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1 Introduction

Here we provide additional material in support of our results. In Sec. 2, we prove the ab-
sence of a metric contribution to the in-plane coefficients considered here, in contrast to the
out-of-plane case studied in our previous work [1]. In Sec. 3, we provide a detailed deriva-
tion of the in-plane 2D flexoelectric coefficients in their type-II form. Then, we split the
total (relaxed-ion) response into clamped-ion and lattice-mediated contributions, and show
its relation with the 3D type-I flexoelectric tensor. In Sec. 4, we provide the detailed com-
putational parameters used in the primitive cell linear-response, while in Sec. 5 we describe
the computational method employed for the calculation of the axial polarization within
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SnS2 nanotubes, and discuss the related outcomes. In Sec. 6, we show that the in-plane
flexoelectric coefficients also provide an exact description of the longitudinal macroscopic
electric fields associated to a flexural phonon. In Sec. 7 the impact of the choice of the
exchange-correlation functional on the quantity considered in this work is discussed. Sec. 8
is assigned to the illustration of two experimental setups that could possibly confirm the
theoretical predictions and results presented in the main text. Finally, in Sec. 9, the non
trivial polarization textures associated with several types of ripples are presented.

2 Flexoelectric response of 2D materials

The flexoelectric response of a quasi-2D material can be either defined as the derivative
(with respect to the uniform strain-gradient εβγ,λ describing the deformation considered) of
the electrostatic potential V at fixed macroscopic displacement field D (open circuit) or as
the derivative of the macroscopic D at fixed V (short circuit). While the former definition is
appropriate for the out-of-plane response [1], the latter is the natural choice for the in-plane
components studied here, given the extended nature of the crystal therein. Following the
prescriptions of Refs. [2, 3], we define the flexoelectric response via a curvilinear-coordinate
representation of the microscopic electric displacement field via

D̂
(1)

(r) = ϵ̂(0) · Ê(1)
(r) + ϵ̂(1)(r) · Ê(0)

(r) + P̂
(1)

(r). (1)

(The hat symbol indicates the curvilinear representation of the relevant quantities and the
(1) superscript indicates first order in the strain gradient.) The second term in the rhs of

Eq. (1), ϵ̂(1)(r) · Ê(0)
(r), orginates from the geometric variation of the vacuum permittiv-

ity ϵ̂(r) = ϵ0
√
gĝ−1(r) [3], and couples the linear variation of the curvilinear microscopic

electric displacement with the microscopic electric field within the undistorted configura-

tion, Ê
(0)

(r) = E(0)(r) (E(0)(r) being the Cartesian representation of the electric field)
through the linear variation of the metric tensor ĝ(r) and its determinant g. This means
that, in principle, a metric contribution may be present (and hence the first-order D̂ may
differ from the first-order P̂) even if short-circuit electrical boundary conditions are as-
sumed. However, one can show that, for the in-plane response considered in this work,
the geometric contribution vanishes. Indeed the linear variation of the metric contribution,

D̂(met) = ϵ̂(1)(r) · Ê(0)
(r), due to a uniform strain-gradient of the form εβγ,z takes the form

[3]

∂D̂
(met)
α (r)

∂εβγ,z
= ϵ0z

(
δβγE

(0)
α (r)− δαβE

(0)
γ (r)− δαγE

(0)
β (r)

)
. (2)

and its in-plane components (α = x, or y) are zero when integrated on the volume of the
unit-cell, leading to

⟨D̂SC
∥ ⟩ = ⟨D̂∥⟩|⟨Ê(1)

∥ ⟩=0
= ⟨P̂(1)

∥ ⟩|⟨Ê(1)
∥ ⟩=0

(3)

once the unit-cell average of the in-plane response is considered and SC conditions (⟨Ê(1)
∥ ⟩ =

0) are applied.
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3 In-plane response to a flexural deformation

The microscopic curvilinear polarization linear-response along an in-plane (curvilinear)
direction (α = x or y) due to a symmetrized uniform strain-gradient of the type εβγ,λ can
be written as [2, 3]

P̂ (1)
α (r) = P

(U)
α,βγ(r)εβγ(r) + P

(G)
αλ,βγ(r)εβγ,λ (4)

where summation over repeated indices is implied, and

P
(U)
α,βγ(r) =−1

2

∑
k

(
P

(1,γ)
α,κβ (r) + P (1,β)

α,κγ (r)
)

︸ ︷︷ ︸
Clamped−Ion

+ P (0)
α,κρ(r)Γ

κ
ρ,βγ︸ ︷︷ ︸

Lattice−Mediated

, (5a)

P
(G)
αλ,βγ(r) =

1

2

∑
κ

(
P

(2,γλ)
α,κβ (r) + P (2,λβ)

α,κγ (r)− P
(2,βγ)
α,κλ (r)

)
︸ ︷︷ ︸

Clamped−Ion

− P (1,λ)
α,κρ (r)Γ

κ
ρ,βγ︸ ︷︷ ︸

Mixed

+P (0)
α,κρ(r)L

κ
ρλ,βγ︸ ︷︷ ︸

Lattice−Mediated

. (5b)

Here, P
(U)
βγ (r) is the microscopic polarization linear-response due to a uniform symmetrized

strain εβγ , and P
(U)
βγ (r)rλ = P

(U)
βγ (r)

∂εβγ(r)

∂εβγ,λ
and P

(G)
λ,βγ(r) have the physical interpretation

of a local piezoelectric (U) and a flexoelectric (G) (type-II) coefficient respectively due to
a uniform strain-gradient of the type εβγ,λ = ∂εβγ(r)/∂rλ. A flexural deformation can
be described by a symmetrized transverse strain gradient of the type εβγ,z and then the
longitudinal microscopic polarization response due to a flexural deformation is

∂P̂α(r)

∂εβγ,z
= P

(U)
α,βγ(r)z + P

(G)
αz,βγ(r). (6)

The total (relaxed-ion) 2D longitudinal flexoelectric coefficient is finally obtained as

µ2D
αz,βγ =

1

S

∫
Ω
d3r

∂P̂α(r)

∂εβγ,z
=

1

S

∫
Ω
d3rP

(U)
α,βγ(r)z + LµII

αz,βγ (7)

where S is the unit-cell surface, L the out-of-plane dimension of the supercell where the

layer is accomodated in, and the relation µII
αz,βγ =

1

Ω

∫
Ω d3rP

(G)
αz,βγ(r) [4, 3] has been used.

µII
αz,βγ is the type-II bulk flexoelectric coefficient of the supercell, the volume of the latter

indicated as Ω.
In the following sections we shall recast Eq. (7) in a form that is suitable for direct im-

plementation and that provides an exact separation between clamped-ion (CI) and lattice-
mediated (LM) contributions.

3.1 Clamped-ion 2D flexocoefficient

The clamped-ion contribution to µ2D
αz,βγ is formally written as

µ2D,CI
αz,βγ = − 1

2S

∑
κ

∫
Ω
d3r

(
P

(1,γ)
α,κβ (r)z + P (1,β)

α,κγ (r)z
)
+ LµII,CI

αz,βγ . (8)
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Using the fact that the system is finite along the out-of-plane z-direction, we can write

− 1

S

∑
κ

∫
Ω
d3rzP

(1,γ)
α,κβ (r) = − 1

S

∑
κ

∫
Ω
d3r (z − τκz)P

(1,γ)
α,κβ (r)−

1

S

∑
κ

τκz

∫
Ω
d3rP

(1,γ)
α,κβ (r)

= − 1

S

∑
κ

∫
Ω
d3rP

(2,γz)
α,κβ (r)− 1

S

∑
κ

τκz

∫
Ω
d3rP

(1,γ)
α,κβ (r)

= −2LµI,CI
αβ,γz − L

∑
κ

τκzP̄
(1,γ)
α,κβ .

(9)

Here, the overbar indicates avarage over the supercell volume and we have used the rela-

tionship [4] between the type-I CI flexocoefficients and the sublattice summation of P̄
(2,γz)
α,κβ .

Finally, using the relationship µI
αβ,γz = (1/2)

(
µII
αz,βγ + µII

αγ,βz

)
[3, 4] and gathering all the

terms together, Eq.(8) can be rewritten as

µ2D,CI
αz,βγ = −L

2

[(
µII,CI
αγ,zβ + µII,CI

αβ,zγ

)
+
(
P̄ (1,β)
α,κγ + P̄

(1,γ)
α,κβ

)
τκz

]
. (10)

3.2 Lattice-mediated 2D flexocoefficient

The remaining, no clamped-ion type, contributions to the 2D flexocoefficient of Eq. (7) are

1

S

∫
Ω
d3rzP (0)

α,κρ(r)Γ
κ
ρ,βγ − LP̄ (1,z)

α,κρ Γ
κ
ρ,βγ +

1

S
Z(α)
κρ Lκ

ρz,βγ . (11)

The first term, coming from Eq. (5a), can be manipulated likewise its CI counterpart, as
follows

1

S

∫
Ω
d3rzP (0)

α,κρ(r)Γ
κ
ρ,βγ =

1

S

∫
Ω
d3r (z − τκz)P

(0)
α,κρ(r)Γ

κ
ρ,βγ +

1

S
τκz

∫
Ω
d3rP (0)

α,κρ(r)Γ
κ
ρ,βγ

=
1

S

∫
Ω
d3rP (1,z)

α,κρ (r)Γ
κ
ρ,βγ + τκz

1

S

∫
Ω
d3rP (0)

α,κρ(r)Γ
κ
ρ,βγ

= LP̄ (1,z)
α,κρ Γ

κ
ρ,βγ +

1

S
Z(α)
κρ τκzΓ

κ
ρ,βγ .

(12)

Now, after observing that the first term at the rhs exactly cancels the mixed one [second
term in Eq. (11)], we are left with a purely lattice-mediated contribution written as

µ2D,LM
αz,βγ =

1

S
Z(α)
κρ Lκ

ρz,βγ (13)

where Lκ
ρz,βγ is the internal relaxation of the κ-atom in the isolated slab due to the flexural

deformation. The last quantity can be likewise split as

Lκ
ρz,βγ = Γκ

ρ,βγτκz + Lκ
ρz,βγ , (14)

i.e., in terms of the piezoelectric (Γ) and flexoelectric (L) internal tensors of the 3D super-
cell.
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3.3 Relation to the type-I bulk coefficients

In the main text we claim that the “2D” type-II flexoelectric coefficients defined and cal-
culated in this work directly relate to the macroscopic “3D” type-I flexoelectric coefficients
of the supercell. To support this statement, here we shall demonstrate the following rela-
tionship

µ2D
αz,βγ = −LµI

αz,βγ . (15)

Regarding the clamped-ion part, notice that, exploiting the relation Γκ
α,zβ = Γκ

α,βz =
−δαβτκz valid for an isolated slab, Eq.(10) can be recast in the form

µ2D,CI
αz,βγ = −1

2
L
(
µII,el
αγ,zβ + µII,el

αβ,zγ

)
, (16)

with µII,el
αγ,zβ being the type-II bulk electronic flexoelectric tensor defined as in Ref. [5]:

µII,el
αγ,zβ = µII,CI

αγ,zβ − P̄ (1,γ)
α,κρ Γ

κ
ρ,zβ (17)

Regarding the lattice-mediated contribution, notice that in a free-standing layer the
shear components of the type-I internal-strain tensor N [4] and the transverse components
of the type-II tensor are related by

Nκ
ρz,βγ = −Γκ

ρ,βγτκz − Lκ
ρz,βγ = −Lκ

ρz,βγ . (18)

Now, recalling the relationship between the type-I and type-II representations of the
flexoelectric tensor [3, 4],

1

2

(
µII
αγ,zβ + µII

αβ,zγ

)
= µI

αz,βγ (19)

we can conclude that

µ2D,CI
αz,βγ = −LµI,el

αz,βγ , µ2D,LM
αz,βγ = −LµI,LM

αz,βγ , (20)

which proves Eq. (15).
This result is consistent with the known fact [1, 2] that a 2D flexural phonon propagating

in a free-standing slab is characterized by the same atomic displacement pattern as a
transverse strain gradient.

4 Computational parameters

Norm-conserving pseudopotentials are generated with Hamann’s approach [6], by using the
“stringent” parameters of PseudoDojo [7], but neglecting non-linear core corrections. We
set a supercell size of L = 30 bohr (15.875 Å) and a plane-wave cutoff of 80 Ha; the Brillouin
zone is sampled by a Γ-centered 12×12×2 mesh except for silicene (a grid of 13×13×2 points
is used); with respect to these parameters, the calculated flexocoefficients are converged
within a tolerance of 0.1 % or better (see e.g. Fig. 1). Before performing the linear-response
calculations, we optimize the atomic positions and cell parameters of the unperturbed
systems to a stringent tolerance (10−7 and 10−5 atomic units for residual stress and forces,
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a (Å) b (Å) h(Å)

Si 3.814 3.814 0.215
(blue) P 3.212 3.212 0.619

BN 2.474 2.474 1.625
SnS2 3.618 3.618 1.468
RhI3 6.671 6.671 1.488

Table 1: Equilibrium structural parameters for the unperturbed flat configuration of the
materials considered in this work. h corresponds to half the thickness of the buckled
materials.
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Figure 1: Convergence of the CI (a) and LM (b) independent component |µ| discussed in
the main text as a function of the in-plane k-points mesh resolution, for SnS2.

respectively); the resulting structures (detailed in Tab. 1) are in excellent agreement with
existing literature data (see e.g. Ref. [8] and references therein). In particular, for all the
materials considered we used an hexagonal unit-cell described by primitve vectors of the
form

a1 = a (1.0 , 0.0 , 0.0)

a2 = b (−0.5 ,
√
3/2 , 0.0)

a3 = c (0.0 , 0.0 , 1.0)

(21)

with a = b (see Table 1) and c = L. The atomic structures of the materials studied in this
work are provided in Table 2. In the case of RhI3, after having performed the computation
with the structure described in Table 2, we applied a counterclockwise rotation of π/2 to
the calculated flexoelectric tensor, in order to recover the geometry shown in Fig. 2(e) of
the main text.
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τ1 τ2 τ3
Si1 1/3 2/3 +hSi/L
Si2 2/3 1/3 −hSi/L

P1 1/3 2/3 +hP/L
P2 2/3 1/3 −hP/L

B1 1/3 2/3 +hB/L
B2 2/3 1/3 −hB/L
N1 2/3 1/3 +hN/L
N2 1/3 2/3 −hN/L

Sn 0 0 0
S1 1/3 2/3 +hSnS2/L
S2 2/3 1/3 −hSnS2/L

Rh1 1/6 5/6 0
Rh2 5/6 1/6 0
I1 0.148 0.5 −hRhI3/L
I2 0.5 0.852 +hRhI3/L
I3 0.852 0.852 −hRhI3/L
I4 0.148 0.148 +hRhI3/L
I5 0.5 0.148 −hRhI3/L
I6 0.852 0.5 +hRhI3/L

Table 2: Primitive-cell atomic structures, expressed in reduced coordinates, for the ma-
terials considered in this work. h refers to the parameter reported in Table.1, except for
BN-bilayer where B and N occupy sublattices positions described by slightly different z-
components (hB = 3.0661 Bohr and hN = 3.0703 Bohr for B and N respectively).
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5 Spontaneous axial polarization in nanotube structures

To test Eq. (9) of the main text, we perform direct ground-state DFT calculations of zigzag
SnS2 nanotubes and extract the atomic forces, together with the macroscopic electronic
polarization along the axial direction via the Berry phase implementation of VASP.5.4 [9,
10, 11, 12]. We also perform a full structural relaxation of the nanotube structures to assess
the LM contribution to µ, and hence to Eq. (9) of the main text.

Each SnS2 nanotube is placed in a simulation supercell that is hexagonal over the radial
plane, with sufficient outer vacuum regions for the periodic replicas to be mechanically
decoupled, and the tube axis is oriented along the z Cartesian direction (with a lattice
parameter c = 11.84 bohr). We use the projector-augmented wave (PAW) approach with
an energy cutoff of 520 eV, the local-density approximation (LDA) to the exchange and
correlation potential, and we sample the first Brillouin zone with a grid of 1 × 1 × 10 k
points centered at Γ. The atomic positions are relaxed until all the forces are smaller in
magnitude than 2× 10−4 eV/Å.

In table 3 we show the results obtained for two nanotubes generated by folding stripes of
24 and 36 SnS2 6-atom unit cells. The CI electronic polarization and the atomic forces are
in essentially perfect agreement with the linear-response values shown in the bottom row
of the table. Such a match is remarkable given the substantial differences in methods and
codes between the two calculations. The atomic relaxations show a slightly slower degree of
convergence, which we ascribe to the frequency hardening of the contributing polar phonon
with curvature (and therefore a physical effect, not a limitation of our method). Note the
two orders of magnitude difference between the axial polarization of our SnS2 nanotubes
and the values reported for a bundle of very thin (< 7.5 bohr radius) h-BN nanotubes. [13]

R R · F Sn
z R · F S

z P 1D,CI P 1D,LM

26.122 −0.135 0.066 −0.800 1.106

39.183 −0.130 0.066 −0.789 1.304

l.r. −0.132 0.065 −0.790 1.422

Table 3: Results from direct calculations for nanotubes of two different radii R [in bohr]
(two top rows) and from the linear-response calculation (bottom row). The two left-most
columns show the average axial forces [times R and in hartree units] on the Sn and S
atoms. The two right-most columns show the clamped-ion and lattice-mediated 1D axial
nanotube polarizations [in e]. Direct 1D polarizations are calculated as ΩPz/c, with Ω, c
and Pz being, respectively, the volume, dimension and 3D polarization component along
the axial direction of the simulation supercell. In turn, linear response ones are calculated
with Eq. (9) of the main text.
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6 Longitudinal electric fields induced by a flexural phonon

Let us consider a flexural phonon traveling in a suspended quasi-2D crystal with a small in-
plane momentum q = (qx, qy, 0). In the first-order linear regime, the displacement pattern
of such a mode can be written as a cell-periodic part times a phase as follows

ulκβ = uqκβe
q·Rlκ = U (δβz − iqβτκz) e

q·Rlκ , (22)

where Rlκ is the position of the atom κ in the cell l, and we have performed a long-
wavelength expansion of the cell-periodic part up to first order in the momentum (see e.g.
Sec. 2.2 of the Supplemental Material of Ref. [1]).

We shall show here that the lattice distortion given by Eq. (22) induces long-range
electrostatic fields along the longitudinal (in-plane) direction. To this end, we resort to
the formalism developed in Refs. [14, 15, 16], where the in-plane electrostatic potential
generated by a charge perturbation is expressed as

V ∥(q) = 2π
ρ∥(q)

q
, (23)

with q = |q|. The ∥ superscript equivalently means that both the potential and charge
density are even functions with respect to a reflection along the out-of-plane direction. The
charge response to the perturbation parameter U is built from the individual sublattices
displacements as follows

ρ∥(q) =
∑
κβ

(δβz − iqβτκz) ρ
∥
κβ(q), (24)

with

ρ
∥
κβ(q) =

∫
dzρqκβ(z) cosh(qz), (25)

and ρqκβ(z) being the in-plane average of the microscopic charge-density response to the
displacement of atom κ along β.

Our goal is to derive a practical formulation of Eq. (23) by pursuing the usual long-
wavelength expansion of the constituent objects. This procedure requires to combine
Eq. (22) with

cosh(qz) = 1 +
q2z2

2
+ · · · , (26)

and with the long-wavelength expansion of the microscopic charge-density respsonse

ρqκβ(z) = ρκβ(z)− iqγρ
(1,γ)
κβ (z)− qγqδ

2
ρ
(2,γδ)
κβ (z) + i

qγqδqλ
6

ρ
(3,γδλ)
κβ (z) · · · (27)

to arrive at a corresponding expansion for ρ∥(q). At zero-th and first order in q, ρ∥(q) van-
ishes because of the acoustic sum rule and charge neutrality; at second order it also vanishes
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because of rotational invariance. We therefore focus on the leading O(q3) contributions to
ρ∥(q),

ρ∥(q) =− i
q2qβ
2

∑
κ

[∫
dz z2ρ(1,β)κz (z) + τκz

∫
dz z2ρκβ(z)

]

+ i
qβqδqλ

6

∑
κ

[∫
dz ρ(3,βδλ)κz (z) + 3τκz

∫
dz ρ

(2,δλ)
κβ (z)

]
+O(q4).

(28)

The first line on the rhs vanishes identically. To prove this, we use the following relations [4],∑
κ

ρ(1,γ)κz (r) =
∑
κ

ρ(1,z)κγ (r) =
∑
κ

(z − τκz)ρκγ(r). (29)

Then the sublattice sum of the first square bracket reduces to∫
dz z3

∑
κ

ρκγ(z) = − 1

S

∫
d3r z3

∂ρ(r)

∂rγ
(30)

(where translational invariance has been used in the last equality and ρ(r) corresponds the
microscopic charge density within the undistorted configuration), which is manifestly zero
after integration by parts (recall that γ here refers to an in-plane direction). In the end, we
reach a simpler final expression that can be written as follows (summation over repeated
indices is implied)

ρ∥(q) = iqαqβqγ

(
1

6S

∑
κ

O(αβγ)
κz +

1

2S

∑
κ

τκzQ
(βγ)
κα

)
, (31)

where S is the in-plane area of the primitive cell while Q and O are, respectively the
3D dynamic quadrupole and octupole tensors of the supercell. This result can be further
simplified after recalling the following relations between charge density and polarization
moments [4]

1

2

∑
k

O(αβγ)
κz =Ω

(
µ̄I
αz,βγ + µ̄I

βz,γα + µ̄I
γz,αβ

)
, (32)

Q(αβ)
κγ =Ω

(
P̄ (1,β)
α,κγ + P̄

(1,α)
β,κγ

)
. (33)

After gathering all terms in Eq.(31) (and using the relation Γκ
α,zβ = Γκ

α,βz = −δαβτκz valid
for an isolated slab), we find

ρ∥(q) = iqαqβqγ
L

3

(
µI,el
αz,βγ + µI,el

βz,γα + µI,el
γz,αβ

)
+O(q4) (34)

Recalling the relation proved in section 3.3

µ2D,CI
αz,βγ = −LµI,el

αz,βγ (35)

we arrive at

ρ∥(q) = −iqαqβqγµ
2D,CI
αz,βγ +O(q4). (36)
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This result, which can be trivially generalized to the relaxed-ion case, in combination with
Eq. (23) yields Eq. (10) of the main text.

Note that, in the flexural phonon considered in this Section, the symmetrized strain-
gradient tensor reads as

εβγ,z(r) = Uqβqγe
iq·r, (37)

and via Eq. (2) of the main text yields a flexoelectric polarization

∂Pα(r)

∂U
= qβqγµ

2D,CI
αz,βγe

iq·r. (38)

By applying ρ = −∇ · P, we trivially recover Eq. (36), proving the consistency of our
definition of µ2D with the fundamental treatment of electrostatics in 2D developed in
Ref. [14].

7 Choice of the exchange-correlation functional

To verify the impact of the exchange-correlation functional, we recalculated the flexoelectric
coefficient µ2D defined in the main text by using the PBE functional in place of LDA; the
results are presented in Table 4. The LDA and PBE results show reasonable agreement
in most cases, with typical deviations that are in line with the expectations (e.g., similar
deviations were pointed out for the out-of-plane response in our earlier work [1]). The largest
disagreement occurs in the case of the BN bilayer, with a PBE flexoelectric coefficient
that is 35% larger than the LDA value. Interestingly, a closer look at the relaxed PBE

µ2D
yz,xx µ2D

zz,xx

CI LM RI RI

Si 0.0239 0.0000 0.0239 0.0016

P 0.0669 0.0000 0.0669 0.0206

SnS2 0.1369 −0.2016 −0.0646 0.0178

RhI3 −0.1733 0.0202 −0.1530 −0.0080

2-BN (direct) 1.0013 −0.6215 0.3797 −0.0254

2-BN (model) 0.9986 −0.6213 0.3773

Table 4: Calculated 2D flexoelectric coefficients within PBE. Left columns show the
Clamped-Ion(CI), Lattice-Mediated(LM), and Relaxed-Ion(RI) contributions to the in-
plane response µ2D

yz,xx. The right column shows the out-of-plane RI response, µ2D
zz,xx. Results

are provided in units of electronic charge. 2-BN corresponds to the BN bilayer, which we
calculated either directly or by means of the piezoelectric model (µ2D = Eh) within PBE.
The values of the CI and LM longitudinal piezoelectric constant are ECI = 0.1208 e/bohr
and ELM = −0.0749 e/bohr, respectively, in good agreement with the LDA values reported
in the main text. The calculated PBE interlayer distance is h = 8.29 bohr.
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structure reveals that the equilibrium interlayer distance, hPBE = 8.29 bohr, displays a
comparable (35%) overestimation respect to the LDA result (hLDA = 6.14 bohr). Given
that the noninteracting-layer formula, µ = Eh, accurately holds in both cases (compare
the “direct” and “model” row in Table 4), the large disagreement in the interlayer distance
h is almost entirely responsible for the discrepancy in the calculated µ. (The piezoelectric
coefficient of monolayer BN, E, has similar values in LDA and PBE.)

Such a discrepancy in the value of h is not surprising, and arises from the fact that a
bilayer system is a van der Waals bonded compound, i.e., a classic situation where local and
semilocal approximations to DFT fail. PBE, in particular, does not seem to bind the two
BN layers at all, which explains the unusually large value of h. This structural parameter
has been calculated by taking van der Waals corrections into account, at various levels of
theory, in [17]. The most reliable values quoted therein, of h = 3.34 − 3.51 Å, are similar
(3–9% larger) to our LDA value, and 20% smaller than the PBE one. All in all, this analysis
indicates that whenever the vdW corrections are needed, the flexoelectric response of the
system is trivially given as a weighted sum of the piezoelectric response of the constituents,
in agreement with the conclusions of [18].

+ −

#

Δℎ

&

Figure 2: Schematic representation of the experimental setup proposed. The layer is de-
posited above two electrodes separated by a distance L and in turns leaned on a substrate.
The two electrodes are used to apply an in-plane uniform electric field E inducing a curva-
ture of the layer in corrispondence with the hole, where the layer is allowed to deform.
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8 Experimental setup

In this section we propose two possible experimental setups that could be used to confirm
our theoretical predictions.

8.1 External electric field-induced bending

Let us consider the system schematically illustrated in Fig.2. It consists of a single layer
(blue) deposited on a gap between two metallic electrodes (yellow), both lying on a flat
substrate (grey). The system can be regarded as extended along the normal direction (not
shown). Depositing 2D layers on nanopatterned substrates with gaps of various shapes and
dimensions is a well established experimental practice, see e.g. Ref. [19], so the setup of
Fig.2 should be reasonably straightforward to prepare.

By applying an alternating in-plane electric field, our theory predicts that the layer-
membrane will start to vibrate vertically at the same frequency, at an amplitude that
depends on the crystallographic orientation of the layer. In particular, the response should
be largest when one of the mirror planes of the crystal is parallel to the direction of the
electric field, and vanish if one of such planes is perpendicular to it. By probing the system
near the electromechanical resonance (within the linear regime, the suspended layer can
be accurately modeled as a damped harmonic oscillator [19]), a detectable feature should
appear in the measured capacitance. The amplitude of such signal, together with the
relevant mechanical and geometrical parameters of the system, should provide a reliable
quantitative estimatimate of the flexoelectric coefficient that we define and calculate in this
work.

As an alternative, one could also probe the vertical displacements of the layer directly,
e.g., via an AFM tip. In such case, the electromechanical response of the system might be
complicated by the coupling to the tip, but the most important qualitative signatures of
the effect (e.g. its directional dependence) should be detectable nonetheless.

8.2 Second harmonic generation method

The second experimental setup builds on the use of the Second Harmonic Generation (SHG)
technique. As we illustrate in the main text, rippled and bent geometries are decorated
with topologically nontrivial polarization textures via the physical effect we discuss here.
SHG is sensitive to a local breakdown of space inversion (SI) symmetry and on the direction
along which SI is broken; it could be used, therefore, to detect the predicted polarization
patterns. The use of SHG in 2D systems is well documented (see, e.g., [20]) and could, in
principle, be applicable to characterizing the effects that we describe.

As a means to obtain the desired ripple patterns, one could again use nanopatterning
techniques, as explained in the above paragraphs. Indeed, suspended layers are seldom flat:
they typically feel the van der Waals attraction of the far-away substrate and tend to bend
inward. This means that an in-plane polarization should be present in a suspended layer,
with a topology that depends on the shape of the gap, even in absence of an applied electric
field.
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9 Topological polarization textures in arbitrary rippled struc-
tures

For a generic ripple uz(x, y), at the first order in the local shape-operator tensor field
bβγ(x, y), the induced 2D local polarization vector field can be written as

P 2D
α (x, y) = µ2D

αz,βγbβγ(x, y), (39)

with β, γ referring to in-plane directions while α = x, y, z. µ2D is the 2D flexoelectric
coefficient as defined in the main text, for α = x, y, and as µ2D = ϵ0φ, for α = z [1]. Sum
over repeated indices is understood. In turn, the local shape-operator tensor field is given
by

bβγ(x, y) =
∂2uz(x, y)

∂rβrγ
. (40)

Within the symmetries of the materials considered, we have

P 2D
x (x, y) = 2µ2Dbxy(x, y),

P 2D
y (x, y) = µ2D (bxx(x, y)− byy(x, y)) ,

P 2D
z (x, y) = ϵ0φTr(b),

(41)

where Tr(b) =
∑

β bββ(x, y) is the trace of the local shape-operator field.
In Fig.3 and 4 we report the resulting in-plane polarization field associated to several

types of ripples, within the kind of materials considered in the main text.
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Figure 3: Top and bottom left panels: Polarization texture associated with a single Gaussian
bump of the type z = Ae−(x2+y2)/σ2

and an hexagonal lattice of Gaussian bumps of the same
type. The arrows indicate the polarization direction, its amplitude (in units of |P∥|max ≃

1.48
Aµ

σ2
and |P∥|max ≃ 6.94

Aµ

σ2
rispectively) is defined by the color scale. Top and bottom

right panels: Contour plot for the considered deformation. Their amplitudes (in units of
umax
z = A and umax

z ≃ 1.11A respectively) are defined by the color scale.
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Figure 4: Top and bottom left panels: Polarization texture associated with two periodic
patterns of the type z = A

∑3
i=1 sin(qi · r), with q1 = q(1, 0, 0), q2 = q(−1/2,

√
3/2, 0),

q3 = q(−1/2,−
√
3/2, 0), and q1 = q(

√
3/2, 1/2, 0), q2 = q(−

√
3/2, 1/2, 0), q3 = q(0,−1, 0)

respectively. q = 2π/L. The arrows indicate the polarization direction, its amplitude
(in units of |P∥|max = 1.75Aµq2) is defined by the color scale. Top and bottom right
panels: Contour plot of the periodic deformations considered. Their amplitudes (in units
of umax

z ≃ 2.6A) are defined by the color scale.
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