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We predict a large in-plane polarization response to bending in a broad class of trigonal two-dimensional
crystals. We define and compute the relevant flexoelectric coefficients from first principles as linear-
response properties of the undistorted layer by using the primitive crystal cell. The ensuing response
(evaluated for SnS2, silicene, phosphorene, and RhI3 monolayers and for a hexagonal BN bilayer) is up to 1
order of magnitude larger than the out-of-plane components in the same material. We illustrate the
topological implications of our findings by calculating the polarization textures that are associated with a
variety of rippled and bent structures. We also determine the longitudinal electric fields induced by a
flexural phonon at leading order in amplitude and momentum.
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The electromechanical properties of two-dimensional
(2D) materials have generated considerable research interest
recently due to their potential application in flexible, stretch-
able, foldable, and wearable nanoscale devices [1–3].
Materials design paradigms have traditionally relied on
piezoelectricity, whose in-plane components are active in
a broad variety of hexagonal monolayers [4–7]. More
recently, flexoelectricity (the generation of a macroscopic
polarization or voltage in response to a strain gradient) has
emerged as an appealing higher-order alternative, thanks to
its favorable scaling with decreasing sample size [8]. Indeed,
2Dmaterials can sustain large bending deformations without
fracturing [9], which in principle should enable a large
flexoelectric response.
Flexoelectricity in 2D materials has been mostly studied

as an out-of-plane dipolar response due to a flexural
(bending) deformation. Several studies of graphene,
BN, phosphorene, transition-metal dichalcogenides, and
related materials have reported a great variety of magni-
tudes and signs for the relevant flexoelectric coefficient,
sometimes with significant mutual disagreement. On the
experimental side [10–15], such inconsistencies likely
originate from the difficulty in extracting the intrinsic
response of the 2D monolayer from the measured signal.
The scatter in the theoretical values, on the other hand, can
be either traced back to the broad variety of methods that
were used in each case, ranging from first-principles
techniques [16–23] to classical [24–26] and machine-
learning [27,28] force fields, or to the technical subtleties
in defining the dipole moment of a curved surface. These
difficulties can now be largely avoided via a publicly
available [29–31] linear-response implementation [32],
which is aimed at providing reference first-principles
values for the direct and converse flexoelectric effect in
arbitrary 2D systems.

While the aforementioned out-of-plane response is
universal, it turns out to be small in many materials. In
the present Letter, we investigate the in-plane polarization
response to a flexural deformation instead, which we
indicate as “unconventional” as it is typically ruled out
in three-dimensional (3D) crystals of sufficiently high
symmetry. The effect, illustrated in Figs. 1(a) and 1(b),
is linear in the layer curvature, and therefore differs from
the nonlinear one predicted in monolayer h-BN [33] some
time ago. It is active in a surprisingly broad class of 2D
systems, including many of the best studied materials.
Interestingly, for materials with D3d point symmetry (space
groups P3̄m1 and P3̄1m), the amplitude of the polarization
response is insensitive to the bending direction, while its
orientation continuously rotates in plane, with an angular
periodicity that matches the threefold axis of the flat
configuration [Figs. 1(b) and 1(c)]. Apart from the obvious
practical interest for energy-harvesting applications [34],
such an effect is important for fundamental reasons as well.
Most notably, it leads to a broad range of topologically
nontrivial polarization textures in rippled and bent geom-
etries, including vortices and antivortices and spontane-
ously polarized tubes. Moreover, it endows flexural
phonons with longitudinal electric fields (and hence, with
a long-ranged contribution to the electron-phonon
Hamiltonian), which may significantly contribute to the
mobility in the low-temperature regime [35–38].
Our goal is to express the flexoelectric coefficients in

terms of a “strict-2D” model of the layer, as a surface
polarization [39] response to curvature. The geometry of
the problem is conveniently specified via a vector function
of two variables r ¼ rðu; vÞ, where r is a point in 3D space
in the deformed configuration, and uv refers to a local
parametrization of the reference state [40]. Then, the
Cartesian components of the surface polarization can be
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expressed as P ¼ ðPuru þ PvrvÞ= ffiffiffi
g

p
, where rα ¼ ∂r=∂ξα

are deformation gradients, ξα ¼ u, v are curvilinear coor-
dinates, and g is the determinant of the (2D) metric tensor
gαβ. (From now on, we shall use greek indices for the in-
plane uv directions.) The local curvature, in turn, is well
described by the matrix elements of the second fundamen-
tal form bαβ ¼ rαβ · n, where the subscripts αβ stand for
(second) differentiation with respect to u, v, and nðu; vÞ is
the normal to the oriented surface. (We choose it in such a
way that ru, rv, and n form a right-handed set.) This, in
principle, allows us to write the flexoelectric coefficient in
the reference configuration as derivatives of Pα with respect
to bβγ.
Real materials, however, are “quasi-2D”; i.e., they are

extended in plane but have a nonvanishing thickness along
the surface normal (z). Consequently, in practical calcu-
lations one needs to assume a 3D-3D mapping rðu; v; zÞ,
involving a region of space that is thin but finite along z. We
shall set rz ¼ n henceforth; then, the matrix elements of b
coincide with the Christoffel symbol Γzβγ and relate to the z
gradient of the metric as follows:

bβγ ¼ Γzβγ ¼ −
1

2

∂gβγ
∂z

: ð1Þ

The latter two quantities, with the physical meaning of
strain gradients, are uniform along z and are therefore the
appropriate macroscopic variable to describe curvature in a
quasi-2D context [32]. The strict-2D limit is eventually
recovered by integrating along z the microscopic polari-
zation response.
In the linear regime, the gradient of the metric coincides

with the “type-II” representation of the strain-gradient
tensor 1

2
∂gβγ=∂z ≃ ∂εβγ=∂z ¼ εβγ;z, where εβγ is the sym-

metrized infinitesimal strain. Thus, we define the relevant

flexoelectric coefficients as first derivatives of the surface
polarization P with respect to εβγ;z,

Pα ¼ μ2Dαz;βγεβγ;z: ð2Þ

The derivative is intended to be taken at zero macroscopic
electric field corresponding to short-circuit boundary con-
ditions; this is the most natural choice given the extended
nature of the crystal in the x-y plane. Our choice of notation
is motivated by the obvious analogy with the definition of
the type-II flexoelectric coefficients in 3D [41]. One should
keep in mind, however, that here P is defined as a charge
per unit length; consequently, the flexoelectric coefficients
μ2Dαz;βγ have the dimension of a charge.
A necessary condition for any of these coefficients to be

nonzero is the lack of a z-oriented mirror plane; similarly,
xy inversion cannot be a symmetry, as the tensorial
dependence on the in-plane indices is odd. While our
theory is valid in the most general case, in the following we
focus on a subset of these materials that have the highest
symmetry compatible with the above criteria. More spe-
cifically, we consider crystals with a z-oriented threefold
axis, space inversion symmetry, and a vertical mirror plane
(space groups P3̄m1 and P3̄1m, D3d point group). Within
this set, there are only three nonzero in-plane components
of the type μ2Dαz;βγ . Assuming a zy mirror plane (x is the
armchair direction in P3̄1m crystals, and zigzag in P3̄m1),
they are related to each other as

μ2Dyz;yy ¼−μ; μ2Dyz;xx ¼ μ2Dxz;xy ¼ μ; ð3Þ

where μ is the only independent component. This choice
leaves the freedom for two nonequivalent configurations
related by a z → −z mirror operation or, equivalently, by a
rotation of ð2nþ 1Þπ=3 about the threefold axis. The two
structural variants have opposite μ coefficient, which
results in a sign ambiguity unless the atomic positions
are fully specified; our data refer to the structures shown in
Fig. 2 and reported in the Supplemental Material [42].
To see the practical implications of Eq. (3), it is

convenient to represent the strain-gradient components in
terms of principal curvatures (Ki) and directions (λi) as
εβγ;z ¼

P
i Kiλ

β
i λ

γ
i . Then, by writing λ1 ¼ ½cosðθÞ; sinðθÞ�

and λ2 ¼ ½− sinðθÞ; cosðθÞ� in terms of the angle θ
[Fig. 1(b)], we find

PkðθÞ ¼ μðsinð3θÞλ1 − cosð3θÞλ2ÞðK1 − K2Þ: ð4Þ

Remarkably, the modulus of the linearly induced polari-
zation is θ independent PkðθÞ ¼ jμðK1 − K2Þj and only
depends on the difference between the principal curvatures.
(The case K1 ¼ K2 corresponds to a deformation with
spherical symmetry, which locally preserves the threefold
axis of the structure and therefore cannot produce an
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FIG. 1. (a) Schematic illustration of a slab bent along the
(principal) direction λ1 with a (principal) curvature K1. Red
arrows indicate the principal bending directions. (b) 2D geometry
for SnS2. θ indicates the angle between the axis x and the principal
direction λ1. The induced in-plane polarization Pk is indicated for
an angle θ ¼ 15°. (c) Orientation evolution of the induced in-plane
polarization with respect to the bending direction (θ). Threefold
symmetry is highlighted by the use of blue lines.
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in-plane P.) On the other hand, the polarization direction
continuously rotates in plane with an angular periodicity
that is 3 times that of the principal axes. This means that the
induced polarization is manifestly invariant with respect to
θ → θ �m2π=3 [Fig. 1(c)] with integerm, again consistent
with the D3d symmetry of the crystal.
Such a peculiar angular dependence of the polarization

response is common to many electromechanical properties
of hexagonal layers. For example, an analogous behavior
was found in Naumov et al. [33] for the polarization
induced at the second order in the curvature in a monolayer
of h-BN. Most importantly, Eq. (3) matches the internal
symmetries of the piezoelectric tensor eα;βγ in BN and other
isostructural materials (e.g., MoS2) with a z-mirror plane
but no space inversion. Indeed, for these materials we have

ey;yy ¼−E; ey;xx ¼ ex;xy ¼E; ð5Þ

and the induced polarization can be written exactly as in
Eq. (4), provided that we replace the principal curvatures
Ki with the principal stretches εi and the flexoelectric
constant μ with E. This analogy suggests that a flexo-
electric effect with the characteristics of Eq. (4) should be
present in a bilayer of h-BN and related compounds,
provided that they are appropriately stacked (AA’ or
AB’) in order to recover D3d symmetry. In this case,
within the assumption that the layers do not interact
significantly, one expects

μ ≃ Eh; ð6Þ

whereh is the interlayer distance. Equation (6) generalizes the
results of Ref. [34] to a generic flexural deformation; here, we
shall use it as validation of our computational method by
including the h-BN bilayer in our materials test set.
We shall focus now on the first-principles calculation of

μ2Dαz;βγ . Our calculations are performed within the local-
density approximation as implemented in the ABINIT pack-
age [30,51]. We represent the 2D crystals by using the
primitive surface cells shown in Fig. 2; we assume periodic
boundary conditions along z, with a reasonably large
separation L between images. Following Ref. [32], we
express the flexoelectric coefficients in terms of a clamped-
ion (CI) and a lattice-mediated (LM) contributions
μ2Dαz;βγ ¼ μ2D;CIαz;βγ þ μ2D;LMαz;βγ . We find [42]

μ2D;CIαz;βγ ¼ −
1

2

�
μII;CIαγ;zβ þ μII;CIαβ;zγ

þ
X
κ

τκz

�
P̄ð1;βÞ
α;κγ þ P̄ð1;γÞ

α;κβ

��
; ð7Þ

where μII;CIαγ;zβ is the 3D clamped-ion flexoelectric coefficient
of the supercell in type-II form [41], τκ is the undistorted

location of sublattice κ, and P̄ð1;βÞ
κγ is the first-order spatial

dispersion (along β) of the macroscopic polarization
response to a displacement of the atom κ along the direction
γ [31,41]. Similarly, we write the LM contribution as

μ2D;LMαz;βγ ¼ 1

S
ZðαÞ
κρ Lκ

ρz;βγ; ð8Þ

where ZðαÞ
κρ are the Born effective charges, and L is the

flexoelectric internal-relaxation tensor of the isolated layer
as defined and calculated in Ref. [32].
All ingredients in Eqs. (7) and (8) can be readily calculated

with the linear-response and long-wave [29–31] modules of
ABINIT. Computational parameters and convergence tests are
described in the Supplemental Material [42], where we also
discuss and prove the following formal results: (i) the
contribution of the metric variation to μ2Dαz;βγ vanishes, unlike
the out-of-plane case studied in Ref. [32]; (ii) the type-II 2D
coefficients described here directly relate to the macroscopic
3D coefficients of the supercell in type-I [41] form via
μ2Dαz;βγ ¼ −LμIαz;βγ , without the need for calculating addi-
tional terms; (iii) modifying the electrostatic kernel to
account for the 2D nature of the problem [52] is unnecessary
as long as themacroscopic dielectric tensor is diagonal. (This
is the case for all materials considered here.) Note that the
μ2Dαz;βγ coefficients that we define and calculate are intrinsic
properties of the extended 2D crystal; therefore, they are
applicable to modeling an arbitrary rippled or bent structure,
aswe shall illustrate (and substantiatewith explicit validation
tests) shortly.
As a first consistency check of our method, we shall

prove that we recover Eq. (6) and, therefore, the results of
Ref. [34] in the case of the h-BN bilayer. To perform
this test, we first calculate the value of the piezoelectric
constant for an isolated h-BN monolayer, obtaining ECI ¼
0.1230 e=bohr and ELM ¼ −0.0810 e=bohr for the CI and
LM parts, respectively, yielding a total E ¼ 0.0420 e=bohr.
Then, we relax the geometry of an AA’-stacked bilayer,
consistent with the geometry used in Ref. [34], obtaining an

(a) (b)

(c) (d)

(e)

B
N

Si*
Si

P*
P

S*

S I*

I

Sn

Rh

x

y

FIG. 2. Top view of the crystal structures employed in the
linear-response calculations for the materials considered: h-BN
bilayer (a), blue phosphorene (b), silicene (c), SnS2 (d), and RhI3
(e). The primitive cell is highlighted. Upper and lower atoms of
the same type are indicated with the same color but different
shade. Upper atoms are explicitly indicated with an asterisk.
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interlayer distance of h ¼ 6.14 bohr (the experimental bulk
spacing is 6.2928 bohr [53]). By plugging these values into
Eq. (6), we obtain μCI ¼ 0.7548 e, μLM ¼ −0.4970 e, and
μ ¼ 0.2577 e, in excellent agreement with the results
reported in Table I.
The calculated 2D in-plane flexocoefficients (μ2Dαz;βγ) of

silicene, blue phosphorene, SnS2, and RhI3 monolayers, as
well as of the h-BN bilayer with AA’ stacking, are shown in
Table I along with the corresponding out-of-plane ones.
(The latter calculated as μ2Dzz;ββ ¼ ϵ0φ from the flexovoltage
φ as defined in Ref. [32].) Interestingly, our results indicate
that the in-plane flexoelectric response is much larger than
the out-of-plane one, in several cases about 1 order of
magnitude larger. This trend is common to all the studied
materials despite the systematic sign reversal observed for
the CI and LM contributions; both are generally compa-
rable in module, except for RhI3 where the LM term is 1
order of magnitude smaller.
To get a flavor of how large the predicted effect is, we

can compare it to the nonlinear one described by Naumov
et al. [33], which involves the in-plane polarization
response to the square of the local curvature. Of course,
the coefficients are not directly comparable, as they occur at
different orders in the deformation amplitude; however, we
can estimate a critical radius of curvature (R�) at which the
respective magnitudes of the induced polarization become
similar. Extracting a second-order coefficient from the
numbers provided in Ref. [33] and employing the linear-
order coefficient for the h-BN bilayer, we obtain an
unrealistically small value of R� ∼ 0.75 bohr, with the
linear effect prevailing at any R > R�. For instance,
Naumov et al. obtained induced polarizations P ∼
0.013 e=bohr for an h-BN monolayer corrugated along a
zigzag direction with an average radius R ∼ 6.7 bohr and at
a CI level. Instead, taking our CI coefficient for the h-BN
bilayer (Table I), the present linear effect reaches the same
magnitude at curvature radii R ∼ 60 bohr. At deformation
regimes that are currently attainable in a laboratory [54]
(R ∼ 10 μm), the linear response of the bilayer is stronger

than the nonlinear one of the monolayer by 5 orders of
magnitude.
A direct outcome of the predicted flexoelectric coupling

is the emergence of topologically nontrivial in-plane
polarization textures in arbitrary rippled states. To illustrate
this, in Fig. 3(a) we show the in-plane polarization field that
results from an isolated Gaussian-shaped bump consisting
in a textbook antivortex structure with a topological charge
(winding number) [55] of Q ¼ −2. In Fig. 3(b), we
consider a periodic deformation pattern consisting of three
superimposed sinusoidal ripples with threefold symmetry;
the result is a hexagonal lattice of clockwise vortices
(Q ¼ 1). By playing with these two examples [42], we
could obtain a whole range of patterns, including an array
of monopoles, and in-plane textures that closely resemble
those of Ref. [56]. All these structures could, in principle,
be characterized experimentally by optical means (e.g., via
second harmonic generation [57]).
As a corollary of the above, our theory predicts an axial

spontaneous polarization in nanotubes made of 2D trigonal
crystals. In particular, a nanotube constructed by folding a
layer along λ1 acquires a linear polarization in the form

P1D ¼ −2πμ cosð3θÞ; ð9Þ

independent of its radius R. To test this result, we perform
explicit ground-state density functional theory calculations
of zigzag SnS2 nanotubes via VASP.5.4. [58–61]. We
find [42] excellent agreement between the computed
Berry phase polarization of the tube and the predictions
of Eq. (9). Note that a circulating (azimuthal) component of
the polarization, of amplitude Pθ ¼ μ=R sinð3θÞ, is gen-
erally also present. Pθ is largest for θ¼ð2nþ1Þπ=6, with
integer n, where Eq. (9) yields a vanishing result. For
θ ≠ nπ=6, the two components coexist, and the polarization
field becomes chiral.
Another central consequence of our theory is that

the present mechanism endows flexural phonons with

TABLE I. Characteristic 2D flexocoefficients due to a flexural
deformation. Three leftmost columns show the clamped-ion (CI),
lattice-mediated (LM), and relaxed-ion (RI) contributions to the
in-plane response μ2Dyz;xx. The fourth column shows the out-of-
plane RI response μ2Dzz;xx. Results are provided in units of
electronic charge.

μ2Dyz;xx μ2Dzz;xx

CI LM RI RI

Si 0.0299 0.0000 0.0299 0.0032
BN (bilayer) 0.7569 −0.4947 0.2622 −0.0304
(Blue) P 0.0721 0.0000 0.0721 0.0212
SnS2 0.1257 −0.2263 −0.1006 0.0198
RhI3 −0.1766 0.0102 −0.1664 −0.0062
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FIG. 3. Polarization textures associated with two different ripple
patterns. (a) Gaussian bump of the type z¼Ae−ðx2þy2Þ=σ2 . (b) Peri-
odic pattern of the type z¼A

P
3
i¼1 sinðqi ·rÞ, with q1 ¼ qð1; 0; 0Þ,

q2 ¼ qð−1=2; ffiffiffi
3

p
=2; 0Þ, q3¼qð−1=2;− ffiffiffi

3
p

=2;0Þ, and q¼ 2π=L.
The arrows indicate the polarization direction; its amplitude (in
units of jPmaxj ¼ 1.48Aμ=σ2 and jPmaxj ¼ 1.75Aμq2, respectively)
is defined by the color scale.
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longitudinal electric fields, which may be of considerable
importance in the context of electron-phonon couplings.
For a propagation direction q ¼ qλ1, a combination of
Eqs. (7) and (8) with the formalism developed in
Refs. [37,38,52] leads to a macroscopic electrostatic con-
tribution to the scattering potential (and hence, to the
diagonal electron-phonon matrix elements) in the form

VkðqÞ ¼ −2πiq2μ sinð3θÞ þOðq3Þ: ð10Þ

An independent proof of this formula based on the
formalism of Ref. [52] is provided in the Supplemental
Material [42]. As the ensemble average of the flexural
phonon amplitude diverges at any temperature [35,36] for
q → 0, we suspect that Eq. (10) may contribute signifi-
cantly to electron transport; a verification of this point will
be an interesting topic for future studies.
To summarize, we have predicted and numerically

demonstrated the existence of an in-plane polarization
response to a flexural deformation in trigonal 2D mono-
layers. We have also discussed the topological implications
of our results in a variety of rippled and bent geometries. In
addition, we have demonstrated the relevance of the effect
in dealing with the long-range electrostatic fields induced
by a flexural phonon, with potential implications for
electron-phonon physics. We hope that our results will
stimulate experimental efforts at detecting the effects we
describe here, e.g., along the lines that we suggest in Sec. 8
of Ref. [42].
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