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White-light interferometry measurements over a wide spectral range in the optical 

region have been performed on three dimensional (3D) opal-based photonic crystals 

that have permitted extracting the optical phase delay introduced by samples with an 

increasing number of layers. The absolute phase that corresponds to the wavevector 

inside the samples has been obtained by a proper normalization procedure. From the 

absolute phase and the transmittance we have determined the complex effective 

refractive index of the 3D photonic crystals, whose real part shows normal 

dispersion outside the pseudogap and anomalous (negative) dispersion across the 

pseudogap. By a numerical derivative of the measured phase the group velocity is 

directly obtained, which displays slowing down at the band edge and superluminal 

behavior inside the photonic gap. The evolution of the measured quantities with 

sample thickness and their convergence towards the infinite crystal behavior are 

successfully compared to theoretical calculations of the optical properties for the 

finite system as well as of the energy bands. The role of structural disorder on the 

measured quantities is also discussed. 
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1. Introduction 

Photonic crystals1-4 are artificial materials which permit modifying the propagation 

of electromagnetic radiation5 and the decay dynamics6 of excited light sources in ways 

not allowed by conventional materials. This is directly related to the peculiar dispersion 

relation for such structures, which takes place in the form of allowed and forbidden 

frequency intervals for light propagation, as a consequence of Bragg diffraction. The 

latter is caused by the spatial periodicity present in the dielectric function of the crystal, 

which scatters light coherently in a manner analogous to that of the crystal potential 

acting on electronic waves in conventional semiconductors. Among the different routes 

to fabricate three dimensional (3D) photonic crystals, self assembly stands out for ease 

of fabrication and low cost.7 

Reflection and transmission spectroscopy are nowadays the most widespread 

techniques for the optical characterization of three dimensional photonic crystals. They 

are usually employed to detect the existence of forbidden spectral intervals, known as 

stop bands. These appear as regions of low (high) transmission (reflection), indicating 

the exponential attenuation of electromagnetic radiation as it propagates through the 

crystal. One major drawback of these techniques is that they usually fail to provide 

information on the dispersion of the photonic bands and knowledge is gained only on 

the existence of stop bands. Vlasov and co-workers8 reported on spectroscopic 

reflection measurements on artificial opals with reduced refractive index contrast 

through which information was collected on the shape of energy bands. Such study was 

performed in the surroundings of the forbidden frequency interval appearing along the 

[111] direction in artificial opals and associated to first order Bragg diffraction by the 

{111} planes, commonly termed the L-pseudogap as it does not spread to other 

crystallographic directions. Such information was obtained from Fabry-Perot 
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oscillations originated from the interference between light reflected at the front and rear 

facets of the sample. This method is, however, limited by sample quality. As the 

thickness of the crystal increases, the contribution from the rear end of the crystal 

decreases as a consequence of light being scattered by defects and Fabry-Perot 

oscillations become less defined. 

In order to explore the dispersive properties of 3D photonic crystals, phase sensitive 

techniques have been employed that have allowed the determination of the band 

structure in the surroundings of stop bands. Yablonovitch and Gmitter9 extracted the 

band dispersion of a Yablonovite structure in the microwave regime for the main 

directions within the first Brillouin zone. Later on, Watson and co-workers10,11 used a 

modified Mach-Zehnder interferometer (MZI) to measure the phase delay introduced by 

colloidal crystals in the vicinity of the L-pseudogap. For those frequencies contained 

within the L-pseudogap, the phase upon reflection was recently measured using 

artificial opals as reflectors of a Fabry-Perot cavity.12 Another method for determining 

the band structure of a 3D crystal, not based on a phase sensitive technique, is that 

introduced in Ref. 13. In this approach, studying light refraction of monochromatic 

beams propagating through the system allowed obtaining equi-frequency surfaces from 

which the band structure was reconstructed.  

The above mentioned techniques also fail to provide information on the dynamics of 

light propagating through the crystal. In this case time resolved experiments have 

proven to be a valuable tool. The main interest in 3D photonic crystals has been placed 

on the spectral region close to the pseudogap edges, where energy bands bend near the 

edge of the Brillouin zone. This band bending implies a reduction in group velocity 

which increases the interaction time of electromagnetic radiation with the crystal. Also 

in a narrow spectral range around the pseudogap, time resolved experiments were 
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performed using ultra-short pulses and a group velocity reduction was measured near 

the gap edges.14,15 In the case of Ref. 15, the group velocity dispersion was also 

measured. Very recently, the group velocity and its dispersion were determined in a 

wide spectral region around the pseudogap by means of white light interferometry on 

artificial opals16.  

In this work phase sensitive measurements are presented on self-assembled, 3D 

photonic crystals consisting of artificial opals with an increasing number of layers and 

different lattice parameters. Employing white-light interferometry in the time domain 

the phase delay introduced by the samples is measured, which allows determining the 

dispersion relation over a large spectral range in the optical region. Care is taken in 

defining the absolute phase and in obtaining its frequency dependence with the correct 

normalization, i.e., after subtracting the phase introduced by the substrate. From the 

absolute phase delay, the real part of the effective refractive index of the 3D photonic 

crystal is unambiguously determined for the first time, and is shown to present a region 

of anomalous dispersion across the pseudogap. From transmittance measurements the 

imaginary part of the effective refractive index is obtained which provides information 

on light extinction by the samples due to both Bragg scattering and disorder. Taking the 

first derivative of the measured phase we obtain the group velocity vg/c (or the group 

index ng=c/vg) which exhibits pronounced slowing down at the band edge and 

superluminal behavior within the photonic gap. Its evolution with sample thickness and 

its convergence towards the behavior predicted for the infinite crystal by the calculated 

energy bands is discussed. A comparison between experimental results and theoretical 

calculations for the finite system shows an excellent agreement. Small deviations near 

the low energy edge of the pseudogap are observed and point to the effect of structural 

disorder.  
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2. Experimental 

The samples used in the present work are artificial opals made of polystyrene 

spheres of two different diameters (i.e. 505 and 705 nm, 3% polydispersity, values 

obtained from transmission electron microscopy –TEM- measurements) and controlled 

thickness, grown on glass substrates. Details on fabrication and previous optical 

characterization by means of reflection and transmission spectroscopy can be found 

elsewhere.17 The experimental set-up employed in the present work is that used in Ref. 

18 and 19 for probing the dispersive properties of silica substrates and dielectric mirrors 

respectively. It consists of a modified Mach-Zehnder Interferometer (MZI) coupled to a 

commercial scanning Michelson interferometer (SMI). The sample is introduced in one 

of the arms of the MZI (sample arm) and the other one remains empty (reference arm). 

The signal collected by the detector in the SMI as a function of the distance traveled by 

its moving mirror yields an interferogram, from which the phase delay introduced by 

the sample is obtained by means of Fourier analysis. In order to remove the contribution 

to the phase delay introduced by the glass substrate, a reference measurement was 

performed in a region nearby the sample where only the glass substrate was exposed. 

Then, the phase delay introduced by the opal sample alone was obtained simply by 

subtraction of the two contributions. This procedure has the advantage to completely 

eliminate any spurious phase-shift coming from the instrumental apparatus, and for this 

reason it assures very precise values of the measured phase.18 Furthermore, in order to 

assure the proper phase normalization, the thickness of the substrate was checked to be 

the same in both the sample and reference measurements. This was done by translating 

the substrate across the probe beam and observing the separation between the auto- and 

the cross-correlation lobes in the interferogram, which directly yields the optical path 
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difference between the different regions of the substrate. By assuming a refractive index 

value of 1.51 for the glass substrate as provided by the manufacturers (Menzel-Glaser), 

the substrate thickness was observed to vary by no more than 100 nm over distances of 

2 mm. This thickness variation, albeit small, has to be considered as a possible source of 

error in the measurements. Therefore, the sample areas to be probed (~125 μm) were 

chosen so that an exposed substrate region was available as close as possible (typically 

~300 μm), leading to an upper bound to the error in the measured phase of about 0.18 

radians, which can be assumed as the experimental error in the phase determination.  

 

3. Theoretical model 

In order to model the optical response of the opal photonic crystals we calculate 

the transmittance T() and the phase delay () of the light beam transmitted through 

the sample by means of the scattering-matrix method,20 which is a fully vectorial 

treatment of Maxwell equations in 3D. The dispersion of the refractive index of 

polystyrene is taken into account by using published data.21 For this reason we adopt 

absolute energy units rather than the widely used adimensional reduced frequency a/λ. 

Notice that each period of the fcc structure viewed along [111] (which coincides with 

the propagation direction at normal incidence) consists of three layers containing 

spheres arranged in a triangular lattice, where each layer is shifted with respect to the 

previous one in a direction perpendicular to [111]. Since the scattering-matrix method 

requires the crystal being divided into homogeneous layers along the propagation 

direction, we subdivide each dielectric sphere into cylinders with their axis oriented 

along the [111] direction and with the same total volume as that of the spheres. Such an 

approach is found to yield good results in terms of reproducing the band structure of the 

infinite system of spheres as well as the experimental results for the finite system, as it 
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will be shown below. The diameters and heights22,23 of the cylinders are optimized in 

order to reproduce the photonic bands of the opal structure with spheres. In Fig.1 we 

show a comparison of the calculated photonic bands for the fcc structure with dielectric 

spheres and cylinders, respectively. Along the main directions of the Brillouin zone 

(i.e., for propagation along [111]) the bands are in very good agreement even for 

energies higher than the spectral range probed in the present experiments. In order to 

reproduce the experimental results, including out-of-plane diffraction measurements, we 

had to assume an average sphere diameter of 708 nm and a lattice constant of 725-730 

nm in the planes perpendicular to the [111] direction, slightly larger than the values 

determined from TEM measurements but still within the 3% polydispersity. The 

calculations assuming these parameters are found to be in very good agreement with the 

experimental results, as discussed in the next Sections. 

 

4. Phase delay and effective refractive index 

When the reference arm in the MZI is blocked, the transmittance T() from the 

sample can be obtained. In this way we measure both the phase delay and the 

transmittance at the same point of the sample. This is done for samples of increasing 

thickness and different lattice parameter. Fig. 2 represents transmittance measurements 

for samples made of nominally 705 nm spheres and having an increasing number of 

layers. A pronounced dip in transmittance can be appreciated taking place for an energy 

of 0.76 eV, associated to the stop band (L-pseudogap) opening in the dispersion relation 

as a consequence of Bragg diffraction by the {111} planes parallel to the sample 

surface. As the number of layers increases, such dip becomes more pronounced as 

expected due to a more efficient Bragg diffraction. Also evident in the spectra is a 

region of low transmittance outside of the stop band which decreases towards high 
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frequencies. In this spectral region secondary oscillations are present which are 

associated with the finiteness of the sample and which allows determining its 

thickness.17 Moreover, the transmittance outside the stop band decreases with sample 

thickness, a behavior known to be associated with extinction by structural disorder.24,25 

The role of disorder in the present measurements will be further discussed below.  

Figure 3 shows the phase delay and the transmittance for a sample 18 layers thick. 

Here it is evident that in the same spectral region where the dip was observed in the 

transmittance spectra a jump in the measured phase is present. Such jump will be 

discussed in detail below. As for transmittance, the phase delay has been measured for 

samples having an increasing number of layers. 

Since the phase delay is obtained by Fourier analysis, it carries an uncertainty of 

m•2π, where m is an integer number. The absolute phase () is a continuous function 

which vanishes linearly in frequency for →0.26 In order to determine the absolute 

phase an integer multiple of 2 must be added/subtracted from the measured one. To 

obtain the number m one may, as a first approximation, linearly extrapolate the phase to 

the low-energy region and force it to vanish for zero frequency. This approach yields a 

value of m, which may be corrected, if necessary, by considering the effective refractive 

index, as explained at the end of this Section. By doing this we have obtained the phase 

delay introduced by our samples in a wide spectral range between 0.5 and 1.3 eV, 

corresponding to the L-pseudogap and its surroundings. Figure 4a shows the evolution 

of the phase delay as the number of layers is increased. For a small number of layers it 

is just a straight line, resembling the behavior of a transparent homogeneous material. 

As the thickness of the crystal increases, the slope of the phase as a function of 

frequency increases as expected for an increasing optical path. Further, a slower change 

of the phase occurs for those frequencies within the L-pseudogap, indicated by dashed 
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horizontal lines in the figure. A similar jump is known to take place across the 

forbidden intervals of 1D photonic crystals19 and to be a signature of Bragg diffraction. 

In the present 3D case we would expect a similar behavior for this particular orientation 

and energy range for which Bragg diffraction occurs. At variance with previous 

determinations of phase delay for similar systems,10,11 here the thickness of the samples 

is such that enough signal is collected for frequencies within the pseudogap. Theoretical 

calculations are also plotted in Fig. 4 for comparison. The overall agreement between 

theory and experiment is satisfactory. Calculations reproduce the overall shape and 

absolute value of the phase delay on the spectral range considered. A slight deviation is 

observed in the low energy side of the phase jump, which increases with sample 

thickness. This can be better appreciated in Fig. 4b, where results for the thickest 

measured sample are blown up. This disagreement, which points to the effect of 

structural disorder, will be discussed in a following section. We notice that the 

theoretical value for the phase delay is an absolute one, as the calculated phase starts 

from =0 and is rendered continuous (or “unwrapped”) by adding appropriate multiples 

of 2. The agreement between experiment and theory also validates the experimental 

determination of the absolute phase. 

Once the phase delay and the transmittance of the samples are known, the real and 

imaginary parts of the effective refractive index neff can be obtained. The definition of 

effective refractive index used here is that introduced in reference 27 for 1D photonic 

crystals, which has been proven to satisfy Kramers-Kronig relations and to correctly 

describe the dispersive properties of such structures, especially in terms of the 

possibility of fulfilling phase matching conditions for second harmonic generation.  

This neff has also been used to successfully account for the observation of third 

harmonic generation in 3D samples similar to the ones used in the present 
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measurements,28 and second harmonic generation in dye doped colloidal crystals.29 This 

definition of neff accounts for the dispersive properties of a finite sample along the 

direction of propagation, in the sense that a homogeneous medium described by neff has 

exactly the same transmittance and phase delay as the real sample. At this point, and for 

the sake of clarity, it must be noticed that such definition is different from that 

introduced in reference 5. The latter refers to an effective refractive index defined for 

the infinite crystal from equifrequency surfaces (EFS), that is, the set of all allowed 

wave vectors for a given frequency. In the spectral regions where the band structure is 

so that spherical EFS may be found, the effective refractive index accounts for the 

refractive properties of the crystal. Such regions are to be found in the low frequency 

limit as well as close to frequency gaps.5,30  

To specify the present definition of the effective refractive index, following 

Reference 27, we write the complex transmission function of the sample as 

 iett ||)( =  (where t is the square root of the transmittance T()) and define the 

complex refractive index as follows: 

( )||log)()Im()Re( ti
D

c
ninn effeffeff −=+= 


  .                      (1) 

The sample thickness is D = d111N, where d111 = a/(3)1/2 is the interplanar distance for 

the (111) planes parallel to the surface and N the number of such planes. In the 

following we discuss the behavior of the real and imaginary parts separately. 

Therefore, from the phase delay we can extract the real part of the effective 

refractive index Re(neff) for our crystals without any additional assumption. In this way 

we have extracted Re(neff) for samples with an increasing number of layers. The results 

are plotted in Fig. 5a. The effective refractive index has an overall increase with 

frequency, except for energies around  ~0.76 eV corresponding to the pseudo-gap, 
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where a region of anomalous dispersion (i.e., decreasing refractive index with 

increasing frequency) occurs. This region becomes more evident as the thickness of the 

sample is increased. In homogeneous materials anomalous dispersion is associated with 

spectral regions where absorption or gain takes place. In the present situation the origin 

of this phenomenon is related to extinction by Bragg diffraction, as in the 1D case.27 In 

order to validate this statement, the scalability of the experimental results was checked 

by measuring samples with 505 nm spheres. The region of anomalous dispersion shifts 

to higher frequencies (1.05 eV) showing scalability with lattice parameter and therefore 

may be associated with Bragg diffraction due to the periodicity of the structure and not 

to absorption of the materials comprising the crystal. In addition, in the 705 nm sphere 

samples regions of anomalous dispersion due to water vapor absorption are seen at both 

sides of the main feature discussed. As the crystal thickness increases the former region, 

corresponding to the pseudo-gap, becomes spectrally narrower. This evolution coincides 

with that of the reflectance peak17 as expected, both features being associated with 

extinction due to Bragg diffraction. Also the spread of Re(neff) across the pseudo-gap 

increases as a function of crystal thickness. This corresponds to the fact that Bragg 

diffraction (and therefore extinction) becomes more efficient with increasing number of 

planes. This shows that if second or third harmonic generation is to be observed in such 

systems, as in Refs. 28 and 29, the size of the crystal will be crucial in achieving the 

phase matching condition. Theoretical results also reproduce the above mentioned trend. 

A small difference between experiment and theory is evident at the low and high energy 

regions of normal dispersion. Such a deviation is rather small and, at the lowest energy 

of 0.5 eV, it decreases with the sample thickness from 1% for the 10 layer sample to 

0.3% for the 40 layer one. The decrease of the deviation with sample thickness could be 

associated with the fact that thinner samples present a slightly lower filling fraction as 
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compared to the thicker samples, so that an effective medium approach is more realistic 

for the latter. Such structural variations are currently under study. Here we must also 

point out a divergence between the values obtained for Re(neff) by theory and 

experiment at the low energy edge of the anomalous dispersion interval (L-pseudogap). 

Such discrepancy is expected as being related to the deviation already observed in the 

phase delay results (see Fig. 4).   

These results represent a clear improvement with respect to previous phase delay 

data measured in colloidal crystals.10,11 On one hand, the good quality and reduced 

thickness of the samples allow measuring the phase delay for frequencies within the 

pseudogap, not observed previously due to the weak signal in thicker crystals. The 

present data then represent the first full determination of the effective refractive index 

according to Ref. 27, showing anomalous dispersion across the entire pseudogap, of a 

3D photonic crystal in the optical region. Further, the increased refractive index contrast 

of our samples with respect to the above mentioned colloidal crystals allows observing a 

variation in  Re(neff) of up to 0.04 across the pseudogap edges. This value is an order 

magnitude larger than that obtained with colloidal crystals having 1000 planes.  

At this point we would like to explain in more detail the procedure used for 

determining the absolute phase. Since the spectral range accessible to the measurements 

is ħ0.5 eV, extrapolating the measured phase to zero frequency carries an uncertainty 

due to the dispersion of the sample refractive index. This uncertainty is negligibly small 

(i.e., much smaller than 2) for thin samples, while for thick samples it may prevent 

from retrieving the absolute phase by linear extrapolation to →0. In order to obtain the 

absolute phase, the value of m determined by low-frequency extrapolation may be 

corrected self-consistently as follows. By adding/subtracting m· to the measured 

phase and calculating the effective refractive index  Re(neff) of the samples, one realizes 
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that it exists only one value of the integer number m that gives a physically correct 

value for  Re(neff) and for its dispersion. This can be appreciated in Fig. 6, where the real 

part of the effective index calculated from the phase delay introduced by a 20 layer 

thick sample is shown after subtracting different multiples of 2π (close to m=9 estimated 

by linear extrapolation to →0). If m is chosen too large (m=10 in Fig. 6), Re(neff) 

presents anomalous dispersion across the whole spectral range considered, and a value 

much higher than that predicted by effective-medium theory. On the contrary, if m is 

chosen too small (m=8 in Fig. 6), the obtained values for Re(neff) show too large 

dispersion and are below those predicted by theory by more than 15%.  This self-

consistent procedure was carried through for all samples and it confirms that the phase 

results presented in Figs. 3a and 4 refer indeed to the absolute phase, in agreement with 

the theory. 

We have extracted Im(neff) from Eq. (1) for the same samples for which its real 

counterpart was presented in Fig. 5a, and the results are shown in Fig. 5b.  Theoretical 

predictions are plotted together with the experiment. They reproduce well the overall 

spectral behavior of Im(neff) with a flat background for frequencies outside the 

pseudogap and a pronounced peak for frequencies within the pseudogap, which 

accounts for light extinction due to Bragg diffraction. Nevertheless, an additional 

physical effect is evident when comparing theory and experiment; extinction outside the 

stop band is larger in the experiment for frequencies outside the pseudogap. Such 

behavior is known to be due to extinction of light caused by scattering by structural 

disorder.24,25  

 Finally it is interesting to compare the evolution of Im(neff) with the number of 

layers both for a frequency inside the stop band and for a frequency outside it. Such 

comparison is presented in Fig. 7. It is evident that two opposite trends are present in 
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the figure. On the one hand, extinction for frequencies contained inside the gap 

increases with the number of layers (Fig. 7a) and seems to reach a stationary behavior 

for samples with N~30 layers. This is to be expected since as the number of layers 

increases, extinction due to Bragg diffraction becomes more effective and hence the 

imaginary component of the refractive index increases towards the infinite crystal limit. 

On the other hand if we consider a frequency outside from the stop band (Fig. 7b) we 

can see that extinction becomes less effective with increasing sample thickness. The 

latter result indicates that the amount of disorder, which is the only mechanism for 

extinction in this spectral range where Bragg diffraction does not occur and polystyrene 

does not absorb, is smaller for thicker samples. This finding is supported by previous 

evidence from scanning electron micrographs as well as from the broadening of optical 

diffraction patterns from similar samples.31, 32 Thus we may conclude that the analysis 

of the imaginary part of the effective refractive index yields useful information on 

Bragg diffraction within the pseudogap as well as on the effects of structural disorder. 

 

5. Group velocity 

Once the phase delay is measured, the effective dispersion relation of the sample can 

be obtained in a straightforward manner as k(ω)=(ω)/D. Then one may obtain the 

group velocity vg associated with propagation along the ΓL direction which is just the 

derivative of the dispersion relation with respect to the frequency. In our case it is the 

inverse group velocity normalized to the speed of light in vacuum that we calculate. 

Such quantity is commonly termed group index ng:
27 
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The group velocity can be defined as the velocity at which the peak amplitude of a 

light pulse traverses a medium. Therefore it provides information on the dynamics of 

light propagation through that medium. For an infinite photonic crystal, vg at a certain 

frequency may be calculated as the slope of the corresponding band at that frequency. In 

the case of no extinction, vg equals the energy velocity, that is the speed at which 

electromagnetic energy propagates.30 In the absence of available electromagnetic states 

neither of them is defined as no energy can propagate through the medium. But for a 

finite photonic crystal the situation is different. Here, for frequencies located within a 

forbidden interval, light will be exponentially attenuated but it may still be transmitted 

through the crystal. In the presence of extinction, vg does not equal the energy velocity33 

and care must be taken when interpreting experimental results.   

In Fig. 8 the evolution of ng extracted from Eq. (2) is plotted for samples having an 

increasing number of layers. Some interesting points must be noted in this graph. For 

samples just 10 layers thick ng has small variations with frequency. Noisy regions 

appear which correspond to the anomalous dispersion associated with water vapor 

absorption also observed in the results for neff. As the thickness increases, two peaks of 

ng develop at frequencies close to the pseudogap edges (indicated by dotted vertical 

lines), and a region of low ng appears in between. For an increasing number of layers the 

two peaks become more pronounced and shift closer to the position of the pseudogap 

edges. Far from these frequencies ng presents oscillations around a constant value. Such 

oscillations coincide with Fabry-Perot resonances observed in reflectance and 

transmittance,16,19 and are a result of the finite size of the sample.  

Near the edges of the pseudogap, energy bands separate from the low energy linear 

behaviour and become flat. Thus, the vg associated with the frequencies near the edges 

becomes extremely low. For an ideal infinite crystal the modes with these frequencies 
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become standing waves. For real finite crystals these “heavy” photons with such 

frequencies experience a very long optical path inside the structure, and their interaction 

time with the crystal is enhanced.34 By introducing non linear optical materials in 1D 

photonic crystals this effect may lead to optical limiting and switching,35 and to 

enhanced second harmonic generation by adequately tailoring the dispersion relation of 

the crystal.27 If active media are introduced instead, enhanced emission36 and gain could 

be achieved.34,37 In the results presented in Fig. 8 the two peaks of ng correspond to the 

spectral interval where anomalous dispersion was observed and may then be identified 

with the appearance of Bragg diffraction by the {111} planes parallel to the sample 

surface. This evolution can then be considered as a signature of the formation of the 

energy bands in this spectral region, where the decrease in vg (and hence an increase in 

ng) can be associated with the bending of the energy bands near the pseudogap. The 

observed increase in ng reaches a maximum of ng =2.5 at the high energy edge of the 

pseudogap. This is larger than previous ng enhancements observed in colloidal crystals 

with ~1400 planes,15 and in thin film opals with fewer layers.16 As in the variations 

regarding the effective refractive index, increasing the photonic strength of our system 

by augmenting the refractive index contrast allows the observation of phenomena 

related to band edge bending in thinner samples, which show a sufficiently large signal 

within the pseudogap.    

For frequencies within the pseudogap, the group index is observed to take on values 

below those in the long wavelength limit and even smaller than unity for samples only 

15 layers thick. Such values of the group index correspond to superluminal values of the 

group velocity (i.e. vg >c). This is in agreement with the approximate formula 

vg/c=Nd111g/(c), which follows from the phase variation of  across the photonic 

gap.19 Superluminal group velocities have been experimentally observed with pulses 
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propagating through 1D photonic crystals38,39 and also extracted from phase delay 

measurements.16,19 Such results, although striking, are known not to be at odds with 

causality. For a finite system the group and energy velocities are not the same in those 

spectral regions where strong extinction takes place (i.e. inside the pseudogap), and the 

energy velocity remains below c for all frequencies.33 

The measured group indices are well reproduced by theoretical calculations, as can 

be seen in Fig. 8. Not only the spectral position of the main features near the pseudogap 

edges, but also the modulations in ng associated with Fabry-Perot oscillations far from 

the edges are in good agreement. The main discrepancy comes, as in the case of the 

phase and effective index, with the low energy edge of the pseudogap. Here theory 

predicts a value for ng larger than the measured one. This is due to the fact that slowing 

at frequencies close to the pseudogap edges is not only related to gain or SHG 

enhancement. The fact that photons experience a longer optical path for these 

frequencies implies that they are more likely to be scattered by defects in the lattice. 

This was already observed in Ref. 17 for similar samples as an enhancement of the 

diffuse intensity generated inside the crystal. One may compare the frequency 

dependence of the optical response in reflectance, transmittance and diffuse intensity (1-

R-T) of a 42 layer thick sample -extracted from Ref. 17- with the group index, as in Fig. 

9. In the low energy edge there is a clear enhancement of diffuse intensity which 

coincides with a smaller group index, as compared to the high energy edge (where no 

enhancement of diffuse intensity is present). Such an asymmetry in the values for ng is 

not present in the theoretical calculations, on the contrary a smaller inverse asymmetry 

should be observed.  It seems that the generation of diffuse intensity counteracts the 

effect of sample thickness in the evolution of the ng, which is expected to increase with 

the number of layers near the pseudogap edges. This fact has been also discussed in Ref. 
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16, and reproduced with a heuristic model where extinction due to disorder was 

accounted for by introducing absorption in a 1D model. The effect of disorder in the 

present phase sensitive measurements is an interesting aspect that will be dealt with in 

the future.  

 

6. CONCLUSIONS 

In summary, we have presented a detailed study of the evolution of the phase delay 

and group velocity of light transmitted through opal-based 3D photonic crystals as a 

function of sample thickness. The real and imaginary parts of the complex effective 

refractive index have been extracted from the measured absolute phase (after the 

contribution from the substrate was taken into account) and transmittance, respectively. 

The real part of the effective refractive index shows an overall increase with frequency 

but it presents a region of anomalous dispersion across the pseudogap: knowledge of the 

whole dispersive behavior can be used to design nonlinear optical experiments on these 

systems. The imaginary part provides information on Bragg diffraction as well as on 

scattering by structural disorder in the finite system. Finally, from the derivative of the 

measured phase, the group velocity has been extracted as a function of the number of 

layers. The evolution of all these physical quantities towards the infinite crystal 

behavior has been discussed and agrees with predictions from calculated energy bands. 

Experimental results for the optical response of the finite system are well reproduced by 

theoretical calculations in a fully vectorial formulation. Small discrepancies taking place 

near the low energy edge of the pseudogap are believed to be originated by the effect of 

scattering by structural defects. White light interferometry is proven to be a valuable 

tool to explore the dispersive properties of 3D photonic crystals and the present results 

encourage us to carry out further characterization along crystal directions other than the 
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one perpendicular to the sample surface as well as to further explore the role of 

structural disorder.   
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FIGURE CAPTIONS 

FIGURE 1 (color online): Red circles: photonic bands of a polystyrene opal consisting 

of close-packed spheres of diameter b=708 nm and dielectric constant =2.455 in air. 

Blue lines: photonic bands of the same fcc structure when each dielectric spheres is 

replaced by five cylinders oriented along the [111] direction.22 Inset: Brillouin zone of 

the fcc lattice.   

 

FIGURE 2: Transmittance spectra in a logarithmic scale for samples made from spheres 

of 705 nm nominal diameter, having different thickness. Top to bottom: 10, 15, 20, 28, 

31, 35 and 40 layers. 

 

FIGURE 3: (a) Phase delay introduced by a sample 18 layers thick made of spheres of 

diameter 705 nm. (b) Transmittance collected from the same spot on the sample as the 

phase delay. 

 

FIGURE 4 (color online): (a) Absolute phase delay for samples having an increasing 

number of layers. Left to right: 10, 15, 20, 28, 31, 35 and 40 layers. (b) Detail of the 

results for the sample 40 layers thick in the vicinity of the pseudogap. Experimental data 

appear as red lines and theoretical calculations as black ones. Horizontal dashed lines 

indicate the edges of the L-pseudogap as extracted from band calculations. 

 

FIGURE 5 (color online): Real (a) and imaginary (b) parts of the effective refractive 

index estimated from the absolute phase and transmittance, respectively, for different 

sample thicknesses: top to bottom 40, 31, 20 and 10 layers. Vertical dashed lines 
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indicate the edges of the L-pseudogap as extracted from band calculations. All samples 

are made of spheres with 705 nm nominal diameter. Experimental data appear as red 

lines and theoretical calculations as black ones. 

 

FIGURE 6: Effective refractive index estimated for a 20 layers thick sample after 

subtracting three consecutive multiples of 2π from the measured phase (see text). The 

data in the middle correspond to the multiple obtained by linearly extrapolating the 

phase delay in the low energy region. The top/bottom curve corresponds to a multiple 

larger/smaller by one.  

 

FIGURE 7: Evolution of the imaginary part of the effective refractive index as a 

function of the number of layers for a frequency contained within the gap (a) and 

outside of it (b). 

 

FIGURE 8 (color online): Group index (ng) for samples with increasing number of 

layers. Top to bottom: 40, 31, 20 and 10 layers. Horizontal dashed lines indicate the 

limit of superluminal velocity vg=c. Vertical dotted lines indicate the pseudogap edges 

predicted by calculated bands. Experimental data appear as red lines and theoretical 

calculations as black ones. 

 

FIGURE 9: (a) Band structure for a polystyrene opal along the ΓL direction. (b) 

Reflectance, (c) transmittance and (d) diffuse intensity for a 42 layers thick sample. (e) 

Group index for a 40 layers thick sample. 
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                                                                                                (Two column format) 
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