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Summary 19 

Although it is well-known that dispersal of organisms within a metacommunity will 20 

influence patterns of coexistence and richness, theoretical and experimental studies generally 21 

assume that dispersal rates are constant through time.  However, dispersal is often a highly variable 22 

process that can vary seasonally and/or when stochastic events (e.g., wind storms, droughts, floods) 23 

occur.  Using a well-known source-sink metacommunity model, we present novel predictions for 24 

local and regional species richness when stochasticity in dispersal is expressly considered.  We 25 

demonstrate that dispersal stochasticity alters some of the predictions obtained with constant 26 

dispersal; the peak of the predicted hump-shaped relationship between dispersal and local species 27 

richness is diminished and shifted towards higher values of dispersal.  Dispersal stochasticity 28 

increases extinction probabilities of inferior competitor species particularly in metacommunities 29 

subjected to severe isolation events (i.e. decreases of dispersal) or homogenization events (i.e. 30 

sudden increases of dispersal).  Our results emphasize how incorporating dispersal stochasticity into 31 

theoretical predictions will broaden our understanding of metacommunities dynamics and their 32 

responses to natural and human-related disturbances. 33 

 34 

Keywords: dispersal, stochasticity, extinction, metacommunity, source-sink  35 

 36 

37 



Matias et al stochasticity        08/05/2012

    

 3 

Introduction 37 

The structure of local communities (e.g., the numbers and types of species) was historically 38 

thought to be primarily influenced by an interaction between local environmental (e.g., 39 

productivity, disturbance) and biotic (e.g., competition, predation) factors, whereas more recent 40 

advances have emphasized the importance of regional processes such as dispersal and habitat 41 

heterogeneity (e.g. Leibold et al. 2004, Massol et al. 2011).  The formalization of the idea that 42 

variation in dispersal can influence local community structure dates at least as far back as the theory 43 

of island biogeography (e.g., MacArthur and Wilson 1963, 1967), and has been an important 44 

consideration for issues of biodiversity conservation in the face of increased habitat isolation (and 45 

thus lower dispersal) that occurs with anthropogenic habitat fragmentation (e.g., Gonzalez et al. 46 

1998, Fahrig 2003, Damschen et al. 2008). 47 

Understanding the role of dispersal as driver of patterns of species diversity in among and 48 

within communities is a main focus of metacommunity theory (e.g., Leibold et al. 2004, Chase et 49 

al. 2005, Holyoak et al. 2005).  The effects of dispersal on patterns of species richness can depend 50 

on the underlying model assumptions that influence coexistence (reviewed in Chase et al. 2005).  51 

For example, when coexistence is achieved by a regional balance of competitive abilities across 52 

heterogeneous sites, dispersal rates can influence patterns of diversity in a source-sink 53 

metacommunity whereby sustained fluxes of immigrants can override local competitive hierarchies 54 

and promote local coexistence (Mouquet and Loreau 2002, Leibold et al. 2004).  At high levels, 55 

however, dispersal can be detrimental for local coexistence by creating conditions allowing the 56 

dominance of a single best regional competitor (Mouquet and Loreau 2002, Mouquet et al. 2002).  57 

While empirical studies have generally found an increase in local species richness (albeit variable) 58 

with increased dispersal (reviewed in Myers and Harms 2009), there is some circumstantial meta-59 

analytical evidence for the predicted (Mouquet and Loreau 2003) hump-shaped dispersal-diversity 60 
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pattern in experiments that carefully controlled dispersal of organisms among localities (Cadotte 61 

2006, Logue et al. 2011). 62 

Dispersal in theoretical models and in controlled experimentation is typically implemented 63 

as a constant.  In theoretical models, a fixed proportion of individuals disperse from one habitat to 64 

another (or immigrate from a mainland) in each unit of time (e.g., MacArthur and Wilson 1967, 65 

Loreau and Mouquet 1999, Mouquet and Loreau 2003).  Experimental investigations have either 66 

emulated this relative constancy in dispersal (reviewed in Cadotte 2006), or simply added species 67 

from the regional species pool once (or a few times) near the beginning of the experiment (reviewed 68 

in Myers and Harms 2009).  Natural communities, however, more likely experience dispersal that is 69 

variable through time.  This variability can either result from seasonality, where organisms typically 70 

disperse in one part of the season, but not others (reviewed in Nathan et al. 2000, Levin et al. 2003), 71 

or simply due to the stochastic vagaries of weather conditions or other environmental and 72 

demographic factors (e.g., Engen et al. 2005, Grotan et al. 2005).  Furthermore, it is becoming well 73 

accepted that climate change is not only altering the average of environmental conditions (e.g., 74 

Schar et al. 2004), but more likely, is changing the variability in those conditions, leading to more 75 

extreme temperatures and precipitation events (Karl and Easterling 1999).  This increased climatic 76 

variability may also increase the stochasticity in dispersal dynamics among communities (e.g., more 77 

frequent/intense droughts, floods, storms). 78 

In this manuscript, we address how dispersal stochasticity can influence patterns of species 79 

coexistence and diversity in source-sink metacommunities.  We extended a previous modelling 80 

framework of a source sink metacommunity (2002, 2003, see also Mouquet et al. 2006) to illustrate 81 

how dispersal stochasticity influences the coexistence among species and overall diversity in a 82 

metacommunity.  That is, we examine how temporally variable dispersal (e.g., very high during 83 

some time periods, and very low during others) might alter the interactions among species, and 84 

likelihood for coexistence, differently than if dispersal was the average of low and high dispersal 85 
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events.  This modelling framework has been widely discussed and was therefore considered 86 

appropriate to conduct a theoretical examination of the effects of temporally variable dispersal on 87 

metacommunities (reviewed in Leibold et al. 2004, Logue et al. 2011, Massol et al. 2011).  Here, 88 

we present theoretical predictions for local and regional species richness when dispersal and 89 

dispersal stochasticity are explicitly considered at different spatial scales.  We investigate the 90 

effects of dispersal stochasticity on species richness at two different spatial scales– the entire 91 

metacommunity and the local community – to simulate different sources of stochasticity in natural 92 

communities at local (e.g. patch isolation within complex landscapes; Ricketts 2001) and regional 93 

(e.g., climatic fluctuations as in Driscoll and Lindenmayer 2009) scales. 94 

 95 

Methods 96 

 97 

The model 98 

We begin with Mouquet and Loreau’s (2002, 2003) source-sink metacommunity model.  At 99 

the local scale, Pik is the proportion of microsites occupied by species i in community k.  The 100 

metacommunity is constituted of N communities that differ in their local conditions, where S 101 

species compete for a limited proportion of vacant microsites .  Each species i is 102 

characterized by a set of reproduction parameters, cik, each of which measures the potential local 103 

reproductive rate of species i in community k, and a set of mortality rates, mik.  The distribution of 104 

parameters is such that each species exhibits different reproductive rates in the different 105 

communities, allowing them to potentially coexist regionally. 106 

When there is no dispersal (a = 0) between localities, the species with the highest local basic 107 

reproductive rate (cik) excludes all other species in each locality, since mortality rates (mik) are the 108 

same for all species.  In contrast, if localities are linked by dispersal (a > 0), local coexistence is 109 
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possible because each species has a locality in which it is favored, and thus emigration from these 110 

‘source’ areas allows them to (co-) exist in ‘sink’ areas where they are competitively inferior.  The 111 

main equations of the model are: 112 

 113 

        (1) 114 

with immigration          (2) 115 

 116 

We used a recent implementation of this model (Mouquet et al. 2011) that relaxes the strict 117 

assumption of regional similarity with a simple parameter that regulates the degree of regional 118 

similarity (!; see Supplementary material Appendix A1 for details), which was set so that the 119 

source-sink dynamic was strong (! = 0.8), resulting in a hump-shaped pattern of local diversity 120 

with dispersal.  Under these conditions, we tested the effect of temporal variability in dispersal on 121 

patterns of species richness in metacommunities.  See Supplementary material Appendix A1 for 122 

details on the model parameters. 123 

 124 

Temporal variation in dispersal 125 

 In developing this model, we assume that all emigrants from a local community are 126 

combined and equally redistributed at a constant rate to other communities, with no individuals 127 

returning to the community from which they emigrated.  We introduced temporal variability in 128 

dispersal by changing the proportion of dispersers through time to generate predictions about the 129 

effect of dispersal stochasticity on local and regional species richness.  Variable dispersal dynamics 130 

were generated using a sequence of random numbers from a uniform distribution.  We calculated 131 

realized dispersal (i.e. actual dispersal value used in the model equations) for each dispersal event 132 
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as: ; where a is realized dispersal;  is mean dispersal (  = 0: no dispersal;  = 1: all 133 

individuals dispersed); s is a random number from a uniform distribution between 0 and 0.5.  We 134 

evaluated other distributions of random numbers (e.g. Gaussian) and found that, under these model 135 

parameters, there were no qualitative differences on the effects of dispersal stochasticity.  The 136 

signal of s was randomly assigned for each dispersal event to simulate either increases 137 

(homogenization events) or decreases in dispersal (i.e. isolation events).  When s = 0, there is no 138 

stochasticity and all realized dispersal values are equal to mean dispersal ( ); as s increases, the 139 

deviations from mean dispersal increase leading to an increase in dispersal stochasticity.  Because 140 

dispersal is bounded between 0 and 1, we constrained the variability to the range of possible 141 

dispersal values in order to avoid border effects that would come from high values of s. For 142 

example, at mean a = 0.2, values of dispersal were only simulated with a maximum s of 0.2 so that 143 

no negative dispersal values could be generated.  144 

 145 

Spatial scale of variability 146 

 Any source of dispersal stochasticity in natural communities is likely to be mediated by the 147 

combination of process occurring at local and regional scales (Ricklefs 1987, Zobel 1997). From 148 

this, we extended our modelling framework to investigate the effects of dispersal stochasticity at 149 

two different scales– metacommunity and community.  Dispersal stochasticity at the 150 

metacommunity level means that all species in all communities have the same realized dispersal 151 

value in every unit of time (Mouquet and Loreau 2002, Mouquet and Loreau 2003).  This simulates, 152 

for example, variability in isolation and connectedness of local communities at regional scales as a 153 

response to large-scale fluctuations (e.g., climatic fluctuations as in Driscoll and Lindenmayer 154 

2009).  The predictions generated at this scale of stochasticity (i.e. regional), are comparable with 155 

previous results found with the previous models that did not considered dispersal stochasticity 156 

(Mouquet and Loreau 2002, Mouquet and Loreau 2003).  Alternatively, stochasticity was 157 
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implemented at community level, where each community has a different value of realized dispersal 158 

in each unit of time; all species within each community have the same dispersal value.  This 159 

scenario corresponds to a lower scale fluctuation regime, as for instance, through patch isolation 160 

within complex landscapes (e.g. Ricketts 2001). 161 

 162 

Numerical simulations 163 

Each metacommunity consisted of 20 local communities, each initiated with 20 species.  At 164 

the start of each simulation, we attributed the same proportion of microsites to each species in all 165 

local communities (Pik = 0.01, for all i and k).  In order to investigate the joint effects of dispersal 166 

stochasticity and mean dispersal on species richness, we generated predictions for every 167 

combination of dispersal parameters (0 to 1 with increments of 0.1) and dispersal stochasticity (0 to 168 

0.5 with increments of 0.1).  For each dispersal scenario, we generated 100 independent simulations 169 

using an Euler approximation ("t = 0.01) of equation (1) until equilibrium was reached in all local 170 

communities within a metacommunity.  Dispersal stochasticity was only implemented after 171 

equilibrium was reached (100000 iterations), after which community dynamics were simulated for 172 

an additional 100000 iterations under variable dispersal.  Preliminary work had shown that the final 173 

communities were qualitatively similar whether stochasticity was implemented at the initiation of 174 

the simulation or at equilibrium, although it was impossible to distinguish between the two sources 175 

of extinctions (i.e. deterministic or stochastic) when dispersal stochasticty was implemented at the 176 

beginning of simulations.  We thus opted to implement dispersal stochasticity after communities 177 

reached equilibrium to disentangle extinction events that result from deterministic competitive 178 

interactions within each local community under constant dispersal from those resulting from 179 

increased dispersal stochasticity. 180 

We kept mortality rates constant across species (mik = 0.3), and based competitive 181 

hierarchies on potential local reproductive rate cik (species i in community k).  After the very early 182 
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stage of community development (t = 2000), we assumed that a species went extinct from a local 183 

community when its proportion of occupied sites was lower than an extinction threshold (=0.01).  184 

We computed values for local richness (!), regional richness ("), and species turnover (#) at the end 185 

of each run.  These measures were calculated assuming additive partitioning of components of 186 

species diversity (sensu Lande 1996): .  Where  is the mean ! diversity in the 187 

metacommunity (i.e. across all communities).  Additionally, to account for the influence of 188 

dispersal and dispersal stochasticity on the relative abundance of species, we used the Rao quadratic 189 

entropy decomposition of diversity in !, ", and # (de Bello et al. 2010).  This additional analysis is 190 

presented in Appendix A2.  For every combination of dispersal and dispersal stochasticity, we 191 

analyzed the average values over the 100 simulations.  Figure 1 gives an example of the dynamics 192 

of the same community with and without dispersal stochasticity.  During the time series, we 193 

recorded dispersal sequences and the identity of species that went extinct in each community.  194 

Additionally, we also calculated the dispersal deviation ( ) at each extinction event, 195 

which measures the degree to which extinction occurred following a low or high dispersal event. 196 

Results 197 

Species richness and dispersal stochasticity 198 

Without dispersal stochasticity, we found the expected hump-shaped relationship between 199 

dispersal and local species richness (e.g. Mouquet and Loreau 2002, 2003).  With the inclusion of 200 

increased dispersal stochasticity, the position of the peak (hump) of species richness shifted from 201 

intermediate to higher values of dispersal, and the height of the peak was reduced, allowing for the 202 

coexistence of fewer species locally (Fig. 2).  This effect was stronger when dispersal was 203 

implemented at the community level (i.e. each community had a different dispersal sequence); for 204 

instance at intermediate levels of dispersal (a = 0.5), local species richness was reduced up to 25% 205 

(16 to 12 species) under metacommunity-level stochasticity, while under community-level dispersal 206 

stochasticity, the reduction was up to 50% (16 to 8 species). 207 
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Increasing dispersal stochasticity shifted the predicted decline of spatial turnover of species 208 

(beta diversity) to intermediate levels of dispersal and was consistent at metacommunity- and 209 

community-level dispersal stochasticity (Fig. 2a, b).  This effect is clearer from low to intermediate 210 

levels of dispersal where the spatial turnover of species was enhanced more than tenfold with 211 

dispersal stochasticity (e.g. 1 to 14 species at a = 0.3; Fig. 2a).  Finally, we found that increased 212 

dispersal stochasticity at the metacommunity-level did not have a discernable effect on regional 213 

richness (Fig. 2a).  At the community level, however, there was a reduction in regional species 214 

richness at intermediate levels of dispersal (14 to 8 at a = 0.6; Fig. 2b).  Results from the Rao 215 

diversity index of species turnover, local, and regional richness (Fig. 2a, b), which incorporate 216 

patterns of relative abundances by down-weighting the importance of rare species, were generally 217 

similar to those produced when only considering patterns of species richness (Supplementary 218 

material Appendix A2).  However, the magnitude of the effect of dispersal stochasticity on species 219 

diversity was reduced as a direct result of the down-weight of rare species, inherent of using Rao’s 220 

diversity index.  221 

 222 

Pattern of species extinctions  223 

Most species that went extinct as a result of increased stochastic dispersal were those with 224 

lower local reproductive rates (i.e. the worse local competitors) (Fig. 3a). These results were similar 225 

for both dispersal scenarios (see Supplementary material Appendix A3).  More than 90% of the 226 

extinctions occurred after reductions in dispersal at low to intermediate levels that match the peak in 227 

local species richness (a < 0.5; Fig. 3b) and were caused by isolation events rather than by 228 

increasing dispersal events (i.e. reductions in dispersal; see Fig 3c).  In fact, the great majority of 229 

dispersal events leading to extinctions (> 93%) were negative (i.e. isolation events) with respect to 230 

mean dispersal at the time of extinction (Fig 3c).  At high mean dispersal, extinctions were caused 231 

by both isolation and homogenization events (Fig 3c). 232 
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 233 

Discussion 234 

 235 

Consequences of dispersal stochasticity on species richness 236 

Overall, our results show that dispersal stochasticity mediates local and regional richness in 237 

source-sink metacommunities.  We found a strong negative effect of increased dispersal 238 

stochasticity on local species richness and a shift in the position of the peak in the dispersal-local 239 

species richness relationship to higher levels of dispersal than found in previously published models 240 

without dispersal stochasticity (e.g., Mouquet and Loreau 2003).  This result might help to explain 241 

some of the observed disparity between empirical results and theoretical predictions (Logue et al. 242 

2011).  For example, most empirical studies that have manipulated dispersal typically find increases 243 

in local species richness, while very few have found the predicted declines in local species richness 244 

at high levels of dispersal (reviewed in Myers and Harms 2009).  This might be expected from our 245 

predictions that suggest that the maximum species richness is attained at rates of immigration much 246 

higher than are typically implemented in experimental studies (Cadotte 2006). 247 

We have found that regional species diversity was mainly affected by dispersal stochasticity 248 

at the community level, but not at the metacommunity level.  This lack of a major effect on regional 249 

species richness can be attributed to the fact that most species extinctions occurred at the local 250 

community scale and did not directly translate to increased regional extinctions.  On the other hand, 251 

values of species spatial turnover at intermediate levels of dispersal were higher with dispersal 252 

stochasticity at both the local and regional scale, reflecting the strong effect on local, but regional, 253 

diversity.  While dispersal stochasticity does not strongly affect regional species richness, it does 254 

add heterogeneity in the distribution of species richness among communities.  These responses to 255 

unpredictable dispersal events altered metacommunities differently depending on their initial mean 256 

levels of dispersal.  Reductions in dispersal generally benefit species that are better local 257 
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competitors and therefore exclude worse competitors from localities.  Alternatively, increases in 258 

dispersal affect communities in both directions; from low to intermediate levels, increases in 259 

dispersal events benefits species that are worse local competitors.  At very high mean dispersal, 260 

however, further increases in dispersal favour better regional competitors and homogenize of the 261 

metacommunity (Mouquet and Loreau 2003; empiral examples in Forbes and Chase 2002, Kneitel 262 

and Miller 2003, Matthiessen and Hillebrand 2006, Ostman et al. 2006).  As a consequence, the 263 

landscape is homogenized by species that have great competitive abilities at the scale of the 264 

metacommunity, thus making it less likely to undergo extinction as a result of further stochastic 265 

events. 266 

As expected, dispersal stochasticity had a qualitatively similar, but weaker effect on species 267 

diversity than on species richness (Appendix 2).  This is because Rao’s diversity, like other 268 

diversity estimates, down-weights the importance of rare species which play a strong role in the 269 

observed richness results.  Thus, while our results are quite relevant for conservation concerns for 270 

rare species vulnerable to extinctions, they are moderated somewhat by the more common species 271 

that dominate diversity measurements.  Dispersal stochasticity might be less important for diversity 272 

than for richness, which may play a stronger role in ecosystem functions dominated by common 273 

species.  However, rare species may play a particular role in the stability of ecosystems if they 274 

possess functional traits that provide insurance to the functioning the ecosystem in response to 275 

environmental variation (Loreau et al. 2003, Lyons et al. 2005).  Future work should explore the 276 

functional consequences of dispersal stochasticity in spatially structured ecosystems (Massol et al 277 

2011). 278 

As a result of our theoretical study, we suggest that any predictions about the effects of 279 

dispersal stochasticity in natural communities should be relative to mean dispersal of those 280 

communities (i.e. whether communities are highly or poorly connected) and also include 281 

information on the nature of extreme dispersal events (i.e. isolation or homogenization events).  For 282 
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example, changes in dispersal that result predominately in dispersal reductions (e.g. following a 283 

drought) may have greater effects on species that can coexist locally in communities that are 284 

isolated from neighboring communities (e.g. isolated fragments) by further increasing species 285 

extinction risk.  Further investigations on the effects of dispersal stochasticity could extend this 286 

framework by including different relative proportions of high-low dispersal events to mimic 287 

specific stochastic dispersal scenarios or the colour of environmental variability (i.e., whether or not 288 

it is temporally autocorrelated; e.g. Vasseur and Yodzis 2004). Moreover, these predictions could 289 

be tested in a variety of experimental venues (e.g. Logue et al. 2011) by implementing variable 290 

dispersal in spatially structured metacommunities (e.g. Carrara et al. 2012). 291 

 292 

Scale of dispersal stochasticity 293 

We found a stronger effect of dispersal stochasticity on local and regional diversity when 294 

dispersal varied at the community scale than at the metacommunity scale.  As discussed above, 295 

dispersal stochasticity at the local scale inflates the effect of stochasticity by spatially 296 

“desynchronizing” the dispersal sequences.  It results in a greater number of variable dispersal 297 

events when stochasticity is implemented at local scale and thus enhances the probability of 298 

extreme dispersal events.  With metacommunity-scale stochasticity, there were only 200 realized 299 

dispersal values per simulation, whilst with community-scale stochasticity, we simulated 4000 300 

realized dispersal values for each community.  Such unevenness across scales reflects the 301 

hierarchical nature of metacommunities.  For example, regional processes that are likely to affect 302 

overall metacommunity dispersal (e.g. changes in wind patterns, ocean currents, etc) are more likely 303 

to occur at different scales than stochasticity at the community level (e.g. disturbance, fire, etc).  We 304 

know of no competitive metacommunity experiments that have manipulated the scale of dispersal 305 

stochasticity explicitly.  In predator-dominated systems where resistance to predation is analogous 306 

to competition (Chesson and Kuang 2008), Cadotte and Fukami (2005) showed that dispersal had a 307 
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positive or neutral effect at local scales but consistently negative effects on the metacommunity 308 

scale.  These results were explained by an interaction between scale-dependent effects of dispersal 309 

and the removal of spatial refuges from predators.  Even though this experiment focused on a 310 

different community assembly mechanism (predation vs. competition), it generally supports our 311 

conclusion that the scale of dispersal stochasticity is central to building a more predictive 312 

understanding of the ecological consequences of extreme dispersal events on community richness, 313 

composition and dynamics. This is particularly important given the increasing numbers of reports 314 

suggesting that spatial and temporal patterns of environmental variability are becoming more 315 

unpredictable with global change (e.g. more frequent/intense droughts, floods, storms, etc.; Karl 316 

and Easterling 1999, Schar et al. 2004). 317 

 318 

Species extinctions patterns 319 

We found that dispersal stochasticity had an asymmetrical affect on community species 320 

composition by increasing the extinction probability of worse local competitors within each local 321 

community.  Metacommunities with low to intermediate levels of mean dispersal were also more 322 

likely to lose species as a result of increased stochasticity relative to highly connected 323 

metacommunities.  The inclusion of stochasticity in dispersal revealed that probabilities of 324 

extinction in dispersal-limited communities were much higher than anticipated under constant 325 

dispersal dynamics.  Such underestimation of species extinction probabilities can have implications 326 

in terms of forecasting changes in species diversity in isolated communities during the 327 

fragmentation processes (e.g. isolated fragments; Gonzalez et al. 1998, Fahrig 2003, Damschen et 328 

al. 2008).  In contrast, from intermediate to high levels of dispersal, metacommunities are 329 

homogenised and dominated by strong competitors (Mouquet and Loreau 2002) that are more 330 

abundant and less vulnerable to variability on dispersal.  This is consistent with empirical evidence 331 
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of the potential impacts of increases in dispersal on metacommunities such as those in freshwater 332 

ponds (Forbes and Chase 2002) and pitcher plant micro-ecosystems (Kneitel and Miller 2003). 333 

 334 

Extending dispersal stochasticity to other metacommunity paradigms  335 

We generated predictions for a particular type of metacommunity– source-sinks.  However, 336 

dispersal stochasticity will likely be important for communities assembled under different 337 

coexistence mechanisms, including neutral or competition-colonization metacommunities (Leibold 338 

et al. 2004).  Unravelling the consequences of dispersal stochasticity in competitive 339 

metacommunities with these alternative mechanisms of coexistence will require additional 340 

theoretical work, but we here make some general conjectures.  341 

Under neutral dynamics, local diversity is determined by migration rates from the 342 

metacommunity and local community size (Hubbell 2001, Etienne 2005).  Increasing dispersal 343 

generally leads to homogenization among communities by increasing local diversity and decreasing 344 

beta diversity (Economo and Keitt 2008).  These effects are mediated by rates of speciation (or 345 

immigration from outside the metacommunity) and are likely to also be affected by dispersal 346 

stochasticity.  Extreme dispersal events (i.e. isolation or homogenization) are thus likely to lead to 347 

extinctions that will or not will be compensated by new species arrivals depending on the rates of 348 

speciation (or immigration).  For example, high speciation rates are likely to enhance community 349 

differentiation (e.g. Richardson et al. 2001, Latimer et al. 2005), which would be further enhanced 350 

with reductions in dispersal events (i.e. isolation).  In contrast, if speciation rates are low, a series of 351 

extreme dispersal events are unlikely to alter the regional diversity (Economo and Keitt 2008). 352 

Competition-colonization tradeoffs occur when there are costs associated with either 353 

competitive or dispersal abilities (Hastings 1980, Tilman 1994, Calcagno et al. 2006); coexistence 354 

occurs because inferior competitors are able to persist in the landscape due to their higher 355 

colonization ability (Tilman 1994).  Depending on the strength of the tradeoff, there are 356 
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colonization rates below which coexistence is not possible, and upper thresholds above which only 357 

the superior colonizer survives (Calcagno et al. 2006).  In this scenario, we expect that increased 358 

stochasticity in colonization rates (as a result of dispersal stochasticity) would reduce the “window” 359 

of coexistence by driving either the strong or the weak competitors extinct (depending on the 360 

direction of stochasticity).  Since colonization rates in this model framework are species-specific, it 361 

is foreseeable that the impacts of stochasticity would depend on whether stochasticity is modelled 362 

separately for either colonizer and the competitor (i.e. species-specific stochasticity), or whether 363 

both species are subjected to a similar stochasticty regime (metacommunity-level). 364 

 365 

Conclusions 366 

 In natural systems, dispersal rates are often likely be variable owing to a variety of 367 

stochastic factors, be they environmental, demographic and/or otherwise.  However, most 368 

theoretical and empirical studies treat dispersal rates as a constant.  Furthermore, global climate 369 

change is expected to increase the frequency and magnitude of environmental extremes (e.g. Karl 370 

and Easterling 1999), which can also increase stochasticity in dispersal among species within 371 

metacommunities (Nathan et al. 2000, Levin et al. 2003).  Our results illustrate that temporally 372 

variable dispersal patterns can have an important influence on species’ coexistence and richness at 373 

local and regional spatial scales.  In our source-sink metacommunity model, the principal 374 

mechanism underlying such an effect is the increased risk of extinction of inferior competitors 375 

during episodes of reduced dispersal (isolation).  Increased dispersal stochasticity is thus more 376 

likely to affect dispersal-limited metacommunities than highly connected metacommunities (e.g., 377 

Cottenie et al. 2003).  To achieve a broader understanding of the consequences of dispersal 378 

stochasticity on metacommunities dynamics, it will be useful to extend this framework to other 379 

relevant metacommunity paradigms.  Incorporating dispersal stochasticity in metacommunity 380 

theory is an important step to enhance our understanding of the role of dispersal in community 381 
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dynamics and should be considered in future empirical and experimental studies on 382 

metacommunities in an increasingly variable and heterogeneous world (Myers and Harms 2009, 383 

Logue et al. 2011). 384 
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Figure captions 

 505 

Figure 1.  Examples of simulations of community dynamics under (a) constant and (b) variable 

dispersal dynamics.  Metacommunities with variable dispersal (a = 0.3; s = 0.25) are quite 

responsive to changes in dispersal, leading to more extinctions than metacommunities with no 

dispersal stochasticity (a = 0.3; s = 0).  In the bottom graphs, each solid line indicates the abundance 

of a different species in the community; dashed lines indicate the extinction threshold (= 0.01).   510 

 

Figure 2.  Local richness (alpha), spatial turnover (beta) and regional (gamma) species richness as 

function of dispersal (x axis) for two spatial scales of dispersal stochasticity – (a) metacommunity 

and (b) community levels; lines with increasing thickness indicate values of dispersal stochasticity 

(i.e. 0, 0.1, 0.2, 0.3, 0.4 and 0.5).  We present means over 100 simulations (standard deviations are 515 

omitted for clarity but are always inferior to 2%). Predictions are only presented for scenarios 

where deviations from mean dispersal do not exceed realized dispersal of 0 or 1.  For example, for a 

= 0.2, values of dispersal stochasticity are only shown for a maximum dispersal stochasticity of 0.2 

so that the range of dispersal values were between 0 and 0.4.  This procedure avoided any potential 

border effect (see Methods section for details). 520 

 

Figure 3.  Species extinctions under variable dispersal dynamics: (a) Densities of extinct and 

remaining species in relationship to their local competitive abilities (as indicated by their local 

reproductive rate).  These analyses were done using all recorded extinction events following the 

implementation of dispersal stochasticity (i.e. pooled across all levels of stochasticty).  Densities 525 

were calculated using a kernel density estimation procedure (Density function; base package; R 

Development Core Team, 2011) (b) Histogram of frequencies of species extinctions at each 

dispersal level; dashed grey line indicates the median = 0.3. (c) Boxplots showing deviations from 
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mean dispersal at time of extinction; deviations were calculated as  with  as realized 

dispersal and  as mean dispersal at time of extinction; this measure ranges between -1 and 1.  530 

Solid grey line indicates the general predictions of local richness for different mean dispersal under 

no dispersal stochasticity (see Fig. 2).  Black circles indicate “outliers” that fall outside the boxplot 

maximum or minimum range (i.e. < 5% of the data points). 

 

535 
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Figure 1 535 
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Figure 2 538 

 539 
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Figure 3 541 
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Supplementary material 544 

Appendix A1 - Generating the model parameters 545 

 546 

We generated a matrix of parameters for a source-sink metacommunity as proposed by 547 

(Mouquet et al. 2011).  We used two types of matrices of local reproductive rate cik parameters. 548 

First, we generated a matrix (called Rand) with c values randomly chosen between 0 and a maximal 549 

reproductive rate cmax, which was set to 5.  Then, we generated a matrix (called SRS) that fitted the 550 

constraint of strict regional similarity (Mouquet and Loreau 2002), which means that each species 551 

has its cik = cmax in one of the twenty communities and the other parameters are derived such that in 552 

each community: 553 

 554 

          (S1.1) 555 

 556 

with N the number of species, xik the competitive rank (approximated by species reproductive rates 557 

in this model) of species i in community k, m is the mortality rate (such as no species will have a 558 

negative potential reproductive rate in any communities).  We generated the competitive ranks xik 559 

so that each species is the best competitor in one community, the second best competitor in another 560 

community, the third in a third, etc.  The exponent, 5, determines a steep local competitive 561 

hierarchy i.e. magnitude of differences between best and worst competitor species (Mouquet et al. 562 

2011).   563 

We then generated each community matrix of realized cik parameters as combination of the 564 

matrices Rand and SRS following this simple equation: 565 

 566 

          (S1.2) 567 

 568 
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with ! determining the degree of regional similarity between species within competitive 569 

metacommunities, which results in a set of competitive parameters ranging from strict regional 570 

similarity (! = 1) to entirely random matrices (! = 0).  For this analysis we fixed ! to 0.8 since it 571 

has been shown to relax the strict assumption of regional similarity (i.e. =1) without qualitatively 572 

changing the shape of the dispersal-species richness relationship (see Mouquet et al 2011).  If there 573 

is a strict regional similarity (or close to), it means that every single species will have a strong 574 

“source” i.e. at least one community in which they are the best competitor and therefore disperse 575 

strong competitors. 576 

 577 
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Appendix A2 – Local (alpha), spatial turnover (beta) and regional (gamma) diversity species 584 

richness as function of dispersal (x axis) using the Rao quadratic entropy decomposition of diversity 585 

(de Bello et al. 2010).  Data is presented for two spatial scales of dispersal stochasticity – (a) 586 

metacommunity and (b) community levels; lines with increasing thickness indicate values of 587 

dispersal stochasticity (i.e. 0, 0.1, 0.2, 0.3, 0.4 and 0.5).  We present means over 100 simulations 588 

(standard deviations are omitted for clarity but are always inferior to 2%).  Predictions are only 589 

presented for scenarios where deviations from mean dispersal do not exceed realized dispersal of 0 590 

or 1.  For example, for a = 0.2, values of dispersal stochasticity are only shown for a maximum 591 

dispersal stochasticity of 0.2 so that the range of dispersal values were between 0 and 0.4.  This 592 

procedure avoided any potential border effect (see Methods section for details). 593 

 594 

 595 

 596 



Matias et al stochasticity        06/11/2011 

 31 

Appendix A3 – Species extinctions patterns obtained for community (local) and 597 

metacommunity (regional) scales dispersal stochasticity. Species extinctions patterns at (a) 598 

metacommunity and (b) community scales dispersal stochasticity.  Line plots (left-hand side) 599 

present densities of extinct and remaining species in relationship to their competitive abilities (as 600 

indicated by their local reproductive rate); densities were calculated using a kernel density 601 

estimation procedure (Density function; base package; R Development Core Team, 2011).  602 

Boxplots (right-hand side) showing deviations from mean dispersal at time of extinction. These 603 

deviations were calculated as  with  as realized dispersal and  as mean dispersal at time 604 

of extinction event; this measure ranges between -1 and 1.   solid red line indicates the general 605 

predictions of local richness for different mean dispersal under no dispersal stochasticity (see Fig. 606 

2).  Black circles indicate “outliers” that fall outside the boxplot maximum or minimum range (i.e. 607 

< 5% of the data points). 608 

 609 

 610 



Matias et al stochasticity        06/11/2011 

 32 

References 611 

R Development Core Team (2011). R: A language and environment for statistical computing. R 612 

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-613 

project.org/. 614 

 615 


