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We provide a band structure based interpretation of the diffraction patterns observed in three-dimensional 

photonic crystals. Qualitative and quantitative information about these patterns is obtained in a simple 

manner from the band structure. Our conclusions and experimental results explain phenomena occurring at 

frequencies above the first stop band that were not previously understood. Optical features observed in 

transmission spectra from opaline photonic crystals are now clarified by relating them to the diffraction 

pattern phenomena. We also observe an interesting change in the diffraction pattern symmetry when the 

photonic crystal refractive index contrast is modified. 
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Understanding the optical response of photonic 

crystals (PhCs) [1] in the high energy region of the 
spectra (above the first stop band) has paramount 
importance since that region is where many of the most 
appealing phenomena occur. Some examples are 
anomalous refraction [2-4], small group velocity 
eigenmodes [5] and, in some specific lattices, the opening 
of a complete photonic band gap [6]. Although all these 
effects are being extensively studied in two-dimensional 
(2D) PhCs, the high energy region of the spectra is just 
beginning to be explored in 3D systems. Similarly, 
diffraction patterns in 3D-PhCs have been scarcely 
investigated and experiments performed have generally 
been explained with a single scattering model (SSM) [7]. 
It is known that this model must fail for a large number of 
layers and an increasing refractive index contrast. But, to 
date, a more comprehensive theoretical study has been 
too complex due to the many bands present at high 
energies. Also, experimentally, very high-quality samples 
were needed to obtain reliable spectra. 

This letter shows how the high energy features and the 
diffraction phenomena are closely related. It illustrates 
how fundamental information about diffraction patterns 
from PhCs can be extracted from the band structure and 
clarifies the physics of this phenomenon, something that a 
numerical method alone does not do [5]. Due to the 
nature of the band structure calculations, results take full 
account of the refractive index contrast and 
dimensionality of the system. This gives us a theoretical 
basis to account for the experimentally observed behavior 
of the onset of diffraction that the SSM could not explain. 
Our results enlighten important previously unexplained 
features found in the optical transmission spectra of 
opaline systems. Finally, we also find evidences showing 
that the symmetry of diffraction patterns in opals can be 

affected by different values of the refractive index 
contrast δ=|ns-nh|, where ns and nh are the building blocks 
and host dielectric refractive indices respectively. 

 

FIG. 1. Reciprocal lattice of a hexagonal 2D-PhC (solid dots on 
the left) and equifrequency surfaces in the external medium for 
two different photon energies (right). The photon wave-vector 

(ki) can take within the PhC any value ki + G for any reciprocal 
lattice vector. For low frequencies (ω1), only a single beam 
normal to the surface of the PhC is projected out. For high 
enough frequencies (ω2) photons exiting the PhC with an angle 
φ respect to the normal can be observed. 

Diffraction patterns are built by a constructive 
interference of light scattered in directions other than the 
incident and specular. In the PhC, the wave-vector can 
take the form of ki + G, where ki is the initial wave-vector 
and G denotes any reciprocal lattice vector.  In the 
particular case of normal incidence, the parallel 
component of ki is the null vector but the many possible 
values of G, still provide the photon wave-vector with a 
parallel component. In the external medium, the angle of 
the exiting beam with respect to normal is given by sin(φ) 
= k║/kout, where k║ is the parallel component of the wave-
vector and is a conserved quantity [8] and kout is the 
modulus of the wave-vector in the external medium. This 



imposes a condition onto the wave-vector modulus out of 
the PhC to observe the diffraction patterns: kout ≥ k║. As 
an example, Fig 1 shows the reciprocal lattice of a 
hexagonal array. In particular, if light propagates in the 
ΓM direction any possible value for k║ inside the PhC 
must take the form of m2π/a. Here m is an integer number 
(basically the diffraction order) and a is the lattice 
parameter. Alternatively, the condition of having a large 
enough wave-vector to observe diffraction patterns can be 
expressed as a/λ ≥ m/n, where λ and n are the wavelength 
and the refractive index of the external medium 
respectively. It is interesting to notice that this equation is 
the same that would be obtained for a grating with a 
periodicity of a. All the previous arguments lead to a first 
necessary condition to project the diffraction pattern out 
of the PhC. But in contrast with gratings, PhCs impose a 
second condition due to their dimensionality as photons 
must propagate through it. In order to obtain a diffraction 
pattern from photons that propagate normally to the 
surface of the PhC, the photons must couple with bands 
(eigenstates) that provide them with a non-null k║. This 
occurs when bands folded back into the first Brillouin 
zone (BZ) by reciprocal lattice (RL) vectors not collinear 
with ki [5] are available. Conversely, bands folded back 
by RL vectors collinear with ki will transmit light only in 
the forward direction. The former bands are only present 
on media periodically structured in 2D or 3D, while the 
latter describe propagation through effective media. Thus, 
the second requirement to observe a diffraction pattern 
from a PhC is the existence of a Bloch mode created by a 
non-collinear RL vector to which photons may couple. In 
general, for low energies (below the first stop band) only 
linear bands are available. This means that the second 
condition also imposes a minimum to the photon energy 
to produce diffraction patterns. Consequently, it is 
necessary to interpret the diffraction phenomena in terms 
of photonic bands and to identify the modes responsible 
for the diffraction. A good starting point is to compare the 
band structures of the studied PhC and that of a PhC with 
the same lattice and average dielectric constant but a 
negligible δ. The latter is the case in which the PhC 
behaves as a homogeneous dielectric. 

A face-centered-cubic (fcc) arrangement of close-
packed spheres will be used as a model system. However, 
the conclusions and approaches presented here can be 
generalized for other configurations. The fcc lattice of 
closed packed spheres is a generally accessible 3D 
photonic crystal of great interest for which the optical 
features are not yet fully understood [9-11]. These 
crystals usually present {111} planes parallel to the 
crystal surface [12] and the direction normal to these 

planes (also called L) has been preferentially studied. As 
explained before, the first condition that must be fulfilled 
to observe the diffraction patterns is that kout ≥ k║. From 

the reciprocal lattice in the L direction we can deduce 

the following equation that predicts for which energies 
and lattice parameters that condition is satisfied: 
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Where s and m are two integer numbers which represent 
the set of diffraction spots and the diffraction order 
respectively. Therefore, the lowest energy that satisfies 
this condition is a/λ=1.633/n (m=s=1). Another set of 
diffraction spots appears for a/λ ≥ 2.828/n (m=1, s=2). 
This second set should not be mistaken for a higher 
diffraction order of the first set as has appeared to be 
assumed by some authors [13,14]. 

 

FIG. 2. (a) Band structure in the L direction for an fcc 
structure made of touching spheres (ns=1.4597) in a host 
dielectric (nh=1.4598). Bands have been grouped according to 
the direction of the RL vector that folds them back into the 1st 
BZ. (b) Same as (a) with ns=1.59 and nh=1.00 (PS spheres in 
air). The arrows indicate the onset of the two sets of diffraction 
patterns. 

To understand the implications of the second condition 
the bands created by non-collinear RL vectors in the PhC 
band structure must be identified. Figure 2(a) is the band 

structure along the L direction in reciprocal space for the 
case of a system with very low refractive index contrast 
(ns=1.4597 and nh=1.4598). Four groups of bands with 
different degrees of degeneracy can be observed for this 
range of energies corresponding to different RL folding 
vectors. Filled symbols correspond to those bands 
showing a linear dependence on frequency. Light coupled 
to these bands will propagate in the forward direction. 
Open symbols correspond to three different groups of 
bands which are folded back in the first BZ by reciprocal 

lattice vectors in the L, X and K directions. These 
three directions are all non-collinear with ki since those 

indicated as L are coming from {111} planes other than 

the normal to ki. The L and X groups will be 
responsible of the first set of diffraction spots appearing 



for a/λ ≥ 1.12. The K group will cause the second set of 
spots for a/λ ≥ 1.94. 

Figure 2(b) shows the band structure [15] of an fcc 
array of polystyrene (PS) touching spheres in air. This 
PhC shows very important differences when compared 
with the quasi-homogeneous crystal shown in Fig. 2(a). 
Apart from the widely reported [16] opening of the 

pseudogap at low energies (a/λ = 0.599) in the L 
direction, increasing δ yields to a strong interaction 
among the high energy bands. The degeneracy of the 
bands begins to lift and some of them split due to anti-
crossings. The frequency at which diffraction begins is 
red-shifted. Indeed, the first set of spots is now expected 
for a/λ ≥ 1.08 and the second set for a/λ ≥ 1.85. 

 

FIG. 3. (color online) Diffraction patterns generated by opals 
made of (a), (b) 505 nm and (c), (d) 695 nm PS microspheres. 
The first two pictures are taken on the sample while the latter 
include both the sample (inset) and the diffraction pattern 
projected on a screen. Notice that diffraction pattern shown in 
the sample at (d) is rotated 30º respect to the spots projected on 
the screen. 

The results obtained from the band structure are now 
compared with experimental data. The study of the angle 
at which the beams are diffracted out of the sample versus 
the photon frequency will not provide new information 
since that behavior is identical to that of a diffraction 
grating: sin(φ) = k║/kout. However the onset of the 
diffraction spots must also be satisfied by the condition 
imposed by the dimensionality of the PhC. For this 
reason, the onset of different sets of diffraction spots at 
various energies is a meaningful experiment. Diffraction 
experiments were performed with light from a tunable 
nanosecond pulsed Optical Parametric Oscillator. The 

samples are thin opals (30 layers) assembled from PS 
spheres on a glass substrate (n=1.53) following a 
published method [17] based on vertical deposition 
techniques [18]. The light first passes through the sample, 

and then the substrate. This configuration allows the 
observation of diffraction patterns in the sample itself; for 
the lowest energies (large diffraction angle), the diffracted 
beams undergo total internal reflection (TIR) on the 
opposite side of the substrate and project back on the 
opal, which acts as a screen. For higher energies (smaller 
diffraction angle), TIR does not occur and the pattern is 
projected on an external screen. A similar configuration 
for a 2D grating is described in ref. 13. Figure 3(a) shows 

the laser light with energy a/λ = 1.07 incident in the L 
direction on the sample. This energy is just below the first 
band capable of diffracting and therefore, no pattern is 

observed. For a/ = 1.10 [Fig. 3(b)] the diffraction pattern 
is already observed on the sample. When a/λ > 1.63 the 
diffracted beams exit the sample and are projected on a 
screen [Fig. 3(c)]. For a/λ > 1.85 the first set of spots is 
projected on the screen while the second set still 
undergoes TIR and thus is observed on the sample [Fig. 
3(d)]. Increasing the energy will eventually allow the 
projection of both first and second set of spots on the 
screen. In the particular case of PS opals on a glass 
substrate, conditions imposed by the band structure and 
the grating equation are fulfilled for very similar photon 
energies. 

 

FIG. 4. (color online) (a) For certain frequencies the diffracted 
beams may undergo total internal reflection in the sample 
substrate and make its observation more difficult. (b) A glass 
hemisphere attached to the other side of the glass substrate is an 
appropriate geometry to project the diffracted beams out of the 
substrate. 

In the case of diffraction patterns that undergo total 
internal reflection in the substrate it maybe difficult or 
even not possible to observe the diffracted beams as in 
Fig 4(a). A simple way to project those beams out of the 
substrate is by changing the geometry to avoid TIR. The 
attachment of a glass hemisphere to the back of the 
substrate is a possible geometry that allows observing the 
diffraction pattern on an external screen. Fig. 4(b) shows 
such a setup in which the hemisphere is glued to the 
substrate with a droplet of glycerol. 

Bands’ minima determining the onset of diffraction in 
a certain direction may happen to be saddle points and not 
absolute minima. As a consequence, increasing the 
external angle of incidence (θ) may lead to reduction of 

onset energy. This is the case of the L direction on a fcc 



lattice. Calculations extracted from the band structure 
show (Fig. 5) that, for an opal made of poly(methyl 
methacrylate) (PMMA) spheres (ns=1.50), the diffraction 

pattern at θ=0º (L) is expected for a/λ ≥ 1.14. However, 
as θ increases, the minimum energy at which the 
diffraction pattern can be observed decreases. The 
behavior depends on the crystallographic direction under 
study, the LK(U) [19] and the LW directions in this case. 
The results are compared to the behavior of a 2D grating 
with the same lattice parameter on a glass substrate. To 
experimentally illustrate it, an opal made of 334 nm 
PMMA spheres was fabricated and illuminated with a 476 
nm laser beam. Both the LW and the LK(U) directions 
[17] were probed. For θ=0º no diffraction pattern was 
observed. For θ=30º, crosshair in Fig. 4, this photon 
energy is sufficient to form diffraction patterns whose 
symmetry depends on the direction (insets in Fig. 5). As 
predicted, no diffraction patterns were observed for 
energies and angles below the onset calculated from the 
band structure. 

 

FIG. 5. (color online) Onset of diffraction extracted from band 
structure calculations as a function of normalized frequency and 
the external angle of incidence along the LK(U) (black line) and 
LW (red line) directions for 334 nm PMMA spheres (ns=1.50). 
Dashed line shows the values predicted by the 2D grating 
equation on a glass substrate (n=1.53). The insets show the 
diffraction patterns when a 476 nm laser impinges at 30 degrees 
off normal both towards the K(U) and the W direction. The 
crosshair indicates to the frequency and angle for the 
experiment. 

The presence of bands that scatter light in non-forward 
directions has obvious effects on the optical spectra of 
photonic crystals. When diffraction is projected out of the 
PhC, an intense drop in forward transmission is expected 
due to the energy imparted to diffracting modes. 
Transmission dips must also occur over energies where 
modes causing forward propagation are not available 
even if other bands are present. Therefore, identifying the 
latter modes in the band structure is necessary to 
understand the optical spectra. 

 

FIG. 6. Transmittance spectra in the L direction of an opal 
made of 700 nm PS spheres (thick line) and its inverted replica 
made of silica (thin line) collected with a 4X objective 
(NA=0.1). Dashed vertical lines depict the energy onset of the 
6th band for the direct and the inverse opal. 

Artificial opals are an excellent test bench. Through 
recent improvements in sample quality [9-11] the high 
energy optical spectra at normal incidence can now be 
studied, but is not fully understood. Figure 6 shows the 
transmittance spectra of an opal made of PS spheres and 
its inverse replica made of silica [20]. These samples have 
the same lattice constant and symmetry but a different 
band structure. Both samples are on a glass slide and, 
therefore, the grating equation condition is fulfilled for 
the same energy. However, in the case of the opal and the 
inverse opal, the existence of Bloch modes responsible 
for diffraction occurs at different energies and so does the 
diffraction onset. This proves that diffraction patterns are 
not a 2D effect mainly determined by the first layer as 
suggested in [9]. As predicted, a drastic drop of 
transmittance is observed in both cases for the energy at 
which diffraction begins (depicted as a vertical dashed 
line). In reference 11 this explanation for the 
transmittance drop was explicitly ruled out since the 
authors disregarded the fact that diffracted beams, 
although not extracted out of the opal-substrate system, 
were present in the glass substrate. Diffraction was only 
expected at higher energies (a/λ ≥ 1.633) and thus it was 
concluded that the transmission drop was not related to 
the diffraction. 

A relationship between abrupt oscillations in the 
spectra and the energies where forward propagating bands 
undergo anti-crossings and splitting at the edge of the 
BZs was pointed out in reference 10. Nevertheless, a full 
explanation for these transmission dips was not provided 
since no depletion in the density of states could be found 
to account for the transmission drops. However, as we 
explain, light collected in forward transmission probes 
only those modes that allow forward propagation, while 
photons coupling to other modes are not collected. Under 
these circumstances, transmission dips are indeed 
understood when the spectra and band structures shown in 
[10] are compared.  



The SSM predicts for an fcc lattice a diffraction 
pattern consisting of three spots with a C3 symmetry for 
incidence normal to the {111} planes [7]. Such a pattern 
was reported by authors working close to index matching 
condition or with crystals formed with a very low number 
of layers (≤3) [7,21]. In all our experiments with PS, 
PMMA and silica (not shown here) opals, the diffraction 
patterns showed six spots with a C6 symmetry [14]. To 
recreate a low index contrast situation, an opal made of 
695 nm PS spheres was loaded with silica by means of 
chemical vapor deposition [22]. The diffraction pattern 
from this sample showed three spots clearly brighter than 
the other three, reproducing results reported in the 
literature. Figure 7 shows examples of these patterns 
projected on an external screen at two different 
wavelengths. The intensity distribution indicates that our 
samples have a strong tendency to be fcc as opposed to 
random or hexagonal close packed lattices. Arrangements 
of close-packed spheres other than the fcc lattice should 
always lead to a C6 symmetry diffraction pattern. A 
challenging question remains as to why the diffraction 
patterns observed in opals with high and low δ are 
different. Since for the former, SSM is inadequate, such a 
study may require the calculation of the coupling 
coefficients [3] for bands causing diffraction and more 
detailed 3D EFSs. 

 

FIG. 7. (color online) Diffraction patterns generated by opals 
made of 695 nm diameter PS microspheres with 70% of the 
pore volume loaded with SiO2. The pattern is projected on an 

external screen using λ=500 nm (a) and λ=530 nm (b) 

To summarize, we provided an explanation for the 
diffraction patterns in PhCs based on the coupling of 
incoming light with Bloch modes in the band structure. 
This interpretation accounts for the onset of diffraction 
that SSM failed to predict. The effects of diffraction 
patterns on optical spectra have been discussed and the 
conclusions supported by experimental data. Features in 
the transmission spectra at high energy have been 
clarified and experimental evidences that relate the 
diffraction patterns symmetry with δ have been shown. 
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