a given geographical region) [20, 41]. Departures from this null expectation should arise 225	  

whenever interaction strength between species is different from zero. In such cases, traits 226	  

or the interaction between traits and the environment should modulate interaction 227	  

probabilities (see Fig. 2). Zero probabilities of interaction should only be considered for 228	  

cases of incompatible traits (e.g., herbivores do not feed on other animals).  229	  

 230	  

Treating interactions as probabilistic is relatively novel. An approach that could represent 231	  

our uncertainty in our model describing what governs the interaction (e.g., which traits to 232	  

include), or alternatively, given that an interaction is feasible, it does not systematically 233	  



occurs at a location where two species are found co-occurring. Some interactions might 234	  

not realize themselves even though they are possible, either because some species are too 235	  

rare or the environmental conditions (abiotic and biotic) are not suitable. It is as critically 236	  

important to document them as the non-zero probabilities, and new empirical 237	  

investigations of network structure should also aim at providing a confidence interval on 238	  

them (a quantification of the probability of false negative). 239	  

 240	  

Given that probabilities of interactions depend on the strength of the interactions between 241	  

species, and their symmetry, calculating these metrics is important. The strength of 242	  

interactions between pairs of species can be inferred, indirectly, from theoretical models 243	  

or, directly, by field or laboratory experiments. Examples of the latter have involved 244	  

examining the role of species in mutualistic networks [42] or changes in the structural 245	  

complexity of the habitat [43, 44] in parasitoid-host networks. Standard predator or 246	  

competitor removal experiments [45] have also provided estimates of per population 247	  

interaction strength; per capita interactions would then be estimated providing that 248	  

predator density was known. Mass-balance models can also be used to estimate 249	  

interaction strength. For example, de Ruiter et al. [46] parameterized Lotka-Volterra 250	  

equations based on prior identification of trophic links in soil food webs, measurements 251	  

of population size and estimates of natural mortality rates. At equilibrium, the total 252	  

energy consumed should balance mortality and predation and, therefore, it should be 253	  

possible to derive interaction strength by deduction.  254	  

 255	  

There are also several examples of indirect approaches for inference of interaction 256	  

strength. For example, predator-prey body-size ratio is often used to estimate per capita 257	  

effect of predators on their prey [47], or to derive this effect from metabolic scaling 258	  

relationships [48]. Besides population size, interaction strength has also been associated 259	  



with the frequency at which actual interactions occur. Neutral models of interactions were 260	  

shown to predict relatively well the interaction strength between pairs of species within 261	  

trophic guilds based on their local population sizes [49, 50]. In neutral models, the 262	  

probability of species interacting together is proportional to the product of their relative 263	  

abundance. Neutral forbidden links arise as two rare species are very unlikely to interact 264	  

[41]. The network properties are consequently the direct result of frequency distributions 265	  

of abundance of the different guilds, which in turn respond to changing environmental 266	  

conditions [43, 44]. Increasing understanding of environmental-driven non-random 267	  

changes in network structure will allow adjusting the probabilities of interaction, and 268	  

generating more accurate predictions. 269	  

 270	  

The asymmetry of interactions is the most understudied of the factors affecting 271	  

interaction probabilities. Most modelling studies use a constant across all species to 272	  

represent consumption inefficiency [51], but theoretical or empirical support for such an 273	  

assumption is limited. Experimental studies are also usually conducted in a single 274	  

direction; measuring the effect of predator removal on the prey biomass in the field [52] 275	  

is often accomplished, but more challenging is to evaluate the effect of prey removal on 276	  

the predator [but see 53]. The asymmetry of interactions has also been related to co-277	  

evolutionary dynamics [54] and it is likely that further indirect inferences of asymmetry 278	  

will rely on phylogenetic relationships.  279	  

 280	  

Based on the above, we list six simple hypotheses to guide inference about probabilities 281	  

of interaction between pairs of species (see Fig. 2). To illustrate the implementation of 282	  

these hypotheses, we apply one of them (i.e., increasing probability of predation with 283	  

increasing predator-prey body size ratio) to infer probability of interaction for the subsets 284	  



of consumer species within each of our two examples (Serengeti mammals and Cuban 285	  

fish) (see Box 2). 286	  

 287	  

Testing inferences about interactions 288	  

The usefulness of a theoretical model is partly dependent on it being successfully tested. 289	  

However, inferences of biotic interactions by models are not easy because reliable 290	  

absence data about interactions are generally unavailable. Similar problems exist in the 291	  

species distributions modelling literature [4, 55], with the consequence that inferences of 292	  

interactions must necessarily be interpreted as potential rather than realised. Indeed, 293	  

observed interactions will typically constitute a small subset of all realised interactions 294	  

and these are, themselves, a subset of all potential interactions within a given species 295	  

pool. The consequence is that false positives (interactions predicted but not recorded) 296	  

might not be an error at all; they might characterise existing but undetected interactions, 297	  

or potential interactions that have yet not been realised. Whilst the meaning of false 298	  

positives is often difficult to ascertain, false negatives (observed interactions not 299	  

predicted by the model), provide clear indication that the inferences by the models are 300	  

inaccurate. Our implementations of the proposed framework show how reductions of 301	  

false positives are achieved by estimating probabilities of interaction based on a simple 302	  

hypothesis (i.e., predator-prey body size ratios), while false negatives remain stable and 303	  

at low levels (see Box2, Fig. II).  304	  

 305	  

In most cases, inferred interactions will never be observed for several reasons, including 306	  

low detectability, low abundances, dispersal barriers, and lack of overlap between 307	  

ecological niches of the two species [19]. Detection of interactions will increase if 308	  

sufficiently coarse spatial and temporal scales of observation are allowed. Likewise, non-309	  

interacting species might start interacting if novel circumstances prompt them to do so 310	  



(e.g., stochastic long distance dispersal enabling contact of otherwise disjoint species, 311	  

reshuffling of species geographic distributions due to shifts in the distributions of 312	  

ecological niches).  313	  

 314	  

In other cases, species might co-occur but interact only in certain parts of their ranges. It 315	  

is the case of Australian tiger sharks, whose diet shifts geographically, selecting different 316	  

(but equally available) prey species in different locations [56]. The Cuban Coral reef 317	  

network example shows a substantial number of predicted links below the diagonal for 318	  

which there is no empirical evidence (Box 2, Fig. Ii-j). The question arises as to whether 319	  

these false positives could be realized in other locations. This question is relevant to the 320	  

study of novel ecological communities expected under climate change [57].  321	  

 322	  

The sheer numbers of potential interactions that exist in nature pose additional difficulties 323	  

to testing inferences of interactions with experimental or observational approaches. 324	  

Nevertheless, not all links affect properties of interactions networks equally and there is 325	  

scope for simplification if only the most relevant species in the network, e.g., those with 326	  

more or stronger connections, are examined [22].  327	  

 328	  

Concluding remarks 329	  

We proposed a framework for inferring biotic interactions based on stepwise removal of 330	  

forbidden links and calculation of probabilities of interaction for the remaining links. 331	  

With such a process one is able to establish the backbone of an interactions network 332	  

occurring in a given species pool. The pruning of the network is made using rules derived 333	  

from functional traits, phylogenies and geographical proxies. For the sake of illustration 334	  

we implemented the framework with food webs in two ecosystems (i.e., the Serengeti and 335	  

a Cuban coral reef). We demonstrated how basic understanding of traits enables accurate 336	  



predictions of the overall structure of the food webs (Fig. 1). While further testing of 337	  

these ideas is warranted, several conceptual challenges remain. Among them, it will be 338	  

critical to look more closely at how emerging properties such as mean trophic level, 339	  

modularity, nestedness, change along the pruning sequence. This issue is reminiscent of 340	  

the intense debates in the food web literature about the impact of sampling intensity on 341	  

network properties [18]. Full understanding of the web of life seems distant, but 342	  

sequentially building super networks or meta webs of biotic interactions networks will 343	  

help unravelling key interactions and their potential effects on the distribution of life on 344	  

earth. 345	  

 346	  
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Box 1. Are all biotic interactions equally prevalent in nature? Can they be 

predicted from co-occurrence?  

Four broad types of biotic interactions can be distinguished based on whether the net 

effect of the interaction on each interacting species is detrimental for both of them (i.e., 

competition [-,-]), beneficial for both of them (i.e., mutualism [+,+]), positive for one 

species and negative for the other (e.g., predation or parasitism [+,-]), or positive for 

one species and indifferent for the other (i.e., commensalism [+,0]). Less common is 

when one interacting species is indifferent while the other is negatively affected (i.e. 

amensalism [0,-]. Quantification of the prevalence of the different types of interactions 

in nature is still lacking, but have they received similar treatment in the literature? A 

review of the literature of the past two decades reveals that antagonistic interactions 

(e.g., competition and predation) have been the focus of more than three quarters of all 

published studies on biotic interactions (Fig. I). These studies often refer to biotic 

interactions generically, even if only one interaction type—typically competition—is 

addressed [58].  



 

Fig. I. Biotic interaction types in the literature since 1991. Search performed with the Web of 

Science including the terms ‘ecology’ AND ‘interaction’ AND ‘interaction type’. 

 

Why are antagonistic interactions so popular in the ecological literature? (1) Is there 

evidence that certain types of biotic interactions are more important than others in 

controlling for the dynamics of species, communities and ecosystems? (2) Are 

antagonistic interactions easier to detect in the field than facilitative interactions? (3) 

Are antagonistic interactions more prevalent? Answering these questions requires a 

comprehensive comparative analysis across all types of biotic interactions. Such 

analysis is not feasible given the lack of systematic descriptions of biotic interactions 

across taxa and regions. But simulations may offer an alternative. For example, a recent 

study provided the first comprehensive simulation of the expected co-occurrence 

between two species arising from all possible combinations of direct biotic interaction 

types [20]. The study shows that similar co-occurrences can be achieved by different 

interactions, leading to the conclusion that co-occurrences alone are not sufficient to 



provide insight into the biotic interactions generating them [e.g., 13] (Fig. II).  

 

Fig. II. Co-occurrence probability between two different species across biotic interaction space. 

Biotic interaction space is a representation of all possible types of interactions across two axes, 

each indicating the direction and the strength of the interaction for each species. Examples are 

for (a) predation of Oryctolagus cuniculus by Lynx pardinus, (b) hervibory by Odocoileus 

virginianus, commensalism by (c) Remora brachyptera and Carcharhinus melanopterus, (d) 

epiphytic bromeliad (fam. Bromeliaceae) and (e) Amphiprion percula and Entacmea 

quadricolor; examples of mutualism for (f) shelter-defense interaction between Pseudomyrmex 

ferruginea and Cecropia peltata, of (g) pollination of Helicornia caribaea by Eulampis 

jugularis and of (h) pollination of Stenocereus thurberi by Leptonycteris curasoae; competition 

between (i) Panthera leo and Crocuta crocuta and between (j) Swietenia mahagoni individuals; 

amensalism produced by (k) Penicillium expansum, and parasitism of (l) virus of genus 

Ebolavirus and (m) Anopheles gambiae mosquito, which is itself host for Plasmodium 

falciparum.  
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Box 2. Assigning probabilities and testing inferred interactions 

Estimating probabilities of interactions between pairs of species is challenging, but using 

proxies coupled with simple sets of rules can help (Fig. 2). As an example, we use simple 

allometric rules to infer probabilities of interactions on a subset of mammal species from 

the Serengeti food web and fish species from the Cuban coral reefs food web. Following 

the procedure described in Figure 1, we removed forbidden links from the full matrix of 

potential interactions (Fig. Ia-b,f-g). The next goal of our framework is to assign 

probabilities to the interaction matrix. To compute probabilities we followed a method 

that modifies previous similar approaches [59]. It fits a model describing the relationship 

between predator-prey body sizes and uses its parameters (describing the optimum and 

the range of predator’s niches) to compute the probability of interaction given the size of 

the predator and prey species, and assuming a gaussian function. We parameterized the 

model with the observed log-sizes of predator and prey species based on the realized 

interactions. Note that this approach allows estimating a probability function resembling 

the niche of each predator species. We show here an average of the probability density 

function across different values of predator-prey body size ratio for simplicity (Fig. Ic,h). 

We finally assigned a probability to each remaining link in order to obtain the inferred 

matrix of interactions (Fig. Id,i). Although we restrict this example to allometric 

relationships, additional hypotheses (i.e. phylogenetic distance, niche distance, see Fig. 2) 

could be incorporated as subsequent steps.  



 

Fig. I. Predicting probabilities interactions for a subset of 32 mammal species of the Serengeti (a-e) and for 

116 fish species present in the Cuban coral reefs dataset (f-j). Forbidden links are initially removed by 

grouping species based on their trophic level, their traits (size or diet) and their geography (b,g) (as for 

Figure 1). Probability density functions for predator-prey body size ratios (c,h) are then applied to estimate 

the probability of interaction of each link in the inferred matrices (d,i). Finally, inferred matrices of 

interaction are compared against the observed interactions (e,j).  

 

Once interactions are inferred, a last stage involves testing the accuracy of the inferences 

against the observed interactions (Fig. Ie,j). In this example, we show how applying 

simple rules to prune forbidden links and to infer probabilities of interaction contributed 

to decrease false positive error rate, whilst leaving false negatives do not change much 

(Fig. II). It is to note, however, that whereas the fourth step (i.e. assignation of 

probabilities) does not enhance the inferences for the Serengeti mammals (Fig. IIa), it is 

able to improve the accuracy of the inferences in the case of the Cuban coral reefs (see 

Fig. IIb). In the former example, predator-prey body size relationships are not informative 

and thus, different hypotheses should guide the assignation of probabilities (see Fig. 2).  



 

Fig. II. False positive and false negative error rate achieved in different steps of the implementation of our 

framework.  

Several network properties (e.g. connectance, modularity, etc.) can also be computed for 

each backbone grouping and for the inferred interaction matrices. For instance, 

connectance decreases from the first backbone obtained grouping species by their trophic 

level to the inferred matrix of interactions by 92.3% in the Serengeti, and by 87.2% in the 

Cuban coral reefs. In both examples the properties of the inferred networks approximate 

better the properties of the observed ones. 
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Table 1 – Examples of proxies (traits, phylogenies and geography) used in inferences of biotic 535	  
interactions.  536	  

Interaction 
type Traits Phylogeny Geography 

Mutualism 
(+/+) 

Functional composition of 
subalpine grasslands is related to 
facilitation when resources are 
scarce [59]  
 
Behavioural trait composition can 
turn the interactions of spider 
Anelosimus studiosus into 
mutualism or commensalism [60] 
 
Flower size can determine the 
number of pollinator species [61] 

Phylogenetic history plays a 
relevant role in structuring plant-
animal mutualistic networks [62] 
and could be used to predict co-
extinctions [54] 

Distribution of woodpeckers 
improves species distribution 
models of boreal owls [10] 
  
Positive co-occurrence can be 
used to infer facilitative 
interactions [63]  
  
The probability of geographic co-
occurrence is higher for (+/+) 
interactions [20] 
 

Predation 
/Parasitism 
(+/-) 

Body size is a determinant of 
consumer–resource interactions in 
aquatic food webs [64-66], and 
can also determine interaction 
strength [67] 
  
Shifts in body size affect type and 
strength of predator-prey 
interactions [68] 
  

Body temperature can have major 
implications of our understanding 
of how thermal stress modulates 
predator-prey relationships under 
field conditions [69]  
 

Phylogenetic data has commonly 
been used to infer predation in 
paleontological data [70]  
 
The phylogenetic signal in host 
range can be used to predict 
which plant species are likely to 
be susceptible to a particular pest 
or pathogen [71]  
  
Phylogeny as a proxy for 
unmeasured trait information 
explains much of food web 
structure [66, 72] 

Spatial distribution can affect 
disease interactions for the Foot-
and-mouth livestock disease [73]  
 
In very specialized predator-prey 
interactions, prey geographic 
distribution might enhance 
predictions for the distribution of 
the predator [48] 
 
 
 
 

Competition 
(-/-) 

Functional composition of 
subalpine grasslands is related to 
facilitation when there is no 
resource limitation [59] 
 
The prevalence of competition 
versus environmental filtering can 
be inferred based on functional 
traits [74]  

Plant interactions turn from 
facilitation into competition with 
increasing phylogenetic 
relatedness [75]  
 
Competition is assumed in 
community phylogenetics when 
communities are over-dispersed 
[76, 77]  
  
The prevalence of competition 
versus environmental filtering is 
not affected by phylogenetic 
relationships for tree species [74] 

Pairwise negative residual spatial 
co-variation indicates potential 
competitive interactions [78] 
  
Negative co-occurrence patterns 
can be used to infer competitive 
interactions [63, 79]  
 

Commensalism 
(+/0) 

Behavioural trait composition can 
turn the interactions of spider 
Anelosimus studiosus into 
mutualism or commensalism [60]  

Phylogenetic relationships do not 
seem to affect network structure 
in an epiphyte − phorophyte 
network [80]  

Host plants distribution can 
improve distribution model for 
butterfly Parnassius mnemosyne 
[9] 
  
Species abundance, species 
spatial overlap and host size 
largely predicted pairwise 
interactions and several network 
metrics [80]  

Amensalism 
(-/0) 

Behavioural trait composition can 
be related to amensalism of spider 
Anelosimus studiosus with 
interacting species [60] 
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Figure captions 538	  

 539	  

Figure 1. Inferring biotic interactions from proxies and testing them with two examples 540	  

of food webs from the Serengeti grassland ecosystem (a-e) and from Cuban coral reefs (f-541	  

j). The examples differ in the numbers of species and geographic realm but are 542	  

comparable in scales of extent as data was pooled across large regions (>25,000Km²). 543	  

Whereas the first example comprises 161 species inhabiting the Serengeti National Park, 544	  

(north of Tanzania), the second comprises 265 species found in all Cuban coral reefs 545	  

within the 100m depth platform surrounding the island. By applying three nested 546	  

successive constrains the number of potential links was reduced by more than two thirds. 547	  

The first step involved assigning species into three major trophic groups (b,g): carnivores 548	  

(red circles), herbivores (dark green circles) and primary producers (light green circles). 549	  

The second step involved classification of consumer species based on their diets (c,h). 550	  

The third step involved refinement of groups by accounting for the geographic location of 551	  

species or by establishing where producer species feed in environmental space (d,i). The 552	  

trophic structure of the two examples is reversed, with more diversity of primary 553	  

producers in the Serengeti. Yet, the ability to remove forbidden links and match empirical 554	  

food webs is similar (i.e. 66.49% for the Serengeti and 67.74% for the Cuban coral reef).   555	  

 556	  

Figure 2. Overview of the hierarchical framework to infer biotic interactions from 557	  

proxies. (a) Initial saturated interaction matrix containing all species in the regional 558	  

species pool and all possible directed links amongst them. (b) Constrained matrix after 559	  

removal of forbidden links based on trait information. (c) Constrained matrix after 560	  

removal of forbidden links based on geographical considerations. (d) Filtering of matrix 561	  

based on estimated probabilities of interaction (see below) derived from traits, 562	  

phylogenies and/or species geographical distributions. (e) Comparison of the inferred 563	  



interaction matrix against the actual (observed) interaction matrix to evaluate the 564	  

accuracy of the inference. Probabilities of interaction between groups are derived from 565	  

the following predictions. P1: The strength of competitive interactions between two 566	  

species is inversely related to their proximity in trait or phylogenetic space. Functionally 567	  

similar, or closely related, species are more likely to compete with each other. P2: 568	  

Closely related species are more likely to share interactions with other species than 569	  

distantly related species. P3: The probability that a species predates on another in certain 570	  

food webs (i.e. marine food webs) is likely to increase with an increase of their body-size 571	  

ratio. P4: The more similar the ecological niches of two species, the greater the 572	  

probability that they will co-occur and hence the higher their interaction probability. P5: 573	  

Related to predictions 4, interactions will also affect co-distribution. The current 574	  

understanding of co-occurrence is that negative interactions will generate repulsion; 575	  

positive interactions aggregation and exploitative interactions (+/-) will generate 576	  

asymmetric co-occurrence (where one species is most often associated to the other and 577	  

the other one less often). P6: Interaction strength will be proportional to the product of 578	  

relative abundance of the two species (neutral expectation).  579	  
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