Mechanistic Insights on the Magnesium(II) Ion-Activated Reduction of Methyl Benzoylformate with Chelated NADH Peptide β -Lactam Models

Jesus M. Aizpurua, * Claudio Palomo, * Raluca M. Fratila, Pablo Ferrón, Ana Benito, Enrique Gomez-Bengoa, José I. Miranda[#] and José I. Santos.[#]

Joxe Mari Korta R & D Center, Departamento de Química Orgánica-I. Universidad del País

Vasco, Avda. Tolosa 72 20018, San Sebastián, Spain.

^{*}jesusmaria.aizpurua@.ehu.es

SUPPORTING INFORMATION

	page
1Preparation Details and Physical and Spectroscopic Data of Compounds 6a and	6c-d,
7a-f, 42a-f, 5a-f, 43-44, and 8.	
1.1. General	S2
1.2. General Procedure for the α -Alkylation of β -lactam 40a	S4
1.3. General Procedures for the Preparation of Nicotinamides 7a-f	S 6
1.4. General Procedure for the Preparation of Pyridinium Iodides 42a-f	S 10
1.5. General Procedure for the Reduction of Pyridinium Iodides 42a-f.	
Preparation of Dihydropyridines 5a-f	S13
1.6. Preparation of (3 <i>R</i>)-3-Benzyl-1-Methyl-3-(N-methyldihydronicotinamido)-azetidin-2	2-one
8	S16
1.7. General Procedure for the Biomimetic Reduction of Methyl Benzoylformate with	h the
NADH models 8 and 5a-f	S 18

2. Selected HPLC Chromatograms (Figures S1-S4)					
3. ¹ H and ¹³ C NMR Spectra of Compounds 6a, 6c-d, 7a-f, 42a-f, 5a-f, 43-44, and 8					
(Figures S5 – S28)	S24				
4. NMR Complexation Studies (Figures S29-S44)	S48				
5. Diffusion Experiments (Figure S45)	S57				
6. Theoretical Calculation	S60				
6.1. Complete Reference 22 in the Article	S 60				
6.2. General Information	S60				
6.3 Cartesian Coordinates of Ternary Complexes 16-19, 16A-19A and Transition State	s 26-				
33, 26A-33A	S61				
6.4 Hydride transfer distances in Transition States TS-26-TS33	S110				

1.-Preparation Details and Physical and Spectroscopic Data of Compounds 6a and 6c-d, 7a-f, 42a-f, 5a-f, 43-44, and 8.

1.1 General. All reactions were carried out under an atmosphere of nitrogen or argon in oven or flame-dried glassware with magnetic stirring. Solvents were distilled prior to use. Tetrahydrofuran (THF) was distilled from sodium metal/benzophenone ketyl. Dichloromethane (CH₂Cl₂) was distilled from calcium hydride. Dichloromethane, methanol, water, and deuterated acetonitrile (CD₃CN) used for preparation of NADH models and for biomimetic reductions were deoxygenated by nitrogen bubbling for 2-3 hrs or by freezepump-thaw techniques. Magnesium perchlorate was dried by heating under vacuum for 24 h, and then deoxygenated using standard Schlenk techniques. Purification of reaction products was carried out by flash chromatography using silicagel (230-400 mesh). Analytical thin layer chromatography was performed on 0.25 mm silica gel plates. Visualization was accomplished with UV light and phosphomolybdic acid-ammonium cerium (IV) nitratesulfuric acid-water reagent, followed by heating. Melting points are uncorrected. Infrared spectra were recorded over KBr pellets. NMR spectra were recorded at frequencies of 200, 300, and 500 MHz for ¹H and 50, 75, and 125 MHz respectively for ¹³C, at room temperature unless otherwise stated. Chemical shifts are reported in ppm relative to the central line of CD₂Cl₂ (5.33 ppm), CDCl₃ (7.28 ppm), and CD₃CN (1.94 ppm) for ¹H NMR, and to the central line of CD₂Cl₂ (54.0 ppm), CDCl₃ (77.0 ppm) and CD₃CN (1.39 ppm) for ¹³C NMR. ¹H, ¹³C, and ROESY spectra were processed using MestReNova 5.2.4 software. Combustion analyses were performed on a

elemental analyzer. Enantiomeric excesses were determined by analytical high performance liquid chromatography (HPLC) on a chromatographs equipped with a diode array UV detector or Dual λ absorbance detector using chiral columns with flow rates of 0.7 mL/min and 0.5 mL/min (mobile phase hexane – isopropanol).Optical rotations were measured at 25 ±0.2 °C in methylene chloride unless otherwise stated. Mass spectra were obtained on a Finnigan GCQ mass spectrometer (70 eV) using GC-MS coupling (column: fused silica gel, 15 m, 0.25 nm phase SPB-5).

Preparation Details and Physical and Spectroscopic Data:

Preparation and physical data of compound **6b**¹ and **6e-f** were previously described². The α -amino- β -lactams obtained by the hydrogenolytic cleavage of the 4,5-diphenyl-oxazolidinyl group were used in the next step without any purification. In the case of α -(2-methylnaphtyl)- β -lactams **6d** and **6f** a partial hydrogenation of the naphthyl moiety was observed and the corresponding 5,6,7,8-tetrahydronaphthyl derivatives were obtained.

¹ Palomo, C. Aizpurua, J. M. Benito, A. Cuerdo, L., Fratila, R. M.; Miranda, J. I.; Linden, A., *J. Org. Chem.*, **2006**, *71*, 6368-6373.

² Palomo, C., Aizpurua, J. M., Ganboa, I., Benito, A., Cuerdo, L., Fratila, R. M., Jimenez, A., Loinaz, I., Miranda, J. I., Pytlewska, K. R., Micle, A., Linden, A., *Org. Lett.*, **2004**, *6*, 4443-4446.

1.2 General Procedure for the α-Alkylation of (3*S***)-1-[Bis(trimethylsilyl)methyl]-3-[(4***S***,5***R***)-4,5-diphenyl-2-oxo-oxazolidin-3-yl]-azetidin-2-one 40a. To a suspension of 1,10phenanthroline (0.3 mg, indicator) in anhydrous THF (50 mL) cooled to -78^{\circ}C under nitrogen atmosphere 2.5M n-BuLi was added drop-wise until dark red color was observed (usually 2 or 3 drops). Dry diisopropylamine (10.32 mmol, 1.5 mL) and 2.5M n-BuLi (10.32 mmol, 4.1 mL) were added and the mixture was stirred at -78^{\circ}C for 10min. A solution of the corresponding β-lactam 40a (9.38 mmol) in anhydrous THF (40 mL) was added drop-wise during 2 min, and the stirring was continued for 30 min at -78^{\circ}C. Freshly distilled alkyl halide (5 equivalents, 46.9 mmol) was added, and stirring was continued for 24 hours, allowing the temperature to reach 20°C by consumption of the bath. The reaction mixture was taken up over CH₂Cl₂ (50 mL), washed successively with saturated aqueous NH₄Cl (50 mL), 1M HCl (50 mL), saturated aqueous NaHCO₃ (50 mL) and H₂O (2 x 25 mL), dried (MgSO₄) and evaporated under reduced pressure. The products were purified by column chromatography (silicagel-60, eluent: hexanes/EtOAc).**

(*3R*)-3-methyl-1-[bis(trimethylsilyl)methyl]-[(*4S*,*5R*)-4,5-diphenyl-2-oxo-oxazolidin-3-yl]azetidin-2-one (6a):

The general procedure was followed from **40a** (5 mmol, 2.33 g), LDA (1.5 eq.), and methyl iodide (5 eq., 25 mmol, 4.73 mL). The reaction mixture was allowed to warm at room temperature overnight. Eluent: hexanes, then hexanes/ EtOAc: 3/1. Yield: 154 g (64%); white solid; mp: 142°C; $[\alpha]_D^{25} = -48$ (c= 1.0, CH₂Cl₂); IR(cm⁻¹, KBr): 1750.3 (C=O); 846.0 (C-Si). MS (TOF, CI) m/z:

481.2(100), 482.2(38), 466.2(16), 465.2(39), 279.1(20). ¹H-NMR (δ, ppm, CDCl₃): 7.05-7.11 (m, 10H), 5.90 (d, 1H, J= 7.4Hz), 5.25 (d, 1H, J= 7.4Hz), 3.89 (d, 1H, J= 5.7Hz), 3.28 (d, 1H, J= 5.7Hz), 2.75 (s, 1H), 1.31 (s, 3H), 0.21 (s, 9H), 0.15 (s, 9H). ¹³C-NMR (δ, ppm, CDCl₃): 166.7, 156.8, 136.1, 134.2, 128.7, 128.6, 128.5, 128.3, 128.12, 126.2, 81.2, 67.2, 66.4, 57.6, 37.5, 19.8, 0.25, 0.23. HRMS (*m*/*z*): 481.2350; C₂₆ H₃₇ N₂ O₃ Si₂ requires 481.2343.

(*3R*)-(4-*tert*-Butyl-benzyl)-1-[bis(trimethylsilyl)methyl]-[(4*S*,5*R*)-4,5-diphenyl-2-oxo-oxazolidin-3-yl]-azetidin-2-one (6c):

The general procedure was followed from **40a** (5 mmol, 2.33 g), LDA (1.5 eq.), and 4-*tert*-butyl benzyl bromide (3 eq., 15 mmol, 2.84 mL). The reaction mixture was allowed to warm at room temperature overnight. Eluent: hexanes, then hexanes/ EtOAc: 5/1. Yield: 1.96 g (64%); white solid; mp: 223°C; $[\alpha]_D^{25} = -2.35$ (c= 1.0, CH₂Cl₂); IR(cm⁻¹, KBr): 1739.3 (C=O); 1731.7 (C=O); 1252.6

(^tBu); 836.0 (C-Si). HPLC-MS, MeOH/HCOOH m/z (Ion Source Type: ESI, positive polarity): MS+1: 613.5, MS2 (613.5): 597.3, 567.3, 366.2, 188.0. ¹H-NMR (δ, ppm, CDCl₃): 7.25-7.04 (m, 14H), 5.91 (d, 1H, J= 7.3Hz), 5.45 (d, 1H, J= 7.3Hz), 3.59 (d, 1H, J= 6.4Hz), 3.49 (d, 1H, J= 6.4Hz), 2.93 (d, 1H, J= 13.7Hz), 2.57 (s, 1H), 2.34 (d, 1H, J= 13.7Hz), 1.24 (s, 9H), 0.04 (s, 9H), -0.15 (s, 9H). ¹³C-NMR (δ, ppm, CDCl₃): 164.4, 156.7, 149.8, 135.6, 133.9, 131.8, 128.9, 128.5, 128.1, 125.7, 81.2, 72.4, 65.3, 52.3, 37.5, 36.7, 34.4, 31.3, -0.4, -0.6. Anal. Calcd. For C₃₆H₄₈N₂O₃Si₂ (612.95): C, 70.54; H, 7.89; N, 4.57. Found: C, 70.60; H, 7.83; N, 4.59.

(3*R*)-3-[(2-Naphthyl)-methyl]-1-[bis(trimethylsilyl)methyl]-3-[(4S,5*R*)-4,5-diphenyl-2oxo-oxazolidin-3-yl]-azetidin-2-one (6d):

The general procedure was followed from **40a** (5 mmol, 2.33 g), LDA (1.2 eq.), and 2-bromomethyl-naphthalene (1.6 eq., 8 mmol, 1.85 g). After the addition of the bromide the CO_2 /acetone bath was replaced by an ice-salt bath and the reaction mixture was stirred at 0°C for 2 h and then allowed to warm at room temperature overnight. Eluent: hexanes, then hexanes/ EtOAc: 6/1. Yield: 2.33 g (77%);

white powder; mp: 235-236°C; $[\alpha]_D^{25} = +15.25$ (c= 1.0, CH₂Cl₂); IR(cm⁻¹, KBr): 1736.5 (C=O); 1702.8 (C=O); 820.0 (C-Si). HPLC-MS, MeOH/HCOOH m/z (Ion Source Type: ESI, positive polarity): MS+1: 607.3, MS2 (607.4): 591.3, 188.0, MS3 (591.0): 561.2, 450.2, 379.2, 262.1, 188.0. ¹H-NMR (δ , ppm, CDCl₃): 7.74-7.68 (m, 3H), 7.58 (s, 1H), 7.42 (m, 2H), 7.30-7.28 (m, 2H), 7.23 (d, 1H, *J*= 8.4Hz), 7.17-7.10 (m, 8H), 5.93 (d, 1H, *J*= 7.3Hz), 5.47 (d, 1H, *J*= 7.3Hz), 3.62 (d, 1H, *J*= 6.5Hz), 3.54 (d, 1H, *J*= 6.5Hz), 3.15 (d, 1H, *J*= 13.7Hz), 2.58

(d, 1H, J= 13.7Hz), 2.48 (s, 1H), -0.06 (s, 9H), -0.31 (s, 9H). ¹³C-NMR (δ , ppm, CDCl₃): 164.4, 156.9, 135.7, 134.09, 133.7, 132.7, 132.5, 129.4, 129.3, 128.9, 128.7, 128.4, 128.1, 127.8, 127.6, 127.5, 126.1, 125.8, 81.4, 72.4, 65.5, 52.8, 37.9, 37.7, -0.4, -0.7. Anal. Calcd. For C₃₆H₄₂N₂O₃Si₂ (612.95): C, 71.24; H, 6.98; N, 4.62. Found: C, 69.22; H, 6.623; N, 4.61.

1.3 General Procedures for the Preparation of Nicotinamides 7a-f

1.3.1 Preparation of (*3R*)-3-Benzyl-1-[bis(trimethylsilyl)methyl]-3-nicotinamido-azetidin-2-one (7b) (COUPLING METHOD A).

A solution of the corresponding amine (2.2 mmol) in dry CH_2Cl_2 (25 mL) under nitrogen atmosphere was cooled to 0°C. Then, nicotinic acid (1.5 eq, 3.3 mmol), NEt₃ (1.5 eq, 3.3 mmol), HOBt (1.5 eq, 3.3 mmol), and EDC·HCl (1.5 eq, 3.3 mmol) were added. The stirring was continued for an hour at 0°C, and for 24 h at room

temperature. After that time, CH₂Cl₂ (10 mL) was added and the solution was washed with 1M aq. KHSO₄ (20 mL) and H₂O (20 mL). The organic phase was decanted and dried over MgSO₄. The solvents were evaporated under reduced pressure and the crude was purified by flash column chromatography (eluent EtOAc). Yield: 3.82 g (87%); white solid; mp: 113°C; $[\alpha]_D^{25} = -25.6$ (c= 1.0, CH₂Cl₂); IR(cm⁻¹, KBr): 1726 (C=O); 1650 (C=O); 847.8 (C-Si). HPLC-MS, MeOH/HCOOH m/z (Ion Source Type: ESI, positive polarity): MS+1: 440.2, MS2 (440.2): 253.0, 188.0, MS3 (188.0): 172.0, 114.1. ¹H-NMR (δ , ppm, CDCl₃): 9.11 (bs, 1H), 8.85 (bs, 1H); 8.72 (d, 1H, *J*= 3.9Hz), 8.24 (dt, 1H, *J*₁= 1.9Hz, *J*₂= 1.9Hz, *J*₃= 7.9Hz), 7.33 (dd, 1H, *J*₁= 4.6Hz, *J*₂= 7.9Hz), 7.08 (m, 5H), 3.57 (s, 2H), 3.31 (d, 1H, *J*= 13.6Hz), 3.13 (d, 1H, *J*= 13.8Hz), 2.52 (s, 1H), 0.00 (s, 9H), -0.04 (s, 9H). ¹³C-NMR (δ , ppm, CDCl₃): 166.3, 166.1, 152.0, 149.1, 135.2, 135.1, 130.4, 129.8, 128.4, 127.0, 123.14, 69.0, 54.3, 38.2, 37.8, -0.4, -0.5. Anal. Calcd. For C₂₃H₃₃N₃O₂Si₂ (439.71): C, 62.83; H, 7.56; N, 9.56. Found: C, 62.86; H, 7.72; N, 9.78.

1.3.2 General Procedure for the Preparation of (*3R*)-3-alkyl-1-[bis(trimethylsilyl)methyl]-3-nicotinamido-azetidin-2-ones 7a and 7c-f (COUPLING METHOD B):

To a solution of the nicotinoyl chloride hydrochloride **41** (3.6 mmol, 0.64 g) in 40 mL of dry CH₃CN cooled to -5°C under nitrogen atmosphere, N,N-diisopropylethylamine (DIPEA) (24 mmol, 4.2 mL), and a solution of the corresponding α -amino- β -lactam (3 mmol) in 10 mL CH₃CN were added. The reaction mixture was stirred for 1 hour at 0°C, then at room temperature (5 to 18 hours, monitored by ¹-H NMR). After that time, CH₂Cl₂ (20 mL) was added and the solution was washed with NaOH 0.1 M (20 mL), NH₄Cl (20 mL) and H₂O (20 mL). The organic phase was decanted and dried over MgSO₄. The solvents were evaporated under reduced pressure and the crude was purified by flash chromatography, eluent: EtOAc.

Nicotinoyl chloride hydrochloride 41:

To a suspension of nicotinic acid (1 mmol, 0.124 g) in dry dichlorometane
COCI-HCI (10 mL) under nitrogen, three drops of dry DMF and oxalyl chloride (1.2 eq.,
41 1.2 mmol, 0.103 mL) were added drop-wise. The nitrogen balloon was replaced by a dessicator and the reaction mixture was stirred at room temperature for 2 hours. After that time, solvents were evaporated carefully under a nitrogen atmosphere to afford quantitatively the acid chloride 41.

(3*R*)-3-methyl-1-[bis(trimethylsilyl)methyl]-3-nicotinamido-azetidin-2-one (7a):

The general procedure was followed (Coupling Method B) from the corresponding α -amino- β -lactam (0.25 mmol, 0.06 g), nicotinoyl chloride hydrochloride (0.42 mmol, 0.035 g), and N,Ndiisopropylethylamine (1.84 mmol, 0.32 mL). Yield: 0.458 g (62%); white solid; mp: 123-124°C; $[\alpha]_D^{25} = -35$ (c= 0.5, CH₂Cl₂); IR(cm⁻¹, KBr): 1752.4 (C=O); 1667.2 (C=O); 1250.4 (^tBu); 850.1

(C-Si). MS (TOF, CI) m/z: 364.2(100), 349.2(19), 348.2(75), 189.1(15), 188.1(88), 162.1(34). ¹H-NMR (δ , ppm, CDCl₃): 9.10 (d, 1H, *J*=1.7Hz), 8.72 (dd, 1H, *J*₁= 1.5Hz, *J*₂= 3.3Hz), 8.17 (dt, 1H, *J*₁= 1.8Hz, *J*₂= 4.8Hz, *J*₃= 7.9Hz), 7.92 (bs, 1H) 7.36 (dd, 1H, *J*₁= 4.8Hz, *J*₂= 7.8Hz), 3.76 (d, 1H, *J*= 6.0Hz), 3.52 (d, 1H, *J*= 6.0Hz), 2.74 (s, 1H), 1.70 (s, 3H), 0.01 (s, 9H), -0.04 (s, 9H). ¹³C-NMR (δ , ppm, CDCl₃): 168.0, 166.1, 152.7, 149.2, 135.4,

130.0, 123.6, 65.3, 57.8, 37.7, 20.2, 0.2, 0.1. HRMS (*m*/*z*): 364.1864; C₁₇ H₃₀ N₃ O₂ Si₂ requires 364.1877.

(3*R*)-3-(4-*tert*-Butyl-benzyl)-1-[bis(trimethylsilyl)methyl]-3-nicotinamido-azetidin-2-one (7c):

The general procedure was followed (Coupling Method B) from the corresponding α -amino- β -lactam (1.49 mmol, 0.58 g), nicotinoyl chloride hydrochloride (1.79 mmol, 032 g), and N,Ndiisopropylethylamine (11.9 mmol, 2.16 mL). Yield: 0.458 g (62%); white solid; mp: 157-158°C; $[\alpha]_D^{25} = -14.6$ (c= 0.5, CH₂Cl₂); IR(cm⁻¹, KBr); 1723.4 (C=O); 1659.7 (C=O); 1246.0

(^tBu); 842.0 (C-Si). HPLC-MS, MeOH/HCOOH m/z (Ion Source Type: ESI, positive polarity): MS+1: 496.4, MS2 (496.4): 480.2, 309.2, 188.1, MS3 (309.2): 253.0, 174.9. ¹H-NMR (δ , ppm, CDCl₃): 9.10 (d, 1H, *J*=1.8Hz), 8.76 (dd, 1H, *J*₁= 1.8Hz, *J*₂= 4.8Hz), 8.38 (bs, 1H), 8.21(dt, 1H, *J*₁= 1.8Hz, *J*₂= 4.8Hz, *J*₃= 7.9Hz), 7.38 (dd, 1H, *J*₁= 4.8Hz, *J*₂= 7.9Hz), 7.15 (d, 2H, *J*=8.2Hz), 7.10 (d, 2H, *J*=8.2Hz), 3.60 (d, 1H, *J*= 6.4Hz), 3.58 (d, 1H, *J*= 6.4Hz), 3.37 (d, 1H, *J*= 13.7Hz), 3.13 (d, 1H, *J*= 13.7Hz), 2.55 (s, 1H), 1.25 (s, 9H), 0.01 (s, 9H), -0.04 (s, 9H). ¹³C-NMR (δ , ppm, CDCl₃): 166.6, 166.3, 152.5, 150.1, 149.4, 135.4, 132.3, 130.4, 130.1, 125.8, 123.5, 69.5, 54.2, 38.1, 37.9, 34.6, 31.5, -0.1. Anal. Calcd. For C₂₇H₄₁N₃O₂Si₂ (495.80): C, 65.41; H, 8.34; N, 8.48. Found: C, 65.34; H, 8.47; N, 8.85.

(*3R*)-3-[(5,6,7,8-Tetrahydronaphthalen-2-yl)methyl]-1-[bis(trimethylsilyl)methyl]-3nicotinamido-azetidin-2-one (7d):

The general procedure was followed (Coupling Method B) from the corresponding α -amino- β -lactam (2.1 mmol, 0.815 g), nicotinoyl chloride hydrochloride (2.52 mmol, 0.45 g), and N,Ndiisopropylethylamine (16.8 mmol, 3 mL). Yield: 0.602 g (60%); white solid; mp: 184°C; $[\alpha]_D^{25} = -22.4$ (c= 0.5, CH₂Cl₂); IR(cm⁻¹, KBr): 1720.0 (C=O); 1650.9 (C=O); 845.6 (C-Si). HPLC-MS, MeOH/HCOOH m/z (Ion Source Type: ESI, positive polarity):

MS+1: 494.5, MS2 (49.5): 307.1, 188.1, MS3 (307.0): 279.1, 174.9, 106.1. ¹H-NMR (δ, ppm,

CDCl₃): 9.02 (s, 1H), 8.75 (d, 1H, J= 3.5Hz), 8.14 (bs, 1H), 7.61(bs, 1H), 7.37 (m, 1H), 6.96-6.90 (m, 3H), 3.64 (d, 1H, J= 6.2Hz), 3.62(d, 1H, J= 6.2Hz), 3.29 (d, 1H, J= 13.7Hz), 3.16 (d, 1H, J= 13.7Hz), 2.68 (m, 4H), 2.61 (s, 1H), 1.74 (m, 4H), 0.05 (s, 9H), -0.01 (s, 9H). ¹³C-NMR (δ , ppm, CDCl₃): 166.5, 165.8, 152.4, 148.7, 131.0, 129.8, 129.4, 127.6, 127.3, 123.3, 69.0, 54.0, 38.1, 37.6, 29.3, 29.1, 23.2, -0.3, -0.4. Anal. Calcd. For C₂₇H₃₉N₃O₂Si₂ (493.79): C, 65.67; H, 7.96; N, 8.51. Found: C, 65.37; H, 7.99; N, 8.62.

(3*R*,4*R*)-3-Benzyl-1-[bis(trimethylsilyl)methyl]-4-isobutyl-3-nicotinamido-azetidin-2-one (7e):

The general procedure was followed (Coupling Method B) from the corresponding α -amino- β -lactam (3 mmol, 1.18 g), nicotinoyl chloride hydrochloride (3.6 mmol, 0.641 g), and N,Ndiisopropylethylamine (24 mmol, 4.2 mL). Yield: 1.04 g (70%); yellowish oil; $[\alpha]_D^{25} = +17.2$ (c= 1.0, CH₂Cl₂); IR(cm⁻¹, KBr):

1731.5 (C=O); 1666.9 (C=O); 847.7 (C-Si). HPLC-MS, MeOH/HCOOH m/z (Ion Source Type: ESI, positive polarity): MS+1: 496.3, MS2 (496.3): 480.2, 373.3, 293.1, 244.1, MS3 (244.1): 228.1, 161.0. ¹H-NMR (δ , ppm, CDCl₃): 8.72-8.68 (m, 2H), 7.83 (d, 1H, *J*= 7.8Hz), 7.29-7.18 (m, 6H), 6.50 (bs, 1H), 3.94 (m, 1H), 3.50 (d, 1H, *J*= 13.7Hz), 3.08 (d, 1H, *J*= 13.7Hz), 2.18 (m, 1H), 1.82 (m, 1H), 1.68 (s, 1H), 1.58 (m, 1H), 1.07 (m, 6H), 0.26 (s, 9H), 0.16 (s, 9H). ¹³C-NMR (δ , ppm, CDCl₃): 166.9, 165.8, 152.5, 148.3, 135.5, 134.7, 130.5, 129.9, 126.9, 123.4, 68.1, 64.8, 64.6, 38.1, 37.4, 35.1, 29.7, 25.4, 23.0, 0.1. Anal. Calcd. For C₂₇H₄₁N₃O₂Si₂ (495.80): C, 65.41; H, 8.34; N, 8.48. Found: C, 65.23; H, 8.37; N, 8.16.

(3*R*,4*R*)-3-[(5,6,7,8-Tetrahydronaphthalen-2-yl)methyl]-4-isobutyl-1-[bis(trimethylsilyl)methyl]-3-nicotinamido-azetidin-2-one (7f):

The general procedure was followed (Coupling Method B) from the corresponding α -amino- β -lactam (1.8 mmol, 0.8 g), nicotinoyl chloride hydrochloride (2.15 mmol, 0.384 g), and N,N-diisopropylethylamine (14.3 mmol, 2.6 mL). Yield: 0.72 g, (73%); oil; $[\alpha]_D^{25} = +7.4$ (c= 1.0, CH₂Cl₂); IR(cm⁻¹, KBr): 1745.5 (C=O); 1666.7 (C=O); 854.0 (C-Si). HPLC-MS, MeOH/HCOOH m/z (Ion

Source Type: ESI, positive polarity): MS+1: 550.3, MS2 (550.3): 534.3, 427.2, 349.13, 244.1,

MS3 (534.3): 448.2, 412.2, 347.2, 291.1, 225.1, 183.0. ¹H-NMR (δ , ppm, CDCl₃): 8.78 (s, 1H), 8.71 (d, 1H, *J*= 1.9Hz), 7.88 (d, 1H, *J*= 7.9Hz), 7.33 (m, 1H), 7.02 (d, 1H, *J*= 7.5Hz), 6.93 (d, 1H, *J*= 7.7Hz), 6.68 (s, 1H), 6.59 (bs, 1H), 3.96 (m, 1H), 3.40 (d, 1H, *J*= 13.7Hz), 3.00 (d, 1H, *J*= 13.7Hz), 2.68 (m, 4H), 2.49 (s, 1H), 2.14 (m, 2H), 1.81 (m, 1H), 1.72 (m, 4H), 1.58 (m, 1H), 1.07 (m, 6H), 0.25 (s, 9H), 0.16 (s, 9H). ¹³C-NMR (δ , ppm, CDCl₃): 166.8, 165.8, 152.2, 148.1, 136.8, 135.7, 134.9, 132.2, 131.1, 129.1, 127.5, 123.4, 68.1, 64.4, 38.1, 37.3, 34.6, 29.0, 25.4, 22.9, 0.1. Anal. Calcd. For C₃₁H₄₇N₃O₂Si₂ (549.89): C, 67.71; H, 8.61; N, 7.64. Found: C, 67.41; H, 8.54; N, 7.39.

1.4. General Procedure for the Preparation of Pyridinium Iodides 42a-f³.

To a solution of the corresponding nicotinamide (1.00 mmol) in CH_3CN (10 mL) under N_2 atmosphere, methyl iodide (6 mL) was added. The reaction mixture was stirred at 50°C for 2-24 h. After that time, the solvents were evaporated and the residue was dried under vacuum to afford the pyridinium iodide as a hydroscopic solid which was used without further purification.

N-[(*3R*)-3-methyl-1-(bis(trimethylsilyl)methyl)-2-oxoazetidin-3-yl)-1-methylpyridinium]-3-carboxamide iodide (42a):

The general procedure was followed (reaction time: 24 h) from **7a** (0.6 mmol, 0.217 g). Yield: 0.303 g (100%); yellow oil; $[\alpha]_D^{25} = +$ 33 (c= 1.0, CH₂Cl₂); IR(cm⁻¹, KBr): 1738.2 (C=O); 1678.0 (C=O); 846.9 (C-Si). MS (TOF, CI) m/z: 364.2(100), 349.2(21), 348.2(73), 189.1(18), 188.1(95), 162.1(41). ¹H-NMR (δ , ppm, CDCl₃): 9.73 (s, 1H); 9.20 (d, 1H, *J*= 5.9Hz); 8.93 (d, 1H, *J*=

8.0Hz); 8.53 (s, 1H); 8.16 (dd, 1H, J_1 = 6.3Hz, J_2 = 7.7Hz); 4.57 (s, 3H); 3.95 (d, 1H, J= 5.1Hz); 3.29 (d, 1H, J= 5.1Hz); 2.75 (s, 1H); 1.81 (s, 3H); 0.20 (s, 9H); 0.18 (s, 9H). ¹³C-NMR (δ, ppm, CDCl₃): 168.39, 160.95, 147.17, 144.92, 133.38, 128.09, 64.66, 56.05, 49.59, 37.19, 21.27, 0.09. HRMS (*m*/*z*): 364.1881; C₁₇ H₃₀ N₃ O₂ Si₂ requires 364.1877.

³ Kanomata, N., Nakata, T., J. Am. Chem. Soc., 2000, 122, 4563-4568.

N-[(3*R*)-3-Benzyl-1-(bis(trimethylsilyl)methyl)-2-oxoazetidin-3-yl)-1-methylpyridinium]-3-carboxamide iodide (42b):

The general procedure was followed (reaction time: 24 h) from **7b** (0.6 mmol, 0.246 g). Yield: 0.348 g (100%); yellow solid; mp: 104-105°C; $[\alpha]_D^{25} = +2.9$ (c= 1.0, CH₂Cl₂); IR(cm⁻¹, KBr): 1736.4 (C=O); 1675.4 (C=O); 842.0 (C-Si). HPLC-MS, MeCN/NH₃ m/z

42b 42b 42b 42b 42b 42b 42c 42b 42c 42c

N-[(*3R*)-3-(4-*tert*-Butyl-benzyl)-1-(bis(trimethylsilyl)methyl)-2-oxoazetidin-3-yl)-1methylpyridinium]-3-carboxamide iodide (42c):

The general procedure was followed (reaction time: 24 h) from 7c Мe (1.8 mmol, 0.892 g). Yield: 1.03 g (90%); yellow solid; mp: 208°C; $[\alpha]_D^{25} = -23.2$ (c= 1.0, EtOH); IR(cm⁻¹, KBr): 1731.3 (C=O); SiMe₃ 1678.2 (C=O); 1252.0 (^tBu); 848.0 (C-Si). HPLC-MS, 0 1 ŚiMe₃ MeOH/HCOOH m/z (Ion Source Type: ESI, negative polarity): 42c MS-1: 636.4, MS2(554.6): 510.2, MS3(510.2): 323.2, 279.1, 161.0. ¹H-NMR (δ, ppm, CDCl₃): 9.65 (s, 1H); 9.18 (d, 1H, J= 5.9Hz); 8.86-8.83 (m, 2H); 8.04 (m, 1H); 7.35 (d, 2H, *J*= 8.4Hz); 7.33 (d, 2H, *J*= 8.4Hz); 4.57 (s, 3H); 3.87 (d, 1H, *J*= 5.9Hz); 3.51-3.48 (m, 2H); 3.37 (d, 1H, J= 14.0Hz); 2.68 (s, 1H); 1.29 (s, 9H); 0.09 (s, 9H); -0.01 (s, 9H). ¹³C-NMR (δ , ppm, CDCl₃): 166.0, 161.4, 149.8, 147.7, 149.9, 144.5, 133.4, 131.8, 130.3, 128.0, 125.6, 69.8, 52.7, 49.5, 38.0, 37.4, 34.4, 31.3, -0.1, -0.3. Anal. Calcd. For C₂₈H₄₄IN₃O₂Si₂ (637.74): C, 52.73; H, 6.95; N, 6.59. Found: C, 52.72; H, 6.86; N, 6.63.

N-{(*3R*)-3-[(5,6,7,8-tetrahydronaphthalen-2-yl)methyl]-1-[bis(trimethylsilyl)methyl]-2oxoazetidin-3-yl)-1-methylpyridinium}-3-carboxamide iodide (42d):

The general procedure was followed (reaction time: 20 h) from **7d** (0.58 mmol, 0.287 g). Yield: 0.37 g (100%); yellow solid; mp: 116-117°C; $[\alpha]_D^{25} = -0.49$ (c= 1.0, CH₂Cl₂); IR(cm⁻¹, KBr): 1736.0 (C=O); 1672.0 (C=O); 841.0 (C-Si). HPLC-MS, MeOH/HCOOH m/z (Ion Source Type: ESI, negative polarity):

42d MeOH/HCOOH m/z (Ion Source Type: ESI, negative polarity): MS-1: 634.5, MS2(634.5): 492.9, 300.0. ¹H-NMR (δ, ppm, CDCl₃): 9.62 (s, 1H); 9.04 (d, 1H, J= 5.9Hz); 8.84 (d, 1H, J= 8.0Hz); 8.81 (s, 1H); 8.02 (m, 1H); 7.13-6.98 (m, 3H); 4.55 (s, 3H); 3.90 (d, 1H, J= 5.9Hz); 3.52 (d, 1H, J= 5.9Hz); 3.43 (d, 1H, J= 14.0Hz); 3.34 (d, 1H, J= 14.0Hz); 2.71 (m, 4H); 2.69 (s, 1H); 1.76 (m, 4H); 0.11 (s, 9H); 0.02 (s, 9H). ¹³C-NMR (δ, ppm, CDCl₃): 166.3, 161.4, 147.5, 144.6, 137.4, 136.3, 133.8, 131.9, 129.5, 128.2, 127.8, 69.9, 53.1, 49.8, 38.3, 37.7, 29.5, 29.2, 23.3, 23.2, 0.0, -0.2. Anal. Calcd. For C₂₈H₄₂IN₃O₂Si₂ (635.73): C, 52.90; H, 6.66; N, 6.61. Found: C, 53.21; H, 6.41; N, 6.59.

N-[(3*R*,4*R*)-3-Benzyl-1-(bis(trimethylsilyl)methyl)-4-isobutyl-2-oxoazetidin-3-yl)-1methylpyridinium]-3-carboxamide iodide (42e):

The general procedure was followed (reaction time: 18 h) from **7e** (1.38 mmol, 0.684 g). Yield: 0.88 g (100%); yellow solid; mp: 88-89°C; $[\alpha]_D^{25} = + 2.25$ (c= 1.0, MeOH); IR(cm⁻¹, KBr): 1738.0 (C=O); 1681.5 (C=O); 842.0 (C-Si). HPLC-MS, MeOH/HCOOH m/z (Ion Source Type: ESI, negative polarity): MS-1: 636.2, MS2(510.4): 267.1, 239.0, 148.0, 94.2. ¹H-NMR (δ , ppm, CDCl₃):

8.94-8.91 (m, 2H); 8.52 (d, 1H, J= 8.0Hz); 8.26 (s, 1H); 7.78 (dd, 1H, J_1 = 6.2Hz, J_2 = 8.0Hz); 7.67 (m, 2H); 7.32 (m, 3H); 4.31 (s, 3H); 3.94 (dd, 1H, J_1 = 4.9Hz, J_2 = 8.2Hz); 3.58 (d, 1H, J= 14.1Hz); 3.12 (d, 1H, J= 14.1Hz); 2.01 (m, 1H); 1.83 (s, 1H); 1.66 (m, 1H); 1.54 (m, 1H); 1.04 (d, 3H, J= 6.6Hz); 1.00 (d, 3H, J= 6.6Hz); 0.26 (s, 9H); 0.21 (s, 9H). ¹³C-NMR (δ , ppm, CDCl₃): 166.4, 161.0, 147.4, 144.7, 135.7, 133.4, 131.3, 128.3, 127.0, 68.2, 64.3, 49.6, 36.8, 35.7, 25.4, 23.4, 23.0, 0.3. Anal. Calcd. For C₂₈H₄₄IN₃O₂Si₂ (637.74): C, 52.73; H, 6.95; N, 6.59. Found: C, 52.51; H, 6.54; N, 6.42.

N-{(*3R*,*4R*)-3-[(*5*,*6*,*7*,*8*-tetrahydronaphthalen-2-yl)methyl]-1-[bis(trimethylsilyl)methyl]-4-isobutyl-2-oxoazetidin-3-yl)-1-methylpyridinium}-3-carboxamide iodide (42f):

The general procedure was followed (reaction time: 20 h) from **7f** (1 mmol, 0.55 g). Yield: 0.69 g (98%); yellow solid; mp: 113-114°C; $[\alpha]_D^{25} = +$ 0.26 (c= 1.0, CH₂Cl₂); IR(cm⁻¹, KBr): 1731.6 (C=O); 1673.0 (C=O); 842.0 (C-Si). HPLC-MS, MeOH/HCOOH m/z (Ion Source Type: ESI, negative polarity): MS-1: 690.4, MS2(690.4): 548.2. ¹H-NMR (δ , ppm, CDCl₃): 9.02 (d, 1H, *J*=

5.9Hz); 8.93 (s, 1H); 8.52 (d, 1H, J = 8.1Hz); 8.18 (s, 1H); 7.80 (m, 1H); 7.34 (m, 2H); 6.98 (d, 1H, J = 8.3Hz), 4.36 (s, 3H); 3.96 (m, 1H); 3.46 (d, 1H, J = 14.1Hz); 3.06 (d, 1H, J = 14.1Hz); 2.76 (bs, 4H); 2.36 (s, 1H); 2.06 (m, 1H); 1.77 (m, 4H); 1.68 (m, 1H); 1.55 (m, 1H); 1.04 (d, 3H, J = 6.6Hz); 1.01 (d, 3H, J = 6.6Hz); 0.25 (s, 9H); 0.21 (s, 9H). ¹³C-NMR (δ , ppm, CDCl₃): 166.6, 160.9, 147.6, 144.6, 144.1, 136.9, 135.8, 133.7, 132.4, 131.8, 129.0, 128.1, 68.3, 64.2, 49.8, 37.0, 35.4, 29.5, 29.2, 25.5, 23.3, 23.0, 0.4. Anal. Calcd. For C₃₂H₅₀IN₃O₂Si₂ (691.83): C, 55.55; H, 7.28; N, 6.07. Found: C, 55.12; H, 6.81; N, 6.06.

1.5 General Procedure for the Reduction of Pyridinium Iodides 42a-f³.

To a solution of the corresponding pyridinium salt (0.5 mmol) in 12 mL of deoxygenated $CH_2Cl_2/MeOH$ (3/1) a deoxygenated solution of $Na_2S_2O_4$ (10.0 mmol) in 0.5M aqueous $Na_2CO_3^4$ (12.5 mL) was added and the mixture was vigorously stirred under nitrogen in the dark for 16 h (soon the colour of the solution turned from orange to yellow). The organic layer was separated, the aqueous phase was extracted with CH_2Cl_2 (deoxygenated; 10 mL x 2) and the combined organic phase was dried (MgSO₄) and concentrated *in vacuo* to give the crude corresponding dihydropyridine which was used in the following reaction without further purification. These compounds can be kept for 24-48 hours at -30°C without oxidation or decomposition. 1,4-Dihydronicotinamides **5a-f** were found to be light and air sensitive. Any attempt to purify these compounds either by preparative HPLC, preparative thin layer chromatography or crystallization has failed, leading to decomposition of the products. Due

⁴ However, the use of 0.5M aqueous KHCO₃ (pH<8.5) instead of Na₂CO₃ considerably reduced the reaction times (2-4 h) and provided a cleaner spectrum of the reaction crude.

to this enhanced instability, we always prepared the NADH models just before using in the biomimetic reductions.

(*3R*)-3-methyl-1-[bis(trimethylsilyl)methyl]-3-(N-methyl-dihydronicotinamido)-azetidin-2-one (5a):

ppm, CDCl₃): 168.80, 168.31, 140.29, 130.15, 103.07, 65.03, 57.73, 41.16, 36.80, 30.15, 22.67, 20.42, 0.17, 0.12.

(3*R*)-3-Benzyl-1-[bis(trimethylsilyl)methyl]-3-(N-methyl-dihydronicotinamido)azetidin-2-one (5b):

The general procedure was followed from **42b** (0.5 mmol, 0.291 g). Yield: 0.145 g (64%); orange solid; ¹H-NMR (δ , ppm, CD₂Cl₂): 7.33-7.15 (m, 5H); 6.90 (d, 1H, *J*= 1.5Hz); 5.72 (dq, 1H, *J*₁= 8.9Hz, *J*₂= 1.8Hz, *J*₃= 1.5Hz, *J*₄= 1.5Hz); 5.63 (s, 1H); 4.70 (dt, 1H, *J*₁= 7.9Hz, *J*₂= 3.4Hz); 3.60 (d, 1H, *J*= 5.9Hz); 3.49 (d, 1H, *J*= 5.9Hz); 3.25 (m, 2H); 2.98 (dm, 2H); 2.94 (s, 3H); 2.60 (s, 1H); 0.09 (s, 9H); 0.04 (s, 9H). ¹³C-NMR (δ , ppm, CD₂Cl₂): 167.6, 167.5, 139.6, 136.3, 130.6, 130.0, 128.6, 127.1, 124.1, 115.6, 102.5, 99.0, 68.3, 55.1, 40.7, 39.3, 37.3, 22.3, -0.4.

(3*R*)-3-(4-*tert*-Butyl-benzyl)-1-[bis(trimethylsilyl)methyl]-3-(N-methyldihydronicotinamido)-azetidin-2-one (5c):

(bs, 2H); 2.94 (s, 3H); 2.58 (s, 1H); 1.324 (s, 9H); 0.07 (s, 9H); 0.0 (s, 9H). ¹³C-NMR (δ, ppm, CD₂Cl₂): 167.0, 166.9, 149.2, 138.9, 132.5, 129.7, 129.4, 125.1, 101.9, 98.5, 68.0, 53.9, 40.1, 37.9, 36.6, 33.9, 30.7, 21.8, -0.9, -1.0.

(3*R*)-3-[(5,6,7,8-Tetrahydronaphthalen-2-ylmethyl]-1-[bis(trimethylsilyl)methyl]-3-(N-methyl-dihydronicotinamido)-azetidin-2-one (5d):

The general procedure was followed from **42d** (0.5 mmol, 0.319 g). Yield: 0.165 g (65%); oil; ¹H-NMR (δ , ppm, CD₂Cl₂): 6.95-6.94 (m, 3H); 6.91 (s, 1H); 6.86 (d, 1H, *J*= 1.5Hz); 5.68 (dq, 1H, *J*₁= 7.9Hz, *J*₂= 1.5Hz, *J*₃= 1.5Hz, *J*₄= 1.51Hz); 5.62 (s, 1H); 4.68 (m, 1H); 3.54 (d, 1H, *J*= 5.8Hz); 3.46 (d, 1H, *J*= 5.8Hz); 3.11 (d, 1H, *J*= 13.6Hz); 3.09 (d, 1H, *J*= 13.6Hz); 2.98 (m, 2H); 2.90 (s,

3H); 2.70 (m, 4H); 2.55 (s, 1H); 1.76 (m, 4H); 0.04 (s, 9H); -0.01 (s, 9H). ¹³C-NMR (δ, ppm, CD₂Cl₂): 166.7, 164.7, 138.3, 136.1, 134.8, 131.8, 130.0, 129.9, 128.1, 126.6, 101.2, 97.8, 67.2, 53.4, 39.5, 37.6, 35.9, 30.9, 28.7, 28.3, 28.0, 22.2, -1.6.

(3*R*,4*R*)-3-Benzyl-4-isobutyl-1-[bis(trimethylsilyl)methyl]-3-(N-methyldihydronicotinamido)-azetidin-2-one (5e):

The general procedure was followed from **42e** (0.5 mmol, 0.319 g). Yield: 0.22 g (87%); oil; ¹H-NMR (δ , ppm, CD₂Cl₂): 7.27-7.21 (m, 5H); 6.80 (d, 1H, *J*= 1.3Hz); 5.64 (dq, 1H, *J*₁= 8.9Hz, *J*₂= 1.8Hz, *J*₃= 1.5Hz, *J*₄= 1.51Hz); 5.63 (s, 1H); 4.60 (m, 1H); 3.82 (m, 1H); 3.35 (d, 1H, *J*= 13.6Hz); 2.92 (d, 1H, *J*= 13.6Hz); 2.88

(s, 2H); 2.82 (m, 2H); 2.75 (s, 1H); 2.10 (m, 2H); 1.71 (m, 1H); 1.51 (m, 1H); 1.00 (m, 6H); 0.20 (s, 9H); 0.12 (s, 9H). ¹³C-NMR (δ, ppm, CD₃CN): 168.5, 168.3, 140.0, 138.0, 137.6, 131.7, 131.6, 131.2, 129.0, 127.6, 102.8, 100.1, 68.6, 65.3, 55.4, 41.0, 38.2, 37.2, 36.7, 26.3, 23.5, 23.3, 22.9, 0.5.

(3*R*,4*R*)-3-(5,6,7,8-Tetrahydronaphthalen-2-yl)methyl]-4-isobutyl-1-[bis(trimethylsilyl)methyl]-3-(N-methyl-dihydronicotinamido)-azetidin-2-one (5f):

CD₂Cl₂): 167.9, 166.1, 139.3, 136.6, 135.6, 133.4, 131.4, 130.1, 128.8, 117.1, 110.1, 102.4, 99.4, 67.9, 64.6, 47.9, 40.7, 38.1, 36.9, 35.2, 29.9, 29.6, 29.2, 25.6, 23.6, 22.9, 0.08.

1.6 Preparation of (*3R*)-3-Benzyl-1-Methyl-3-(N-methyldihydronicotinamido)-azetidin-2-one 8

(3*R*)-3-Benzyl-1-methyl-3-nicotinamido-azetidin-2-one (43):

To a refluxing solution of the bis(trimethylsilyl)-methyl-nicotinamide **7b** (1 mmol, 0.44 g) in 30 mL dry THF under nitrogen 4 mL of an 1M Me TBAF solution in THF⁵ were added drop-wise and the mixture was stirred at reflux for 1h (complete consumption of starting material was

checked by ¹H-NMR). The solvent was evaporated under reduced pressure and the crude was dissolved in CH₂Cl₂ and the excess of TBAF was removed by flash chromatography (fluent CH₂Cl₂). Yield: 0.186 (64%); oil; $[\alpha]_D^{25} = + 2.05$ (c= 1.0, CH₂Cl₂); IR(cm⁻¹, KBr): 3450; 1734.0 (C=O); 1659.0 (C=O). HPLC-MS, MeOH/HCOOH m/z (Ion Source Type: ESI, positive polarity): MS+1: 296.1, MS2(296.1): 253.0, MS3(253.0): 225.0, 174.9; 134.0; 106.0. ¹H-NMR (δ , ppm, CDCl₃): 9.00 (bs, 1H); 8.69 (d, 1H, *J*= 3.7Hz); 8.13 (d, 1H, *J*= 7.9Hz); 7.68 (bs, 1H); 7.37 8m, 1H); 3.71 (d, 1H, *J*= 5.9 Hz); 3.47 (d, 1H, *J*= 5.9 Hz); 2.74 (s, 3H). ¹³C-NMR (δ , ppm, CDCl₃): 168.1, 166.0, 152.5, 149.1, 135.9, 135.1, 130.3, 129.7, 128.7, 127.5, 123.6, 69.0, 53.0, 38.8, 28.5. Anal. Calcd. For C₁₇H₁₇N₃O₂ (295.34): C, 69.14; H, 5.80; N, 14.23. Found: C, 70.60; H, 5.82; N, 14.21.

N-[(3*R*)-3-Benzyl-1-methyl)-2-oxoazetidin-3-yl)-1-methylpyridinium]-3-carboxamide iodide (44):

⁵ Tetrabutylammonium fluoride solution (1M in THF, containing 5% water, available from Acros Organics), was dried over molecular sieves for 48h prior to use.

(3*R*)-3-Benzyl-1-Methyl-3-(N-methyldihydronicotinamido)-azetidin-2-one 8:

13.9Hz); 2.92-2.88 (m, 1H); 2.82 (s, 3H); 2.82-2.80 (m, 1H); 2.64 (s, 3H). ¹³C-NMR (δ, ppm, CD₂Cl₂): 169.4, 167.6, 140.1, 136.3, 130.3, 129.06, 127.86, 102.7, 98.8, 68.5, 41.1, 40.0, 28.5, 22.5.

1.7 General Procedure for the Biomimetic Reduction of Methyl Benzoylformate with the NADH models 8 and 5a-f.

All reactions were conducted in the dark, under a nitrogen atmosphere, at room temperature, in sealed NMR tubes or flasks.

In a typical run, a solution of the NADH model (0.103 mmol, 1.1 eq.), $Mg(ClO_4)_2$ (0.103 mmol, 1.1 eq., 23.0 mg), and methyl benzoylformate (0.093 mmol) in 0.7 mL of deoxygenated CD₃CN was prepared in a dried NMR tube in the dark and the reaction was followed by ¹H-NMR. After complete consumption of the NADH model, H₂O was added and the aqueous layer was extracted with CH₂Cl₂ (4 x 2 mL). The combined organic layers were dried over MgSO₄ and the solvent was evaporated under reduced pressure. The crude reaction mixture was submitted to the HPLC analysis although in some cases the resulting mandelate was isolated by preparative thin layer chromatography (eluent: Hexanes/EtOAc). Enantiomeric excesses were determined by HPLC using chiral stationary phases (Chiralcel OD) and Hexanes/Isopropanol as mobile phase. Reaction conditions, yields, and HPLC conditions are given in **Table S1**.

Table S1.

Entry	NADH	Reaction	Yield	Major	Ee	HPLC
	Model	Conditions	(%)	enantiomer	(%)	Conditions
1	8	CD ₃ CN,	60	S	60	Chiralcel OD,
		$Mg(ClO_4)_{2,}$	(NMR)			Hex/iPrOH 80/20
		r.t., 16h				Flow rate 0.5 mL/min
2	5a	CD ₃ CN,	95	S	73	Chiralcel ODH,
		$Mg(ClO_4)_{2,}$	(NMR)			Hex/iPrOH 85/15
		r.t., 14h				Flow rate 1 mL/min
3	5b	CD ₃ CN,	66	S	78	Chiralcel OD,
		$Mg(ClO_4)_{2,}$	(NMR)			Hex/iPrOH 80/20
		r.t., 14h				Flow rate 0.7 mL/min
4	5d	CD ₃ CN,	100	S	82	Chiralcel OD,
		$Mg(ClO_4)_{2,}$	(NMR)			Hex/iPrOH 80/20
		r.t., 18h				Flow rate 0.7 mL/min
5	5d	CD ₃ CN,	100	S	90	Chiralcel OD,
		$Mg(ClO_4)_{2,}$	(NMR)			Hex/iPrOH 80/20
		r.t., 14h				Flow rate 0.7 mL/min
6	5e	CD ₃ CN,	50	S	90	Chiralcel OD,
		$Mg(ClO_4)_{2,}$	(NMR)			Hex/iPrOH 80/20
		r.t., 16h				Flow rate 0.7 mL/min
7	5f	CD ₃ CN,	94	S	90	Chiralcel OD,
		Mg(ClO ₄) _{2,}	(NMR)			Hex/iPrOH 80/20
		r.t., 18h				Flow rate 0.7 mL/min

2.-Selected HPLC Chromatograms

Injection Summary Report

Reported by User: USUARIO GENERAL (HPLC)

Project Name: Raluca

Figure S1. HPLC chromatogram of racemic methyl mandelate. Conditions: CHIRALCEL OD column; mobile phase: Hex/iPrOH 80/20; flow rate 0.7 mL/min.

Figure S2. HPLC chromatogram of crude methyl mandelate obtained from the reduction of methyl benzoylformate with NADH model **8**. Conditions: CHIRALCEL OD column; mobile phase: Hex/iPrOH 80/20; flow rate 0.7 mL/min.

Injection Summary Report

Reported by User: USUARIO GENERAL (HPLC)

Project Name: Raluca

Figure S3. HPLC chromatogram of crude methyl mandelate obtained from the reduction of methyl benzoylformate with NADH model **5b**. Conditions: CHIRALCEL OD column; mobile phase: Hex/iPrOH 80/20; flow rate 0.7 mL/min.

2 254

13,551

1184971

5,07

40493

Injection Summary Report

Reported by User: USUARIO GENERAL (HPLC)

Project Name: Raluca

Figure S4. HPLC chromatogram of crude methyl mandelate obtained from the reduction of methyl benzoylformate with NADH model **5e**. Conditions: CHIRALCEL OD column; mobile phase: Hex/iPrOH 80/20; flow rate 0.7 mL/min.

3.-¹H and ¹³C NMR Spectra of Compounds 6a, 6b-c, 7a-f, 41a-f, 5a-f, 42-43, and 8

Figure S5. ¹H and ¹³C NMR spectra for compound **6a** (CDCl₃).

Figure S6. ¹H and ¹³C NMR spectra for compound **6c** (CDCl₃).

Figure S7. ¹H and ¹³C NMR spectra for compound 6d (CDCl₃).

Figure S8. ¹H and ¹³C NMR spectra for compound 7a (CDCl₃).

Figure S9. ¹H and ¹³C NMR spectra for compound 7b (CDCl₃).

Figure S10. ¹H and ¹³C NMR spectra for compound 7c (CDCl₃).

Figure S11. ¹H and ¹³C NMR spectra for compound 7d (CDCl₃).

Figure S12. ¹H and ¹³C NMR spectra for compound 7e (CDCl₃).

Figure S13. ¹H and ¹³C NMR spectra for compound 7f (CDCl₃).

Figure S14. ¹H and ¹³C NMR spectra for compound 42a (CDCl₃).

Figure S15. ¹H and ¹³C NMR spectra for compound 42b (CDCl₃).

Figure S16. ¹H and ¹³C NMR spectra for compound 42c (CDCl₃).

Figure S17. ¹H and ¹³C NMR spectra for compound 42d (CDCl₃).

Figure S18. ¹H and ¹³C NMR spectra for compound 42e (CDCl₃).

Figure S19. ¹H and ¹³C NMR spectra for compound 42f (CDCl₃).

Figure S20. ¹H and ¹³C NMR spectra for compound 5a (CDCl₃).

Figure S21. ¹H and ¹³C NMR spectra for compound 5b (CD₂Cl₂).

Figure S22. ¹H and ¹³C NMR spectra for compound 5c (CD₂Cl₂).

Figure S23. ¹H and ¹³C NMR spectra for compound 5d (CD_2Cl_2).

Figure S24. ¹H (CDCl₃) and ¹³C NMR (CD₃CN)spectra for compound 5e.

Figure S25. ¹H and ¹³C NMR spectra for compound **5**f (CD₂Cl₂).

Figure S26. ¹H and ¹³C NMR spectra for compound 43 (CDCl₃).

Figure S27. ¹H and ¹³C NMR spectra for compound 44 (CDCl₃).

Figure S28. ¹H and ¹³C NMR spectra for compound 8 (CD₂Cl₂).

Figure S29. ¹H-NMR spectrum of methyl benzoylformate (CD₃CN, 500 MHz, r.t.)

Figure S30. ¹H-NMR spectrum of methyl benzoylformate in the presence of 1 eq $Mg(ClO_4)_2$ (CD₃CN, 500 MHz, r.t.)

Figure S31. ¹³C-NMR spectrum of methyl benzoylformate (CD₃CN, 125 MHz, r.t.)

Figure S32. ¹³C-NMR spectrum of methyl benzoylformate in the presence of 1 eq $Mg(ClO_4)_2$ (CD₃CN, 125 MHz, r.t.)

Figure S34. ¹H-NMR spectrum of model **5b** in the presence of 1 eq Mg(ClO₄)₂ (CD₃CN, 500 MHz, r.t.)

Figure S35. ¹³C-NMR spectrum of model 5b (CD₃CN, 125 MHz, r.t.)

Figure S36. ¹³C-NMR spectrum of model **5b** in the presence of 1 eq Mg(ClO₄)₂ (CD₃CN, 125 MHz, r.t.)

Figure S37. ¹H-NMR spectrum of the equimolar ternary mixture **5b**/**9**/ Mg(ClO₄)₂ (CD₃CN, 500 MHz, 273K)

Figure S38. ¹³C-NMR spectrum of the equimolar ternary mixture **5b/9**/ Mg(ClO₄)₂ (CD₃CN, 125 MHz, 273K)

Figure S40. ¹H-NMR spectrum of model **5e** in the presence of 1 eq Mg(ClO₄)₂ (CD₃CN, 500 MHz, r.t.)

Figure S41. ¹³C-NMR spectrum of model 5e (CD₃CN, 125 MHz, r.t.)

Figure S42. ¹³C-NMR spectrum of model **5e** in the presence of 1 eq Mg(ClO₄)₂ (CD₃CN, 125 MHz, r.t.)

Figure S43. Extensions of the ¹H-NMR spectrum of binary mixture **5b**/ Mg(ClO₄)₂ recorded at temperatures between -20 and 50°C (CD₃CN, 500 MHz)

Figure S44. ROESY spectrum of the equimolar ternary mixture **5b/9**/ Mg(ClO₄)₂ (CD₃CN, 500 MHz, 500ms, 233K).

5.- Diffusion Experiments

For DOSY experiments, the standard Bruker protocol was used in a 500 MHz AVANCE spectrometer equipped with a z-gradient probe. 32 1D 1H spectra were collected with gradient durations specified below. The ledbpg2s pulse sequence, with stimulated echo, longitudinal eddy current compensation, bipolar gradient pulses, and two spoil gradients, was run with a linear gradient (53.5 G cm⁻¹) stepped between 2% and 95%. The 1D ¹H spectra were processed and automatically baseline corrected. The diffusion dimension, zero-filled to 1 k, was exponentially fitted according to pre set windows for the diffusion dimension. Diffusion data were processed using Bruker TOPSPIN 1.3 software.

Dataset : d:/NMR_Spectra/data/500/nmr/ra1_88c/10/pdata/1/ct1t2.txt AREA fit : Diffusion : Variable Gradient : I=I[0]*exp(-D*SQR(2*PI*gamma*Gi*LD)*(BD-LD/3)*1e4) 32 points for Integral 1, Integral Region from 4.727 to 4.629 ppm Converged after 33 iterations! Results Comp. 1

I[0] =	1.0	03e+000
Diff Con.	=	1.424e-009 m2/s
Gamma	=	4.258e+003 Hz/G
Little Delta	=	1.700m
Big Delta	=	99.950m

DOSY parameters and diffusion decay curve for the NADH model **5b** (CD₃CN, 500 MHz, 293K).

Dataset : d:/NMR_Spectra/data/500/nmr/ra1_88c/12/pdata/1/ct1t2.txt AREA fit : Diffusion Variable Gradient : I=I[0]*exp(-D*SQR(2*PI*gamma*Gi*LD)*(BD-LD/3)*1e4) 32 points for Integral 1, Integral Region from 4.980 to 4.854 ppm Converged after 28 iterations! Results Comp. 1

I[0] = 1.011e+000Diff Con. = 0.9938e-009 m2/s Gamma = 4.258e+003 Hz/G Little Delta = 2.100m Big Delta = 99.950m

DOSY parameters and diffusion decay curve for the NADH model **5b** in the binary complex $5b/Mg(ClO_4)_2$ (CD₃CN, 500 MHz, 293K).

Dataset : d:/NMR_Spectra/data/500/nmr/ra1_88c/14/pdata/1/ct1t2.txt AREA fit : Diffusion : Variable Gradient : I=I[0]*exp(-D*SQR(2*PI*gamma*Gi*LD)*(BD-LD/3)*1e4) 32 points for Integral 1, Integral Region from 4.993 to 4.822 ppm Converged after 38 iterations!

Results Comp. 1

I[0] = 3.557e-001Diff Con. = 1.102e-009 m2/s Gamma = 4.258e+003 Hz/G Little Delta = 2.000m Big Delta = 99.950m

DOSY parameters and diffusion decay curve for the NADH model **5b** in the ternary complex $5b/9/Mg(ClO_4)_2$ (CD₃CN, 500 MHz, 293K).

Figure S45. DOSY experiment for compound 5a. Red: Free 5b; Magenta: Binary system 5a/Mg²⁺; Black: ternary mixture 5b/9/Mg(ClO₄)₂ (CD₃CN, 500MHz, 293K).

6.- Computational Methods

6.1. Complete Reference 22 in the Article:

Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A. Jr.;
Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.;
Hratchian, H.P.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.;
Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Voth, G.A.; Salvador, P.;
Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.;
Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.;
Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham,
M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.;
Gonzalez, C.; Pople, J.A. Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, **2004**.

6.2. General Information

Computational Analysis. To study the reaction mechanism and to ascertain the origin of the stereoselectivity observed for the reduction of methyl benzoylformate **9** with NADH β -lactam peptidomimetics **5**, we selected first the model structure **11** (see Text). The flexible benzylic moieties in compounds **5a-f** and the bulky CH(SiMe₃)₂ were replaced by the less demanding and more rigid two methyl groups to shorten the computational time and limit the conformational energy.

For the initial model studies, all structures were optimized using the functional B3LYP⁵ and the 6-31G* basis sets as implemented in Gaussian 03⁶. All energy minima and transition structures were characterized by frequency analysis. The energies reported in this work include zero-point vibrational energy corrections (ZPVE) and are not scaled. The stationary points were characterized by frequency calculations in order to verify that they have the right number of negative eigenvalues. The intrinsic reaction coordinates (IRC)⁷ were followed to

⁵(a) Lee, C.; Yang, W.; Parr, R.G. *Phys. Rev. B* **1988**, *37*, 785-789. (b) Becke, A.D. *J. Chem. Phys.* **1993**, *98*, 5648-5652. (c) Kohn, W.; Becke, A.D.; Parr, R.G. J. Phys. Chem. **1996**, *100*, 12974-12980.

⁶ For full reference, see paragraph 6.1.

⁷ Gonzalez, C.; Schlegel, H.B. J. Phys. Chem. **1990**, *94*, 5523-5527.

verify the energy profiles connecting each transition structure to the correct associated local minima. Single-point calculations with the self-consistent reaction field (SCRF) based on the IEF-PCM⁸ solvation model (MeCN, $\varepsilon = 36.64$) were carried out at B3LYP/6-311++G** level on the previously optimized most relevant structures.

6.3 Cartesian Coordinates of Ternary Complexes 16-19, 16A-19A and Transition States 26-33, 26A-33A

⁸ (a) Cancès, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. **1997**, 107, 3032-3047. (b) Tomasi, J.; Mennucci, B.; Cancès, E. J. Mol. Struct. (Theochem) **1999**, 464, 211-226.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	2.922864	-1.959776	-4.016863
2	6	0	3.412882	-0.146689	-1.002415
3	6	0	4.296625	-0.670677	0.132748
4	6	0	2.460297	-1.200780	-1.624639
5	6	0	1.755589	1.291389	0.196216
6	6	0	1.333024	2.610145	0.603060
7	6	0	1.744008	3.745123	-0.056009
8	6	0	-1.062717	-4.528485	-0.301596
9	6	0	1.807629	6.178550	-0.444520
10	6	0	2.719391	-3.624497	3.958949
11	6	0	2.013900	-2.990329	2.853251
12	6	0	0.653578	5.170948	1.499295
13	6	0	0.165845	4.136752	2.189084
14	6	0	0.352110	2.700132	1.764889
15	6	0	4.083583	-0.164320	-2.420453
16	6	0	-2.347122	-0.301031	-0.184443
17	6	0	-2.274977	-0.552882	1.350755
18	6	0	-3.480168	0.253781	-0.908055
19	6	0	-1.598852	-5.832928	-0.667819
20	6	0	-3.189814	-0.376086	3.529266
21	6	0	-5.563521	1.283478	-2.474043
22	6	0	-3.306999	0.450570	-2.301770
23	6	0	-4.724202	0.581107	-0.317801
24	6	0	-5.752095	1.090290	-1.102302
25	6	0	-4.337614	0.962304	-3.072713
26	1	0	0.708691	2.095970	2.611247
27	1	0	-0.621848	2.256563	1.492654
28	1	0	-2.274077	-5.731989	-1.523274

16

29	1	0	-2.151097	-6.261832	0.174132
30	1	0	-0.780947	-6.508048	-0.938452
31	1	0	5.119664	-0.514464	-2.442475
32	1	0	3.976404	0.757700	-3.000203
33	1	0	3.409863	1.930839	-0.801630
34	1	0	2.075877	-2.633955	-3.877013
35	1	0	3.821997	-2.544145	-4.236757
36	1	0	2.718971	-1.286883	-4.855733
37	1	0	3.705280	-0.804654	1.041590
38	1	0	5.100577	0.043364	0.341799
39	1	0	2.034292	-4.272068	4.515095
40	1	0	3.115770	-2.861114	4.635763
41	1	0	3.548285	-4.228408	3.576547
42	1	0	-2.303516	0.121463	3.925029
43	1	0	-3.141621	-1.449174	3.719867
44	1	0	-4.101767	0.056354	3.934815
45	1	0	-6.372228	1.682617	-3.079298
46	1	0	-2.354720	0.195288	-2.752514
47	1	0	-4.888136	0.434106	0.739906
48	1	0	-6.705091	1.336338	-0.645093
49	1	0	-4.196703	1.112428	-4.138393
50	1	0	2.354153	3.697092	-0.953415
51	1	0	0.925934	6.684325	-0.851921
52	1	0	2.454457	5.878266	-1.270640
53	1	0	2.355726	6.877662	0.194738
54	1	0	0.511923	6.203555	1.796010
55	1	0	-0.397250	4.338858	3.094638
56	7	0	3.104233	-1.198351	-2.794744
57	7	0	2.788069	1.138973	-0.701708
58	7	0	1.452803	-2.487451	1.976120
59	7	0	1.414714	4.996147	0.323141
60	7	0	-0.633702	-3.494191	-0.013416
61	8	0	1.491185	-1.871537	-1.238536
62	8	0	1.183743	0.266692	0.666372
63	8	0	-1.295425	-0.644021	-0.747424
64	8	0	-3.273606	-0.143564	2.089352
65	8	0	-1.274162	-1.111485	1.792412
66	12	0	0.296806	-1.522311	0.382689
67	1	0	4.753296	-1.629435	-0.134906

Sum of electronic and thermal Enthalpies= -1820.430931 Sum of electronic and thermal Free Energies= -1820.553937 HF (B3LYP/6-311++G**//B3LYP/6-31G* in MeCN) = -1821.635369

Center	Atomic	Atomic	Coord	inates (Angstro	oms)
Number	Number	Туре	Х	Y	Z
1	6	0	4.143731	-3.037882	-2.446074
2	6	0	3.628201	-0.793968	0.258203
3	6	0	3.791543	-1.225923	1.717973
4	6	0	2.848587	-1.798778	-0.629869
5	6	0	1.954054	1.056275	0.404241
6	7	0	3.924655	-2.097745	-1.362289
7	7	0	3.220575	0.601160	0.110875
8	8	0	1.694129	-2.249952	-0.671557
9	8	0	1.030573	0.221677	0.621990
10	6	0	0.101319	-3.143580	4.665431
11	6	0	-2.124862	-5.606866	-1.051537
12	6	0	-1.521866	-4.333791	-0.678989
13	7	0	-1.041473	-3.324565	-0.383178
14	6	0	0.118190	-2.640803	3.298206
15	7	0	0.131820	-2.241148	2.213224
16	12	0	0.008895	-1.455965	0.169570
17	8	0	-1.887865	-0.584724	0.615856
18	8	0	-0.703360	-0.598430	-1.682841
19	6	0	-2.544158	-0.018223	-0.272695
20	6	0	-1.773267	0.001320	-1.624299
21	6	0	-3.861487	0.549209	-0.035479
22	8	0	-2.293491	0.680569	-2.614008
23	6	0	-1.553898	0.714457	-3.872757
24	6	0	-6.393528	1.563546	0.602653
25	6	0	-4.307487	0.582137	1.310068
26	6	0	-4.716498	1.030336	-1.055505
27	6	0	-5.972515	1.527902	-0.730177
28	6	0	-5.557372	1.090455	1.623168
29	6	0	1.677129	2.471256	0.465115

30	6	0	2.574434	3.415690	0.023922
31	7	0	2.368883	4.745217	0.106176
32	6	0	3.321581	5.722329	-0.422626
33	6	0	1.188349	5.213973	0.723536
34	6	0	0.232961	4.384506	1.150550
35	6	0	0.310754	2.885270	0.997326
36	1	0	3.203169	-3.554666	-2.645409
37	1	0	4.909032	-3.768388	-2.165202
38	1	0	4.467714	-2.508525	-3.347668
39	1	0	2.847496	-1.107775	2.255290
40	1	0	4.552148	-0.609371	2.209286
41	6	0	4.832568	-1.162641	-0.676972
42	1	0	3.973918	1.262216	0.250044
43	1	0	0.858641	-3.924523	4.786314
44	1	0	-0.882921	-3.563599	4.895327
45	1	0	0.312755	-2.329021	5.365260
46	1	0	-2.071896	-5.741684	-2.136399
47	1	0	-3.173600	-5.630459	-0.739350
48	1	0	-1.589701	-6.428521	-0.565245
49	1	0	-1.454672	-0.299592	-4.262738
50	1	0	-0.570356	1.154262	-3.702171
51	1	0	-2.155669	1.335034	-4.533022
52	1	0	-7.374948	1.958644	0.848304
53	1	0	-3.651237	0.211116	2.089160
54	1	0	-4.408014	1.004646	-2.090899
55	1	0	-6.627723	1.888670	-1.516509
56	1	0	-5.888871	1.121051	2.656227
57	1	0	3.513136	3.139207	-0.447452
58	1	0	4.197213	5.202856	-0.815706
59	1	0	3.643640	6.403408	0.371397
60	1	0	2.865752	6.305655	-1.229392
61	1	0	1.130650	6.291183	0.826574
62	1	0	-0.644792	4.808489	1.627701
63	1	0	0.111179	2.393570	1.960276
64	1	0	-0.495133	2.529588	0.332335
65	1	0	5.186169	-0.354828	-1.325105
66	1	0	5.674546	-1.654986	-0.181621
67	1	0	4.105721	-2.272857	1.785910

Sum of electronic and thermal Enthalpies=	-1820.430021
Sum of electronic and thermal Free Energies=	-1820.554865

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	1.392794	4.585108	-2.800920
2	6	0	1.539714	1.054667	-2.427740
3	6	0	0.878220	2.300357	-1.780208
4	6	0	2.117702	-0.329942	-0.426686
5	6	0	3.010967	-1.291089	0.171769
6	6	0	4.052477	-1.853046	-0.528771
7	6	0	-2.954584	3.364536	1.312838
8	6	0	5.969914	-3.378802	-0.796569
9	6	0	2.080854	3.245962	4.125731
10	6	0	1.312417	2.617623	3.059275
11	6	0	4.817848	-3.057413	1.370475
12	6	0	3.815507	-2.606906	2.129056
13	6	0	2.703729	-1.735642	1.596266
14	6	0	2.242590	2.114864	-3.343481
15	6	0	-2.506933	-0.882644	0.014681
16	6	0	-2.175424	-0.990167	1.530567
17	6	0	-3.421967	-1.744481	-0.714779
18	6	0	-4.002744	4.347552	1.553596
19	6	0	-2.559099	-1.939821	3.667560
20	6	0	-5.145249	-3.305063	-2.276519
21	6	0	-3.794187	-1.324482	-2.016746
22	6	0	-3.925612	-2.969276	-0.216179
23	6	0	-4.774827	-3.740386	-1.000620
24	6	0	-4.653995	-2.094025	-2.783090
25	1	0	2.562508	-0.859060	2.245660
26	1	0	-4.895091	4.091701	0.973796
27	1	0	-4.261739	4.367250	2.616808
28	1	0	-3.656505	5.341169	1.252344
29	1	0	3.323792	2.219689	-3.203031

30	1	0	2.003211	2.042834	-4.408284
31	1	0	0.687485	4.979399	-2.067028
32	1	0	2.375863	5.040218	-2.643290
33	1	0	1.042977	4.828630	-3.809124
34	1	0	1.627462	3.018508	5.095641
35	1	0	3.109353	2.871887	4.116158
36	1	0	2.095317	4.331352	3.985425
37	1	0	-1.511079	-2.202803	3.818310
38	1	0	-2.780440	-0.976055	4.128236
39	1	0	-3.220673	-2.717489	4.042613
40	1	0	-5.817055	-3.909373	-2.879042
41	1	0	-3.408607	-0.384532	-2.395523
42	1	0	-3.644765	-3.320856	0.766540
43	1	0	-5.151293	-4.683486	-0.617807
44	1	0	-4.947685	-1.759368	-3.772899
45	1	0	4.216949	-1.639707	-1.581090
46	1	0	5.779270	-4.454442	-0.874105
47	1	0	5.981984	-2.949776	-1.800127
48	1	0	6.950638	-3.223072	-0.336608
49	1	0	5.608974	-3.694985	1.747360
50	1	0	3.791982	-2.890961	3.176331
51	7	0	0.702127	2.117606	2.213966
52	7	0	1.469646	3.145759	-2.629693
53	7	0	-2.120910	2.586897	1.120464
54	7	0	4.931528	-2.726398	0.001931
55	8	0	0.079260	2.508107	-0.854910
56	8	0	0.997350	-0.084700	0.108558
57	8	0	-1.908470	0.067042	-0.516702
58	8	0	-2.840396	-1.867473	2.236138
59	8	0	-1.337456	-0.219863	1.992031
60	12	0	-0.474722	1.193821	0.613897
61	1	0	1.742428	-2.273209	1.640098
62	7	0	2.480081	0.351556	-1.560890
63	1	0	3.415764	0.219625	-1.917186
64	6	0	0.568452	0.120506	-3.152952
65	1	0	-0.027518	-0.445615	-2.433499
66	1	0	-0.113632	0.688885	-3.794016
67	1	0	1.125802	-0.582981	-3.780107

Sum of electronic and thermal Enthalpies=	-1820.432473
Sum of electronic and thermal Free Energies=	-1820.552994
HF (B3LYP/6-311++G**//B3LYP/6-31G* in Me	eCN = -1821.637693

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-3.600676	-4.533295	-0.003726
2	6	0	-2.699807	-1.479243	-1.577828
3	6	0	-1.903023	-1.441263	-2.884558
4	6	0	-2.169822	-2.483577	-0.521032
5	6	0	-2.067208	0.684141	-0.505843
6	7	0	-3.244048	-3.270790	-0.624316
7	7	0	-3.016118	-0.154602	-1.048055
8	8	0	-1.143581	-2.604644	0.165289
9	8	0	-0.910355	0.230672	-0.268811
10	6	0	2.930784	-4.775203	2.360293
11	6	0	2.167224	-3.667278	1.801174
12	7	0	1.559142	-2.788778	1.359194
13	12	0	0.278004	-1.181145	0.536930
14	8	0	1.926002	0.160497	0.714685
15	8	0	1.403203	-1.370935	-1.304714
16	6	0	2.713436	0.317707	-0.232313
17	6	0	2.405732	-0.666329	-1.397545
18	6	0	3.788671	1.294901	-0.208581
19	8	0	3.255507	-0.718582	-2.389973
20	6	0	2.992059	-1.675712	-3.461029
21	6	0	5.797406	3.234684	0.009699
22	6	0	4.019129	1.959220	1.022651
23	6	0	4.581567	1.632038	-1.331331
24	6	0	5.573073	2.598585	-1.215043
25	6	0	5.017998	2.912812	1.129317
26	6	0	-2.375859	2.060335	-0.207113
27	6	0	-3.658265	2.555364	-0.258582
28	7	0	-3.981269	3.838615	-0.004222
29	6	0	-5.362484	4.321215	-0.030104

30	6	0	-2.950234	4.750768	0.314116
31	6	0	-1.675055	4.370548	0.423099
32	6	0	-1.214118	2.947250	0.226438
33	7	0	-0.367514	-0.747034	2.586281
34	6	0	-0.691363	-0.515769	3.671730
35	6	0	-1.097097	-0.225437	5.040553
36	1	0	-2.785409	-4.831470	0.658042
37	1	0	-3.749073	-5.302575	-0.768168
38	1	0	-4.521759	-4.424126	0.577593
39	6	0	-3.951091	-2.424768	-1.600498
40	1	0	-0.951955	-0.925906	-2.733574
41	1	0	-2.472763	-0.910750	-3.655254
42	1	0	-3.806568	0.290228	-1.496188
43	1	0	2.307412	-5.340646	3.060059
44	1	0	3.808547	-4.394802	2.891988
45	1	0	3.260590	-5.443904	1.559049
46	1	0	2.053846	-1.417537	-3.954395
47	1	0	2.938897	-2.681864	-3.043089
48	1	0	3.835607	-1.573441	-4.140062
49	1	0	6.579595	3.983541	0.093488
50	1	0	3.407804	1.701194	1.879987
51	1	0	4.417006	1.152704	-2.285787
52	1	0	6.174519	2.858255	-2.080238
53	1	0	5.197170	3.409189	2.077751
54	1	0	-4.510305	1.922013	-0.487632
55	1	0	-5.659593	4.687257	0.958144
56	1	0	-6.028615	3.506169	-0.318185
57	1	0	-5.465977	5.133515	-0.756569
58	1	0	-3.281116	5.772657	0.457377
59	1	0	-0.931187	5.122365	0.666936
60	1	0	-0.407894	2.912458	-0.521634
61	1	0	-0.752971	2.562271	1.149957
62	1	0	-1.799633	0.613617	5.052372
63	1	0	-0.220417	0.035794	5.641513
64	1	0	-1.581779	-1.102692	5.480378
65	1	0	-4.142425	-2.923626	-2.554961
66	1	0	-4.873309	-1.990417	-1.201949
67	1	0	-1.697731	-2.453826	-3.247758
	HE-I VP	(1) - 187			

Sum of electronic and thermal Enthalpies=	-1820.431789
Sum of electronic and thermal Free Energies=	-1820.553233

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	3.921574	-2.334331	3.072883	
2	6	0	2.763084	-2.545963	-0.278441	
3	6	0	3.665559	-2.352800	-1.495808	
4	6	0	2.907849	-1.514649	0.874201	
5	6	0	0.576571	-1.736656	-1.077353	
6	6	0	-0.891976	-1.940649	-1.156609	
7	6	0	-1.552031	-2.876844	-0.386197	
8	6	0	1.896697	3.236843	2.400636	
9	6	0	-3.584492	-4.011598	0.425480	
10	6	0	4.944663	2.838519	-2.645107	
11	6	0	3.893814	2.223964	-1.844574	
12	6	0	-3.628943	-2.343082	-1.380145	
13	6	0	-3.051691	-1.378584	-2.149542	
14	6	0	-1.671740	-1.033482	-1.960893	
15	6	0	3.303153	-3.561021	0.784274	
16	6	0	-1.488861	0.924244	-0.052298	
17	6	0	-1.045804	2.150423	-0.883978	
18	6	0	-2.836036	0.950163	0.632867	
19	6	0	2.082502	4.212708	3.466460	
20	6	0	-1.586035	4.016970	-2.241306	
21	6	0	-5.291247	0.913506	1.992897	
22	6	0	-2.893103	0.589470	1.988572	
23	6	0	-4.028702	1.266037	-0.041428	
24	6	0	-5.246163	1.252247	0.638765	
25	6	0	-4.111690	0.580573	2.664675	
26	1	0	-1.153647	-0.482101	-2.742416	
27	1	0	-1.722003	0.167757	-1.057732	
28	1	0	1.322558	4.067804	4.240643	
29	1	0	1.992302	5.226667	3.064518	
30	1	0	3.074335	4.093573	3.913488	
31	1	0	4.248108	-4.045790	0.524196	

32	1	0	2.583321	-4.306876	1.140352
33	1	0	0.978309	-3.691966	-0.588136
34	1	0	3.831184	-1.297412	3.401558
35	1	0	4.969499	-2.644690	3.128873
36	1	0	3.321591	-2.976368	3.725893
37	1	0	3.343981	-1.489735	-2.080421
38	1	0	3.631944	-3.244156	-2.131173
39	1	0	4.773318	3.917103	-2.717654
40	1	0	4.945891	2.410491	-3.652411
41	1	0	5.920250	2.663526	-2.180998
42	1	0	-0.975877	3.678466	-3.080538
43	1	0	-1.022292	4.719259	-1.625476
44	1	0	-2.517096	4.462302	-2.586110
45	1	0	-6.239473	0.913204	2.522492
46	1	0	-1.970502	0.338185	2.500089
47	1	0	-4.007986	1.544459	-1.089525
48	1	0	-6.159714	1.512756	0.112162
49	1	0	-4.141652	0.323415	3.719794
50	1	0	-1.041643	-3.502939	0.336161
51	1	0	-4.138255	-3.457617	1.188242
52	1	0	-2.851004	-4.659092	0.906378
53	1	0	-4.273146	-4.625517	-0.158757
54	1	0	-4.677411	-2.606786	-1.450442
55	1	0	-3.657176	-0.850559	-2.876934
56	7	0	3.444478	-2.418460	1.704057
57	7	0	1.348008	-2.750949	-0.615267
58	7	0	3.058550	1.738748	-1.209446
59	7	0	-2.890152	-3.065610	-0.470075
60	7	0	1.749135	2.462373	1.555264
61	8	0	2.617074	-0.325450	1.040883
62	8	0	1.083420	-0.645489	-1.410954
63	8	0	-0.481142	0.410306	0.612692
64	8	0	-1.991682	2.875279	-1.433909
65	8	0	0.158377	2.367982	-1.043128
66	12	0	1.380883	0.971812	-0.016142
67	1	0	4.701496	-2.198873	-1.177012

E(RB+HF-LYP) = -1820.97560606 Sum of electronic and thermal Enthalpies= -1820.400229 Sum of electronic and thermal Free Energies= -1820.518232

HF (B3LYP/6-311++G**//B3LYP/6-31G* in MeCN) = -1821.612262 Frequency: 634.2i

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-3.948784	-0.556252	-3.770075	
2	6	0	-2.617045	-2.383727	-1.032070	
3	6	0	-3.476704	-2.866567	0.135362	
4	6	0	-2.865350	-0.914591	-1.483661	
5	6	0	-0.404977	-2.059018	0.024780	
6	6	0	1.058356	-2.406449	0.031033	
7	6	0	1.544472	-3.441059	0.784773	
8	6	0	-2.272473	4.069872	-0.119578	
9	6	0	3.385960	-4.854169	1.640431	
10	6	0	-4.548257	0.841761	4.083480	
11	6	0	-3.613930	0.796501	2.966469	
12	6	0	3.762999	-2.938642	0.144165	
13	6	0	3.347089	-1.893695	-0.626900	
14	6	0	1.962071	-1.499188	-0.648707	
15	6	0	-3.159542	-2.740270	-2.455633	
16	6	0	1.416050	1.054038	-0.067373	
17	6	0	1.228674	1.299581	1.448271	
18	6	0	2.577983	1.708048	-0.776035	
19	6	0	-2.595867	5.459478	-0.413734	
20	6	0	2.145644	1.617920	3.608745	
21	6	0	4.663787	2.888010	-2.236142	
22	6	0	2.323648	2.317960	-2.015179	
23	6	0	3.896420	1.677064	-0.284979	
24	6	0	4.928389	2.268310	-1.011679	
25	6	0	3.359637	2.909998	-2.735197	
26	1	0	1.849653	-0.203463	-0.007294	
27	1	0	-4.526989	-2.609598	-0.034498	
28	1	0	-2.033640	5.794249	-1.291053	
29	1	0	-2.333675	6.092337	0.439855	
30	1	0	-3.666675	5.559342	-0.616643	
31	1	0	-4.076009	-3.337018	-2.465636	
32	1	0	-2.428346	-3.162586	-3.154247	

TS27
33	1	0	-0.781531	-3.432575	-1.427010
34	1	0	-3.921901	0.505580	-3.518876
35	1	0	-4.984685	-0.864646	-3.942293
36	1	0	-3.365373	-0.730317	-4.679680
37	1	0	-3.151872	-2.400724	1.068413
38	1	0	-3.401078	-3.954267	0.235251
39	1	0	-4.295396	1.676658	4.744575
40	1	0	-4.496741	-0.090966	4.653645
41	1	0	-5.568801	0.978035	3.712259
42	1	0	1.548347	0.824403	4.061252
43	1	0	1.656709	2.582969	3.750556
44	1	0	3.155456	1.631046	4.014210
45	1	0	5.470357	3.351197	-2.796716
46	1	0	1.307479	2.328472	-2.392878
47	1	0	4.115681	1.205242	0.665934
48	1	0	5.941310	2.248909	-0.620182
49	1	0	3.149478	3.390889	-3.686134
50	1	0	0.896814	-4.107934	1.343243
51	1	0	3.789371	-5.614651	0.965952
52	1	0	2.569278	-5.283792	2.220677
53	1	0	4.168621	-4.518197	2.324475
54	1	0	4.802311	-3.241584	0.203438
55	1	0	4.076434	-1.339466	-1.206219
56	7	0	-1.192598	-2.704094	-0.855745
57	7	0	-2.871983	0.764332	2.080502
58	7	0	-3.381383	-1.298241	-2.658082
59	7	0	-2.014722	2.967327	0.112982
60	7	0	2.880178	-3.706127	0.864357
61	8	0	-2.694183	0.206871	-0.996006
62	8	0	-0.831742	-1.163268	0.770651
63	8	0	0.266860	1.024374	-0.686343
64	8	0	2.313866	1.359114	2.186792
65	8	0	0.088880	1.402004	1.907852
66	12	0	-1.393381	0.899399	0.463512
67	1	0	1.580583	-0.994974	-1.541581
 E(RB+	HF-LYP) = -182			

E(RB+HF-LYP) = -1820.96835110 Sum of electronic and thermal Enthalpies= -1820.392965 Sum of electronic and thermal Free Energies= -1820.512676 Frequency: 897.8i

Center	Atomic	Atomic	Coordina	ates (Angstron	ns)
Number	Number	Туре	Х	Y	Ζ
1	6	0	-4.965006	-0.981958	-2.494018
2	6	0	-3.192361	-2.024934	0.398913
3	6	0	-3.788569	-1.872492	1.799009
4	6	0	-3.352804	-0.773849	-0.523947
5	6	0	-0.781824	-1.826274	0.805341
6	6	0	4.162564	0.648291	-0.553879
7	6	0	5.468399	1.124677	-0.450643
8	6	0	4.668676	3.067352	0.745447
9	6	0	0.606496	-2.361514	0.844403
10	6	0	-2.761759	3.331803	4.183088
11	6	0	-1.974544	5.400040	-2.099364
12	6	0	-1.761439	4.132136	-1.414404
13	6	0	0.987134	-3.572263	0.306864
14	6	0	-2.337354	2.653412	2.965780
15	6	0	-4.128891	-2.713812	-0.647617
16	6	0	2.661211	-5.316468	-0.206331
17	6	0	3.226851	-3.245738	0.991798
18	6	0	2.926956	-2.027954	1.528303
19	6	0	1.662447	0.901282	-0.063870
20	6	0	1.068575	0.482985	-1.436992
21	6	0	3.094418	1.386978	-0.015713
22	6	0	1.609729	-1.483801	1.398421
23	6	0	1.356072	-0.236988	-3.675530
24	6	0	5.724782	2.336304	0.196407
25	6	0	3.361931	2.592627	0.648838
26	1	0	6.287251	0.553422	-0.878530
27	1	0	4.864334	4.009061	1.249984
28	1	0	0.293713	-4.244215	-0.186039
29	1	0	1.785183	-5.797949	-0.640738
30	1	0	3.067015	-5.953395	0.583610
31	1	0	3.414162	-5.169330	-0.984437
32	1	0	3.703273	-1.467226	2.035705

33	1	0	1.278104	-0.703086	2.081176
34	1	0	-3.664436	-3.495783	-1.258657
35	1	0	-5.087122	-3.063237	-0.252192
36	1	0	-6.037826	-1.095523	-2.308649
37	1	0	-4.688386	-1.572388	-3.373248
38	1	0	-3.175930	-1.200622	2.404168
39	1	0	-3.844476	-2.846950	2.296030
40	1	0	-4.736878	0.069874	-2.675428
41	1	0	-1.751385	-3.598476	0.410714
42	1	0	-3.811788	3.628939	4.099585
43	1	0	-2.149298	4.224984	4.341669
44	1	0	-2.646040	2.664827	5.043011
45	1	0	-1.926509	5.251915	-3.182654
46	1	0	-1.202595	6.117176	-1.803137
47	1	0	-2.957350	5.804867	-1.838576
48	1	0	4.215125	-3.687267	1.049054
49	1	0	0.804275	0.612989	-4.079797
50	1	0	0.692993	-1.099508	-3.582244
51	1	0	2.218779	-0.470372	-4.296674
52	1	0	6.742526	2.707518	0.272205
53	1	0	2.534712	3.146305	1.078320
54	1	0	3.975292	-0.288610	-1.068702
55	7	0	-4.204915	-1.415474	-1.335408
56	7	0	-1.831947	-2.589209	0.419370
57	7	0	-1.591443	3.127025	-0.869510
58	7	0	2.269995	-4.010284	0.362090
59	7	0	-1.998592	2.117844	1.998988
60	8	0	-2.936337	0.387855	-0.546176
61	8	0	-0.953532	-0.633677	1.105418
62	8	0	0.770820	1.569078	0.630195
63	8	0	-0.156996	0.482328	-1.584083
64	8	0	1.908453	0.109553	-2.377025
65	12	0	-1.163910	1.253461	0.173381
66	1	0	1.760429	-0.267743	0.406086
67	1	0	-4.801316	-1.461179	1.740649

E(RB+HF-LYP) =	-1820.96853033
----------------	----------------

Sum of electronic and thermal Enthalpies=	-1820.394281
Sum of electronic and thermal Free Energies=	-1820.509898
Frequency: 535.6i	

Center	Atomic	Atomic	Coordina	ates (Angstron	ns)
Number	Number	Туре	Х	Y	Z
	6	0	-4 772262	0 479281	-2 634627
2	6	Ő	-3.061832	-2.034131	-0.805716
3	6	Ő	-3.815078	-2.864816	0.236156
4	6	0	-3.341161	-0.501171	-0.759855
5	6	0	-0.806295	-2.016289	0.144920
6	6	0	3.740566	0.937545	-1.610669
7	6	0	5.080025	1.311564	-1.523020
8	6	0	4.803190	1.771794	0.834702
9	6	0	0.646333	-2.329964	0.051727
10	6	0	-2.307244	0.952613	5.466398
11	6	0	-1.468012	5.551754	1.039072
12	6	0	-1.364512	4.100564	0.963721
13	6	0	1.286914	-2.706810	1.213088
14	6	0	-1.922314	0.897219	4.062595
15	6	0	-3.776629	-1.956948	-2.194408
16	6	0	3.267126	-3.427396	2.490759
17	6	0	3.343179	-2.962486	0.076836
18	6	0	2.793849	-2.548909	-1.095703
19	6	0	1.468319	0.580831	-0.501197
20	6	0	0.518207	1.131038	-1.576993
21	6	0	2.914488	0.990582	-0.474068
22	6	0	1.431920	-2.065106	-1.131995
23	6	0	0.165576	2.034693	-3.740550
24	6	0	5.613914	1.733457	-0.302559
25	6	0	3.464558	1.393915	0.753633
26	1	0	5.708135	1.275640	-2.408209
27	1	0	5.214546	2.101489	1.784442
28	1	0	0.744906	-2.799631	2.146422
29	1	0	2.522869	-3.510580	3.282485
30	1	0	4.015178	-2.682233	2.773703
31	1	0	3.748961	-4.397642	2.347540

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1	0	3.401031	-2.546932	-1.993112
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	1	0	1.559526	-0.639636	-1.046504
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	1	0	-3.131361	-2.093615	-3.069501
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	1	0	-4.676092	-2.571529	-2.289164
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	1	0	-5.821899	0.188928	-2.742877
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	1	0	-4.334855	0.618751	-3.628440
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	1	0	-3.398601	-2.703363	1.231591
4010 -4.709495 1.413597 -2.073960 41 10 -1.312077 -3.027081 -1.570700 42 10 -3.250503 1.497854 5.571719 43 10 -1.532805 1.464309 6.046366 44 10 -2.436969 -0.060760 5.858773 45 10 -1.734056 5.959431 0.058870 46 10 -0.510560 5.977778 1.355053 47 10 -2.239917 5.833321 1.762154 48 10 4.370716 -3.296317 0.159755 49 10 -0.401438 2.881317 -3.350667 50 10 -0.515831 1.247185 -4.068836 51 10 0.821050 2.344910 -4.551975 52 10 6.656616 2.030276 -0.239014 53 10 2.826364 1.420257 1.630171 54 10 3.337794 0.617245 -2.565828 55 10 -4.872948 -2.584513 0.251970 56 70 -1.627556 -2.362964 -0.873101 57 70 -1.282775 2.948696 0.905934 58 70 2.602838 -3.013692 1.240412 59 70 -1.627556 -2.362964 -0.873101 57 7	39	1	0	-3.747436	-3.929091	-0.013489
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1	0	-4.709495	1.413597	-2.073960
4210 -3.250503 1.497854 5.571719 43 10 -1.532805 1.464309 6.046366 44 10 -2.436969 -0.060760 5.858773 45 10 -1.734056 5.959431 0.058870 46 10 -0.510560 5.977778 1.355053 47 10 -2.239917 5.833321 1.762154 48 10 4.370716 -3.296317 0.159755 49 10 -0.401438 2.881317 -3.350667 50 10 -0.515831 1.247185 -4.068836 51 10 0.821050 2.344910 -4.551975 52 10 6.656616 2.030276 -0.239014 53 10 2.826364 1.420257 1.630171 54 10 3.337794 0.617245 -2.565828 55 10 -4.872948 -2.584513 0.251970 56 70 -1.627556 -2.362964 -0.873101 57 70 -2.602838 -3.013692 1.240412 59 70 -4.042632 -0.537985 -1.899899 60 70 -1.619150 0.854903 2.947970 61 80 -0.693601 1.135279 -1.348960 65 80 1.054618 1.521637 -2.712259 66 12	41	1	0	-1.312077	-3.027081	-1.570700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	1	0	-3.250503	1.497854	5.571719
4410 -2.436969 -0.060760 5.858773 45 10 -1.734056 5.959431 0.058870 46 10 -0.510560 5.977778 1.355053 47 10 -2.239917 5.833321 1.762154 48 10 4.370716 -3.296317 0.159755 49 10 -0.401438 2.881317 -3.350667 50 10 -0.515831 1.247185 -4.068836 51 10 0.821050 2.344910 -4.551975 52 10 6.656616 2.030276 -0.239014 53 10 2.826364 1.420257 1.630171 54 10 3.337794 0.617245 -2.565828 55 10 -4.872948 -2.584513 0.251970 56 70 -1.627556 -2.362964 -0.873101 57 70 -1.282775 2.948696 0.905934 58 70 2.602838 -3.013692 1.240412 59 70 -4.042632 -0.537985 -1.899899 60 70 -1.619150 0.854903 2.947970 61 80 -0.693601 1.135279 -1.348960 65 80 1.054618 1.521637 -2.712259 66 120 -1.163233 0.755465 0.814890 67 1<	43	1	0	-1.532805	1.464309	6.046366
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	1	0	-2.436969	-0.060760	5.858773
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	1	0	-1.734056	5.959431	0.058870
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	1	0	-0.510560	5.977778	1.355053
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	1	0	-2.239917	5.833321	1.762154
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	1	0	4.370716	-3.296317	0.159755
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	1	0	-0.401438	2.881317	-3.350667
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1	0	-0.515831	1.247185	-4.068836
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	1	0	0.821050	2.344910	-4.551975
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	1	0	6.656616	2.030276	-0.239014
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53	1	0	2.826364	1.420257	1.630171
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	1	0	3.337794	0.617245	-2.565828
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	1	0	-4.872948	-2.584513	0.251970
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	7	0	-1.627556	-2.362964	-0.873101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	7	0	-1.282775	2.948696	0.905934
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	7	0	2.602838	-3.013692	1.240412
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	7	0	-4.042632	-0.537985	-1.899899
	60	7	0	-1.619150	0.854903	2.947970
62 8 0 -1.260246 -1.392961 1.126197 63 8 0 0.841841 0.425106 0.633129 64 8 0 -0.693601 1.135279 -1.348960 65 8 0 1.054618 1.521637 -2.712259 66 12 0 -1.163233 0.755465 0.814890 67 1 0 0.933682 -2.051101 -2.101555	61	8	0	-3.056081	0.438006	-0.006679
63 8 0 0.841841 0.425106 0.633129 64 8 0 -0.693601 1.135279 -1.348960 65 8 0 1.054618 1.521637 -2.712259 66 12 0 -1.163233 0.755465 0.814890 67 1 0 0.933682 -2.051101 -2.101555	62	8	0	-1.260246	-1.392961	1.126197
64 8 0 -0.693601 1.135279 -1.348960 65 8 0 1.054618 1.521637 -2.712259 66 12 0 -1.163233 0.755465 0.814890 67 1 0 0.933682 -2.051101 -2.101555	63	8	0	0.841841	0.425106	0.633129
65 8 0 1.054618 1.521637 -2.712259 66 12 0 -1.163233 0.755465 0.814890 67 1 0 0.933682 -2.051101 -2.101555	64	8	0	-0.693601	1.135279	-1.348960
66 12 0 -1.163233 0.755465 0.814890 67 1 0 0.933682 -2.051101 -2.101555	65	8	0	1.054618	1.521637	-2.712259
67 1 0 0.933682 -2.051101 -2.101555	66	12	0	-1.163233	0.755465	0.814890
	67	1	0	0.933682	-2.051101	-2.101555

E(KB+HF-LYP) = -1820.90185/22

Sum of electronic and thermal Enthalpies= -1820.386764 Sum of electronic and thermal Free Energies= -1820.504962 Frequency: 879.4i

Center	Atomic	Atomic	c Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	5.463047	-0.378755	-1.738862	
2	6	0	2.052699	-0.803457	-2.594823	
3	6	0	2.940505	-0.050436	-1.566931	
4	6	0	0.652742	-1.788614	-0.765989	
5	6	0	-0.689776	-2.381285	-0.474903	
6	6	0	-0.761395	-3.388419	0.457040	
7	6	0	1.473395	3.956435	1.250912	
8	6	0	-1.971216	-5.136287	1.710193	
9	6	0	4.267179	-0.111442	4.382456	
10	6	0	3.355458	0.105364	3.267119	
11	6	0	-3.104188	-3.559410	0.195310	
12	6	0	-3.119309	-2.531870	-0.696843	
13	6	0	-1.912768	-1.791807	-0.988519	
14	6	0	3.398435	-1.501388	-3.003946	
15	6	0	-1.547460	0.694519	-0.053196	
16	6	0	-1.503827	0.524252	1.483943	
17	6	0	-2.630738	1.532140	-0.677666	
18	6	0	1.577662	5.399777	1.418356	
19	6	0	-2.622781	0.302117	3.561625	
20	6	0	-4.566353	3.101658	-1.963995	
21	6	0	-2.254863	2.458422	-1.664551	
22	6	0	-3.992425	1.387629	-0.354570	
23	6	0	-4.950046	2.171128	-0.993903	
24	6	0	-3.217267	3.242799	-2.296875	
25	6	0	1.468592	0.132503	-3.657319	
26	1	0	0.728448	5.893351	0.935563	
27	1	0	1.579784	5.653996	2.482876	
28	1	0	2.505390	5.760467	0.963207	

29	1	0	3.472024	-2.557574	-2.730395
30	1	0	3.716338	-1.346917	-4.039349
31	1	0	5.527874	0.398628	-0.975225
32	1	0	5.925429	-1.298444	-1.367014
33	1	0	5.993688	-0.049472	-2.637908
34	1	0	3.725957	-0.020879	5.329428
35	1	0	4.707068	-1.111427	4.316882
36	1	0	5.069133	0.633026	4.358276
37	1	0	-2.082820	-0.603246	3.844511
38	1	0	-2.137076	1.177792	3.994795
39	1	0	-3.667374	0.248834	3.861872
40	1	0	-5.316366	3.712163	-2.457912
41	1	0	-1.204692	2.560801	-1.914392
42	1	0	-4.304346	0.669928	0.395886
43	1	0	-5.998615	2.056506	-0.735838
44	1	0	-2.915734	3.965208	-3.049735
45	1	0	0.130294	-3.785376	0.928754
46	1	0	-2.138194	-6.055241	1.140845
47	1	0	-1.020175	-5.205360	2.238447
48	1	0	-2.774430	-5.006077	2.438414
49	1	0	-3.993280	-4.123009	0.453930
50	1	0	-4.055165	-2.252962	-1.167543
51	1	0	1.032248	-0.443640	-4.481998
52	1	0	0.323381	-1.989676	-2.751205
53	1	0	-1.987400	-0.545546	-0.330902
54	1	0	0.694370	0.761277	-3.208947
55	1	0	2.247431	0.775555	-4.077225
56	7	0	2.632634	0.279567	2.382305
57	7	0	0.990398	-1.655014	-2.064918
58	7	0	4.061561	-0.605612	-2.038677
59	7	0	1.392488	2.810982	1.116709
60	7	0	-1.938240	-3.974534	0.800962
61	8	0	1.408139	-1.455366	0.171435
62	8	0	-0.339745	0.769555	-0.540160
63	8	0	-2.653364	0.427584	2.111626
64	8	0	2.753184	0.813982	-0.700770
65	8	0	-0.409489	0.446244	2.048038
66	12	0	1.267706	0.655966	0.723686
67	1	0	-1.869170	-1.261435	-1.942730

E(RB+HF-LYP) = -1820.96782449

Sum of electronic and thermal Enthalpies=	-1820.392565
Sum of electronic and thermal Free Energies=	-1820.510571
Frequency: 903.6i	

TS31

Center	Atomic	Atomic	c Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	5.414470	-1.346660	-0.103654	
2	6	0	2.330533	-2.926876	0.612981	
3	6	0	3.008590	-1.542572	0.726852	
4	6	0	0.478177	-1.893069	-0.704081	
5	6	0	-0.984722	-1.931718	-0.960154	
6	6	0	-1.853026	-2.711915	-0.221619	
7	6	0	1.881598	2.994380	2.693559	
8	6	0	-4.094988	-3.522937	0.389082	
9	6	0	4.895479	2.795252	-2.499522	
10	6	0	3.902823	2.116368	-1.676355	
11	6	0	-3.690981	-2.090434	-1.571249	
12	6	0	-2.906126	-1.264976	-2.317427	
13	6	0	-1.542362	-1.023444	-1.933351	
14	6	0	3.605608	-3.304067	-0.225874	
15	6	0	-1.452878	0.966381	-0.082754	
16	6	0	-0.887377	2.168411	-0.864806	
17	6	0	-2.856112	1.019742	0.468805	
18	6	0	2.061261	3.877662	3.837904	
19	6	0	-1.223225	4.095524	-2.203473	
20	6	0	-5.433800	1.006352	1.580871	
21	6	0	-3.057943	0.596810	1.793215	
22	6	0	-3.966166	1.411500	-0.300765	
23	6	0	-5.244574	1.409442	0.257198	
24	6	0	-4.337333	0.598531	2.346407	
25	1	0	-0.858855	-0.594211	-2.663198	
26	1	0	1.107346	4.012763	4.357224	
27	1	0	2.426600	4.853691	3.503707	
28	1	0	2.787032	3.443281	4.532484	
29	1	0	3.429199	-3.403247	-1.300355	

30	1	0	4.198761	-4.141949	0.151232
31	1	0	5.407530	-0.360407	0.364076
32	1	0	5.584905	-1.244360	-1.180375
33	1	0	6.220087	-1.947857	0.329122
34	1	0	4.559538	3.813283	-2.720377
35	1	0	5.033903	2.255282	-3.441429
36	1	0	5.852686	2.845025	-1.971214
37	1	0	-0.604784	3.729309	-3.024850
38	1	0	-0.635974	4.738879	-1.546607
39	1	0	-2.102090	4.617836	-2.576029
40	1	0	-6.429010	1.016534	2.015765
41	1	0	-2.198045	0.292183	2.379519
42	1	0	-3.833353	1.736931	-1.326586
43	1	0	-6.092883	1.729272	-0.340907
44	1	0	-4.478980	0.296052	3.380253
45	1	0	-1.532241	-3.306148	0.625955
46	1	0	-4.581890	-2.828957	1.079811
47	1	0	-3.531907	-4.267974	0.952286
48	1	0	-4.846712	-4.030489	-0.217994
49	1	0	-4.738305	-2.265307	-1.785507
50	1	0	-3.334132	-0.759876	-3.175603
51	7	0	3.112743	1.581119	-1.023296
52	7	0	4.132779	-1.976407	0.146130
53	7	0	1.739357	2.291695	1.786719
54	7	0	-3.177066	-2.777080	-0.494253
55	8	0	2.676487	-0.449002	1.203299
56	8	0	1.173360	-0.932618	-1.101011
57	8	0	-0.530790	0.402885	0.658369
58	8	0	-1.749031	2.970641	-1.443219
59	8	0	0.336668	2.299117	-0.955804
60	12	0	1.407985	0.846799	0.178464
61	1	0	-1.614624	0.212287	-1.129317
62	7	0	1.027109	-2.935063	-0.032566
63	1	0	0.458637	-3.754339	0.136959
64	6	0	2.236496	-3.655389	1.957274
65	1	0	1.527082	-3.149710	2.619384
66	1	0	3.211620	-3.677412	2.451236
67	1	0	1.914508	-4.693775	1.813177

E(RB+HF-LYP) = -1820.97058838

Sum of electronic and thermal Enthalpies= -1820.395166Sum of electronic and thermal Free Energies= -1820.512335HF (B3LYP/6-311++G**//B3LYP/6-31G* in MeCN) = -1821.606361Frequency: 746.8i

Center	Atomic	Atomic	c Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	5.764538	-0.735706	0.205943	
2	6	0	2.846597	-1.527498	-1.643782	
3	6	0	3.405994	-0.419476	-0.704671	
4	6	0	0.939195	-1.892328	-0.089680	
5	6	0	-3.998350	0.672914	-1.295014	
6	6	0	-5.336512	0.970077	-1.045250	
7	6	0	-4.796102	1.504701	1.250242	
8	6	0	-0.475619	-2.329894	0.059788	
9	6	0	2.274064	1.380373	5.126874	
10	6	0	1.289553	5.739670	0.386439	
11	6	0	1.213227	4.285940	0.437292	
12	6	0	-0.880340	-2.727287	1.316698	
13	6	0	1.917717	1.232066	3.722109	
14	6	0	4.146856	-2.304982	-1.222533	
15	6	0	-2.547923	-3.575512	2.920075	
16	6	0	-3.070407	-3.173191	0.550751	
17	6	0	-2.760137	-2.756669	-0.704822	
18	6	0	-1.588175	0.477268	-0.473827	
19	6	0	-0.816239	1.039429	-1.679964	
20	6	0	-3.041283	0.803466	-0.272814	
21	6	0	-1.463956	-2.179114	-0.985990	
22	6	0	-0.793277	1.856915	-3.908378	
23	6	0	-5.738583	1.390566	0.225289	
24	6	0	-3.457454	1.204242	1.007394	
25	6	0	2.824598	-1.103365	-3.114490	
26	1	0	-5.105121	1.832717	2.238545	
27	1	0	-0.181592	-2.749792	2.144108	
28	1	0	-1.674331	-3.588900	3.571511	
29	1	0	-3.291127	-2.882672	3.323350	

3110 -3.508314 -2.827322 -1.485403 3210 -1.677071 -0.776442 -0.951736 3310 4.816912 -2.594608 -2.037121 3410 3.975287 -3.146290 -0.545058 3510 5.911179 -1.422607 1.045636 3610 6.630544 -0.793605 -0.460520 3710 5.663677 0.284508 0.580906 3810 3.087793 2.105091 5.230249 3910 1.408510 1.733880 5.695966 4010 2.600900 0.418418 5.533762 4110 2.010257 6.047107 -0.377863 4210 0.307805 6.156859 0.141160 4310 -4.040319 -3.579136 0.812697 4510 -0.222098 2.737362 -3.611532 4610 -0.124503 1.096075 -4.316099 4710 -1.568333 2.115849 -4.626991 4810 -2.717839 1.289663 1.795968 5010 -3.700265 0.350656 -2.287029 5110 1.081635 -2.644620 -1.989198 5210 -6.066907 0.874688 -1.843194 5310 2.604194 -1.960458	30	1	0	-2.971876	-4.581309	2.868576
3210 -1.677071 -0.776442 -0.951736 33 10 4.816912 -2.594608 -2.037121 34 10 3.975287 -3.146290 -0.545058 35 10 5.911179 -1.422607 1.045636 36 10 6.630544 -0.793605 -0.460520 37 10 5.663677 0.284508 0.580906 38 10 3.087793 2.105091 5.230249 39 10 1.408510 1.733880 5.695966 40 10 2.600900 0.418418 5.533762 41 10 2.010257 6.047107 -0.377863 42 10 0.307805 6.156859 0.141160 43 10 -4.040319 -3.579136 0.812697 45 10 -0.222098 2.737362 -3.611532 46 10 -0.124503 1.096075 -4.316099 47 10 -1.568333 2.115849 -4.626991 48 10 -2.717839 1.289663 1.795968 50 10 -3.700265 0.350656 -2.287029 51 10 1.081635 -2.644620 -1.989198 52 10 -6.066907 0.874688 -1.843194 53 10 2.070342 -0.327532 -3.272461 54 1 <t< td=""><td>31</td><td>1</td><td>0</td><td>-3.508314</td><td>-2.827322</td><td>-1.485403</td></t<>	31	1	0	-3.508314	-2.827322	-1.485403
33 1 0 4.816912 -2.594608 -2.037121 34 1 0 3.975287 -3.146290 -0.545058 35 1 0 5.911179 -1.422607 1.045636 36 1 0 5.663677 0.284508 0.580906 38 1 0 3.087793 2.105091 5.230249 39 1 0 1.408510 1.733880 5.695966 40 1 0 2.600900 0.418418 5.533762 41 1 0 2.010257 6.047107 -0.377863 42 1 0 0.307805 6.156859 0.141160 43 1 0 -4.040319 -3.579136 0.812697 45 1 0 -0.124503 1.096075 -4.316099 47 1 0 -1.568333 2.115849 -4.626991 48 1 0 -2.717839 1.289663 1.795968 50 1 0 -3.700265 0.350656 -2.287029 <t< td=""><td>32</td><td>1</td><td>0</td><td>-1.677071</td><td>-0.776442</td><td>-0.951736</td></t<>	32	1	0	-1.677071	-0.776442	-0.951736
34 1 0 3.975287 -3.146290 -0.545058 35 1 0 5.911179 -1.422607 1.045636 36 1 0 5.663677 0.284508 0.580906 37 1 0 5.663677 0.284508 0.580906 38 1 0 3.087793 2.105091 5.230249 39 1 0 1.408510 1.733880 5.695966 40 1 0 2.600900 0.418418 5.533762 41 1 0 2.010257 6.047107 -0.377863 42 1 0 0.307805 6.156859 0.141160 43 1 0 -4.040319 -3.579136 0.812697 45 1 0 -0.124503 1.096075 -4.316099 47 1 0 -1.568333 2.115849 -4.626991 48 1 0 -2.717839 1.289663 1.795968 50 1 0 -3.700265 0.350656 -2.287029	33	1	0	4.816912	-2.594608	-2.037121
35 1 0 5.911179 -1.422607 1.045636 36 1 0 6.630544 -0.793605 -0.460520 37 1 0 5.663677 0.284508 0.580906 38 1 0 3.087793 2.105091 5.230249 39 1 0 1.408510 1.733880 5.695966 40 1 0 2.600900 0.418418 5.533762 41 1 0 2.010257 6.047107 -0.377863 42 1 0 0.307805 6.156859 0.141160 43 1 0 -1.610456 6.131500 1.356640 44 1 0 -4.040319 -3.579136 0.812697 45 1 0 -0.124503 1.096075 -4.316099 47 1 0 -1.568333 2.115849 -4.626991 48 1 0 -2.717839 1.289663 1.795968 50 1 0 -3.700265 0.350656 -2.287029 <td< td=""><td>34</td><td>1</td><td>0</td><td>3.975287</td><td>-3.146290</td><td>-0.545058</td></td<>	34	1	0	3.975287	-3.146290	-0.545058
36 1 0 6.630544 -0.793605 -0.460520 37 1 0 5.663677 0.284508 0.580906 38 1 0 3.087793 2.105091 5.230249 39 1 0 1.408510 1.733880 5.695966 40 1 0 2.600900 0.418418 5.533762 41 1 0 2.010257 6.047107 -0.377863 42 1 0 0.307805 6.156859 0.141160 43 1 0 1.610456 6.131500 1.356640 44 1 0 -4.040319 -3.579136 0.812697 45 1 0 -0.22098 2.737362 -3.611532 46 1 0 -0.124503 1.096075 -4.316099 47 1 0 -1.568333 2.115849 -4.626991 48 1 0 -2.717839 1.289663 1.795968 50 1 0 -3.700265 0.350656 -2.287029	35	1	0	5.911179	-1.422607	1.045636
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	1	0	6.630544	-0.793605	-0.460520
38 1 0 3.087793 2.105091 5.230249 39 1 0 1.408510 1.733880 5.695966 40 1 0 2.600900 0.418418 5.533762 41 1 0 2.010257 6.047107 -0.377863 42 1 0 0.307805 6.156859 0.141160 43 1 0 -4.040319 -3.579136 0.812697 45 1 0 -0.22098 2.737362 -3.611532 46 1 0 -0.124503 1.096075 -4.316099 47 1 0 -1.568333 2.115849 -4.626991 48 1 0 -2.717839 1.289663 1.795968 50 1 0 -3.700265 0.350656 -2.287029 51 1 0 1.081635 -2.644620 -1.989198 52 1 0 -2.070342 -0.327532 -3.272461 54 1 0 3.797794 -0.704130 -3.413038	37	1	0	5.663677	0.284508	0.580906
39 1 0 1.408510 1.733880 5.695966 40 1 0 2.600900 0.418418 5.533762 41 1 0 2.010257 6.047107 -0.377863 42 1 0 0.307805 6.156859 0.141160 43 1 0 1.610456 6.131500 1.356640 44 1 0 -4.040319 -3.579136 0.812697 45 1 0 -0.222098 2.737362 -3.611532 46 1 0 -1.568333 2.115849 -4.626991 48 1 0 -2.717839 1.289663 1.795968 50 1 0 -3.700265 0.350656 -2.287029 51 1 0 1.081635 -2.644620 -1.989198 52 1 0 -2.070342 -0.327532 -3.272461 54 1 0 3.797794 -0.704130 -3.413038 55 1 0 2.604194 -1.960458 -3.762070	38	1	0	3.087793	2.105091	5.230249
40102.6009000.4184185.533762 41 102.010257 6.047107 -0.377863 42 100.307805 6.156859 0.141160 43 10 1.610456 6.131500 1.356640 44 10 -4.040319 -3.579136 0.812697 45 10 -0.222098 2.737362 -3.611532 46 10 -0.124503 1.096075 -4.316099 47 10 -1.568333 2.115849 -4.626991 48 10 -6.781425 1.627017 0.414731 49 10 -2.717839 1.289663 1.795968 50 10 -3.700265 0.350656 -2.287029 51 10 1.081635 -2.644620 -1.989198 52 10 -6.066907 0.874688 -1.843194 53 10 2.070342 -0.327532 -3.272461 54 10 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 4.553279 -1.076328 -0.516710 59 70 1.635946 1.116761 2.607053 60 70 <td< td=""><td>39</td><td>1</td><td>0</td><td>1.408510</td><td>1.733880</td><td>5.695966</td></td<>	39	1	0	1.408510	1.733880	5.695966
41102.010257 6.047107 -0.377863 42 10 0.307805 6.156859 0.141160 43 10 1.610456 6.131500 1.356640 44 10 -4.040319 -3.579136 0.812697 45 10 -0.222098 2.737362 -3.611532 46 10 -0.124503 1.096075 -4.316099 47 10 -1.568333 2.115849 -4.626991 48 10 -6.781425 1.627017 0.414731 49 10 -2.717839 1.289663 1.795968 50 10 -3.700265 0.350656 -2.287029 51 10 1.081635 -2.644620 -1.989198 52 10 -6.066907 0.874688 -1.843194 53 10 2.070342 -0.327532 -3.272461 54 10 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.13183 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 1.635946 1.116761 2.607053 60 70 1.528070 -1.304310 0.839479 62 80 -0.812519 0.401434 0.573741 63 80<	40	1	0	2.600900	0.418418	5.533762
4210 0.307805 6.156859 0.141160 43 10 1.610456 6.131500 1.356640 44 10 -4.040319 -3.579136 0.812697 45 10 -0.222098 2.737362 -3.611532 46 10 -0.124503 1.096075 -4.316099 47 10 -1.568333 2.115849 -4.626991 48 10 -6.781425 1.627017 0.414731 49 10 -2.717839 1.289663 1.795968 50 10 -3.700265 0.350656 -2.287029 51 10 1.081635 -2.644620 -1.989198 52 10 -6.066907 0.874688 -1.843194 53 10 2.070342 -0.327532 -3.272461 54 10 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 1.635946 1.116761 2.607053 60 70 1.528070 -1.304310 0.839479 62 80 -0.812519 0.401434 0.573741 63 80 0.409665 1.155559 -1.594873 64 8 <td< td=""><td>41</td><td>1</td><td>0</td><td>2.010257</td><td>6.047107</td><td>-0.377863</td></td<>	41	1	0	2.010257	6.047107	-0.377863
4310 1.610456 6.131500 1.356640 4410 -4.040319 -3.579136 0.812697 4510 -0.222098 2.737362 -3.611532 4610 -0.124503 1.096075 -4.316099 4710 -1.568333 2.115849 -4.626991 4810 -6.781425 1.627017 0.414731 4910 -2.717839 1.289663 1.795968 5010 -3.700265 0.350656 -2.287029 5110 1.081635 -2.644620 -1.989198 5210 -6.066907 0.874688 -1.843194 5310 2.070342 -0.327532 -3.272461 5410 3.797794 -0.704130 -3.413038 5510 2.604194 -1.960458 -3.762070 5670 1.154241 3.131883 0.477043 5770 -2.141560 -3.138610 1.571312 5870 4.553279 -1.076328 -0.516710 5970 1.635946 1.116761 2.607053 6070 1.528070 -1.304310 0.839479 6280 -0.812519 0.401434 0.573741 6380 0.409665 1.155559 -1.594873 6480 3.017172 0.691218	42	1	0	0.307805	6.156859	0.141160
4410 -4.040319 -3.579136 0.812697 45 10 -0.222098 2.737362 -3.611532 46 10 -0.124503 1.096075 -4.316099 47 10 -1.568333 2.115849 -4.626991 48 10 -6.781425 1.627017 0.414731 49 10 -2.717839 1.289663 1.795968 50 10 -3.700265 0.350656 -2.287029 51 10 1.081635 -2.644620 -1.989198 52 10 -6.066907 0.874688 -1.843194 53 10 2.070342 -0.327532 -3.272461 54 10 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 1.635946 1.116761 2.607053 60 70 1.528070 -1.304310 0.839479 62 80 -0.812519 0.401434 0.573741 63 80 0.409665 1.155559 -1.594873 64 80 3.017172 0.691218 -0.312232 65 80 -1.507982 1.320708 -2.760416 66 12 <td>43</td> <td>1</td> <td>0</td> <td>1.610456</td> <td>6.131500</td> <td>1.356640</td>	43	1	0	1.610456	6.131500	1.356640
4510 -0.222098 2.737362 -3.611532 46 10 -0.124503 1.096075 -4.316099 47 10 -1.568333 2.115849 -4.626991 48 10 -6.781425 1.627017 0.414731 49 10 -2.717839 1.289663 1.795968 50 10 -3.700265 0.350656 -2.287029 51 10 1.081635 -2.644620 -1.989198 52 10 -6.066907 0.874688 -1.843194 53 10 2.070342 -0.327532 -3.272461 54 10 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 4.553279 -1.076328 -0.516710 59 70 1.635946 1.116761 2.607053 60 70 1.52247 -2.094769 -1.280443 61 80 0.409665 1.155559 -1.594873 64 80 3.017172 0.691218 -0.312232 65 80 -1.507982 1.320708 -2.760416 66 120 1.141109 0.940163 0.489493	44	1	0	-4.040319	-3.579136	0.812697
4610 -0.124503 1.096075 -4.316099 47 10 -1.568333 2.115849 -4.626991 48 10 -6.781425 1.627017 0.414731 49 10 -2.717839 1.289663 1.795968 50 10 -3.700265 0.350656 -2.287029 51 10 1.081635 -2.644620 -1.989198 52 10 -6.066907 0.874688 -1.843194 53 10 2.070342 -0.327532 -3.272461 54 10 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 1.635946 1.116761 2.607053 60 70 1.552247 -2.094769 -1.280443 61 80 1.528070 -1.304310 0.839479 62 80 -0.812519 0.401434 0.573741 63 80 0.409665 1.155559 -1.594873 64 80 3.017172 0.691218 -0.312232 65 80 -1.507982 1.320708 -2.760416 66 120 1.141109 0.940163 0.489493	45	1	0	-0.222098	2.737362	-3.611532
4710 -1.568333 2.115849 -4.626991 48 10 -6.781425 1.627017 0.414731 49 10 -2.717839 1.289663 1.795968 50 10 -3.700265 0.350656 -2.287029 51 10 1.081635 -2.644620 -1.989198 52 10 -6.066907 0.874688 -1.843194 53 10 2.070342 -0.327532 -3.272461 54 10 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 4.553279 -1.076328 -0.516710 59 70 1.635946 1.116761 2.607053 60 70 1.552247 -2.094769 -1.280443 61 80 -0.812519 0.401434 0.573741 63 80 -0.812519 0.401434 0.573741 63 80 -1.507982 1.320708 -2.760416 66 120 1.141109 0.940163 0.489493	46	1	0	-0.124503	1.096075	-4.316099
4810 -6.781425 1.627017 0.414731 49 10 -2.717839 1.289663 1.795968 50 10 -3.700265 0.350656 -2.287029 51 10 1.081635 -2.644620 -1.989198 52 10 -6.066907 0.874688 -1.843194 53 10 2.070342 -0.327532 -3.272461 54 10 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 4.553279 -1.076328 -0.516710 59 70 1.635946 1.116761 2.607053 60 70 1.552247 -2.094769 -1.280443 61 80 -0.812519 0.401434 0.573741 63 80 0.409665 1.155559 -1.594873 64 80 3.017172 0.691218 -0.312232 65 80 -1.507982 1.320708 -2.760416 66 120 1.141109 0.940163 0.489493	47	1	0	-1.568333	2.115849	-4.626991
4910-2.7178391.2896631.795968 50 10-3.7002650.350656-2.287029 51 101.081635-2.644620-1.989198 52 10-6.0669070.874688-1.843194 53 102.070342-0.327532-3.272461 54 103.797794-0.704130-3.413038 55 102.604194-1.960458-3.762070 56 701.1542413.1318830.477043 57 70-2.141560-3.1386101.571312 58 704.553279-1.076328-0.516710 59 701.6359461.1167612.607053 60 701.552247-2.094769-1.280443 61 800.4096651.155559-1.594873 64 803.0171720.691218-0.312232 65 80-1.5079821.320708-2.760416 66 1201.1411090.9401630.489493	48	1	0	-6.781425	1.627017	0.414731
5010 -3.700265 0.350656 -2.287029 51 10 1.081635 -2.644620 -1.989198 52 10 -6.066907 0.874688 -1.843194 53 10 2.070342 -0.327532 -3.272461 54 10 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 4.553279 -1.076328 -0.516710 59 70 1.635946 1.116761 2.607053 60 70 1.552247 -2.094769 -1.280443 61 80 1.528070 -1.304310 0.839479 62 80 -0.812519 0.401434 0.573741 63 80 0.409665 1.155559 -1.594873 64 80 3.017172 0.691218 -0.312232 65 80 -1.507982 1.320708 -2.760416 66 120 1.141109 0.940163 0.489493	49	1	0	-2.717839	1.289663	1.795968
5110 1.081635 -2.644620 -1.989198 52 10 -6.066907 0.874688 -1.843194 53 10 2.070342 -0.327532 -3.272461 54 10 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 4.553279 -1.076328 -0.516710 59 70 1.635946 1.116761 2.607053 60 70 1.552247 -2.094769 -1.280443 61 80 -0.812519 0.401434 0.573741 63 80 0.409665 1.155559 -1.594873 64 80 3.017172 0.691218 -0.312232 65 80 -1.507982 1.320708 -2.760416 66 120 1.141109 0.940163 0.489493	50	1	0	-3.700265	0.350656	-2.287029
5210-6.0669070.874688-1.843194 53 102.070342-0.327532-3.272461 54 103.797794-0.704130-3.413038 55 102.604194-1.960458-3.762070 56 701.1542413.1318830.477043 57 70-2.141560-3.1386101.571312 58 704.553279-1.076328-0.516710 59 701.6359461.1167612.607053 60 701.552247-2.094769-1.280443 61 801.528070-1.3043100.839479 62 80-0.8125190.4014340.573741 63 800.4096651.155559-1.594873 64 803.0171720.691218-0.312232 65 80-1.5079821.320708-2.760416 66 1201.1411090.9401630.489493	51	1	0	1.081635	-2.644620	-1.989198
53102.070342 -0.327532 -3.272461 54 10 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 4.553279 -1.076328 -0.516710 59 70 1.635946 1.116761 2.607053 60 70 1.552247 -2.094769 -1.280443 61 80 1.528070 -1.304310 0.839479 62 80 -0.812519 0.401434 0.573741 63 80 3.017172 0.691218 -0.312232 65 80 -1.507982 1.320708 -2.760416 66 120 1.141109 0.940163 0.489493	52	1	0	-6.066907	0.874688	-1.843194
5410 3.797794 -0.704130 -3.413038 55 10 2.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 4.553279 -1.076328 -0.516710 59 70 1.635946 1.116761 2.607053 60 70 1.552247 -2.094769 -1.280443 61 80 1.528070 -1.304310 0.839479 62 80 -0.812519 0.401434 0.573741 63 80 3.017172 0.691218 -0.312232 65 80 -1.507982 1.320708 -2.760416 66 120 1.141109 0.940163 0.489493	53	1	0	2.070342	-0.327532	-3.272461
55102.604194 -1.960458 -3.762070 56 70 1.154241 3.131883 0.477043 57 70 -2.141560 -3.138610 1.571312 58 70 4.553279 -1.076328 -0.516710 59 70 1.635946 1.116761 2.607053 60 70 1.552247 -2.094769 -1.280443 61 80 1.528070 -1.304310 0.839479 62 80 -0.812519 0.401434 0.573741 63 80 3.017172 0.691218 -0.312232 64 80 -1.507982 1.320708 -2.760416 66 120 1.141109 0.940163 0.489493	54	1	0	3.797794	-0.704130	-3.413038
56701.1542413.1318830.477043 57 70-2.141560-3.1386101.571312 58 704.553279-1.076328-0.516710 59 701.6359461.1167612.607053 60 701.552247-2.094769-1.280443 61 801.528070-1.3043100.839479 62 80-0.8125190.4014340.573741 63 800.4096651.155559-1.594873 64 803.0171720.691218-0.312232 65 80-1.5079821.320708-2.760416 66 1201.1411090.9401630.489493	55	1	0	2.604194	-1.960458	-3.762070
5770-2.141560-3.1386101.571312 58 704.553279-1.076328-0.516710 59 701.6359461.1167612.607053 60 701.552247-2.094769-1.280443 61 801.528070-1.3043100.839479 62 80-0.8125190.4014340.573741 63 800.4096651.155559-1.594873 64 803.0171720.691218-0.312232 65 80-1.5079821.320708-2.760416 66 1201.1411090.9401630.489493	56	7	0	1.154241	3.131883	0.477043
58 7 0 4.553279 -1.076328 -0.516710 59 7 0 1.635946 1.116761 2.607053 60 7 0 1.552247 -2.094769 -1.280443 61 8 0 1.528070 -1.304310 0.839479 62 8 0 -0.812519 0.401434 0.573741 63 8 0 0.409665 1.155559 -1.594873 64 8 0 3.017172 0.691218 -0.312232 65 8 0 -1.507982 1.320708 -2.760416 66 12 0 1.141109 0.940163 0.489493	57	7	0	-2.141560	-3.138610	1.571312
59701.6359461.1167612.60705360701.552247-2.094769-1.28044361801.528070-1.3043100.8394796280-0.8125190.4014340.57374163800.4096651.155559-1.59487364803.0171720.691218-0.3122326580-1.5079821.320708-2.760416661201.1411090.9401630.489493	58	7	0	4.553279	-1.076328	-0.516710
60701.552247-2.094769-1.28044361801.528070-1.3043100.8394796280-0.8125190.4014340.57374163800.4096651.155559-1.59487364803.0171720.691218-0.3122326580-1.5079821.320708-2.760416661201.1411090.9401630.489493	59	7	0	1.635946	1.116761	2.607053
61801.528070-1.3043100.8394796280-0.8125190.4014340.57374163800.4096651.155559-1.59487364803.0171720.691218-0.3122326580-1.5079821.320708-2.760416661201.1411090.9401630.489493	60	7	0	1.552247	-2.094769	-1.280443
6280-0.8125190.4014340.57374163800.4096651.155559-1.59487364803.0171720.691218-0.3122326580-1.5079821.320708-2.760416661201.1411090.9401630.489493	61	8	0	1.528070	-1.304310	0.839479
63800.4096651.155559-1.59487364803.0171720.691218-0.3122326580-1.5079821.320708-2.760416661201.1411090.9401630.489493	62	8	0	-0.812519	0.401434	0.573741
64803.0171720.691218-0.3122326580-1.5079821.320708-2.760416661201.1411090.9401630.489493	63	8	0	0.409665	1.155559	-1.594873
6580-1.5079821.320708-2.760416661201.1411090.9401630.489493	64	8	0	3.017172	0.691218	-0.312232
661201.1411090.9401630.489493	65	8	0	-1.507982	1.320708	-2.760416
	66	12	0	1.141109	0.940163	0.489493
67 1 0 -1.141662 -2.188988 -2.027870	67	1	0	-1.141662	-2.188988	-2.027870

Sum of electronic and thermal Enthalpies=-1820.389752Sum of electronic and thermal Free Energies=-1820.507837E(RB+HF-LYP) = -1820.96495894-1820.507837Frequency: 890.9i-1820.96495894

TS33

Center	Atomic	Atomic	ic Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-5.723163	0.768227	0.548816	
2	6	0	-2.808273	2.094788	-0.964067	
3	6	0	-3.377580	0.738400	-0.449104	
4	6	0	-0.742530	1.873487	0.438648	
5	6	0	4.136117	-0.796151	-0.619611	
6	6	0	5.418163	-1.323985	-0.481813	
7	6	0	4.534841	-3.132303	0.859244	
8	6	0	0.638435	2.365586	0.731027	
9	6	0	-2.663540	-2.986574	4.353085	
10	6	0	-2.011180	-5.431193	-1.928601	
11	6	0	-1.778797	-4.140610	-1.294311	
12	6	0	1.070442	3.648259	0.480434	
13	6	0	-2.285295	-2.408416	3.070599	
14	6	0	-4.094862	2.702488	-0.299042	
15	6	0	2.758932	5.452842	0.555111	
16	6	0	3.202070	3.183512	1.390352	
17	6	0	2.839785	1.903452	1.686909	
18	6	0	1.633012	-0.900341	-0.112652	
19	6	0	1.044455	-0.546356	-1.500382	
20	6	0	3.037618	-1.442674	-0.026555	
21	6	0	1.548606	1.402744	1.312363	
22	6	0	1.353554	-0.015251	-3.791196	
23	6	0	5.620519	-2.494771	0.254203	
24	6	0	3.251320	-2.605506	0.728936	
25	1	0	6.261014	-0.823587	-0.949623	
26	1	0	4.689251	-4.040912	1.433816	
27	1	0	0.424419	4.421122	0.078691	
28	1	0	1.964009	5.996504	0.044596	
29	1	0	2.970285	5.937679	1.511745	

30	1	0	3.655998	5.461382	-0.068516
31	1	0	3.544439	1.260357	2.201498
32	1	0	1.106938	0.577843	1.877106
33	1	0	-4.778082	3.222876	-0.977091
34	1	0	-3.911342	3.301525	0.597436
35	1	0	-5.887453	1.143659	1.563623
36	1	0	-6.575376	1.047210	-0.079015
37	1	0	-5.630193	-0.319172	0.570695
38	1	0	-3.628067	-3.496112	4.264411
39	1	0	-1.906043	-3.709789	4.671145
40	1	0	-2.743382	-2.199191	5.108988
41	1	0	-2.137619	-5.299084	-3.007668
42	1	0	-1.159789	-6.094531	-1.746905
43	1	0	-2.915918	-5.890572	-1.518398
44	1	0	4.172828	3.593393	1.644828
45	1	0	0.721915	-0.842324	-4.118648
46	1	0	0.774517	0.910308	-3.765797
47	1	0	2.224549	0.088521	-4.435339
48	1	0	6.620393	-2.905918	0.356866
49	1	0	2.401418	-3.086323	1.200067
50	1	0	3.991092	0.111802	-1.196427
51	7	0	-1.594391	-3.116927	-0.789978
52	7	0	2.328757	4.058852	0.785083
53	7	0	-4.496301	1.317641	0.001514
54	7	0	-1.982958	-1.951867	2.052730
55	8	0	-3.040263	-0.449382	-0.510785
56	8	0	-1.132945	0.829516	0.988375
57	8	0	0.716563	-1.440554	0.650514
58	8	0	-0.183072	-0.482661	-1.631630
59	8	0	1.892165	-0.300098	-2.471986
60	12	0	-1.218264	-1.184241	0.159756
61	1	0	1.794903	0.322163	0.289980
62	6	0	-2.792182	2.162612	-2.493846
63	1	0	-2.033899	1.481219	-2.890281
64	1	0	-3.764231	1.873640	-2.903338
65	1	0	-2.577337	3.181658	-2.837938
66	7	0	-1.517253	2.547864	-0.443816
67	1	0	-1.097436	3.308426	-0.963505
Sum o	felectroni	ic and th	ermal Entha	 lpies=	-1820.390923
Sum o	f electroni	ic and th	ermal Free F	Energies=	-1820,510507
E(RB+	-HF-LYP) = -182	0.96608109	0.00	10201010001
Freque	ency: 784.	5i			

Center	Atomic	Atomic	coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-2.932310	-1.305547	-4.074268	
2	6	0	-0.997450	-3.284855	-1.409476	
3	6	0	-1.785645	-3.933116	-0.259435	
4	6	0	-1.778663	-2.113159	-2.033066	
5	6	0	0.779778	-2.116812	-0.015680	
6	6	0	2.168721	-2.074750	0.387744	
7	6	0	3.177199	-2.644819	-0.352309	
8	6	0	-4.094803	2.035386	-0.304252	
9	6	0	5.527007	-3.229366	-0.817962	
10	6	0	-4.352559	-2.057141	3.713991	
11	6	0	-3.528320	-1.491871	2.654199	
12	6	0	4.824936	-2.110854	1.273902	
13	6	0	3.932497	-1.498665	2.055905	
14	6	0	2.484749	-1.315983	1.671309	
15	6	0	0.314965	2.154153	-0.029028	
16	6	0	0.009044	2.033111	1.491287	
17	6	0	1.153749	3.168493	-0.647218	
18	6	0	-5.204648	2.934781	-0.592244	
19	6	0	0.432777	2.640963	3.742077	
20	6	0	2.704102	5.060094	-2.012984	
21	6	0	1.429908	3.012466	-2.028801	
22	6	0	1.665755	4.298536	0.033245	
23	6	0	2.430957	5.233998	-0.652973	
24	6	0	2.202387	3.946124	-2.699916	
25	1	0	1.828787	-1.656299	2.485119	
26	1	0	2.256357	-0.241518	1.558123	
27	1	0	-4.916500	3.646224	-1.372476	
28	1	0	-5.481817	3.488499	0.310238	
29	1	0	-6.070133	2.360071	-0.936723	

3110 -3.134355 -0.445960 -3.437392 32 10 -3.876011 -1.759157 -4.390857 33 10 -2.372813 -0.984889 -4.957542 34 10 -1.907846 -3.246814 0.578218 35 10 -1.252707 -4.822843 0.088719 36 10 -4.821250 -1.253654 4.290783 37 10 -3.73384 -2.662377 4.384057 38 10 -5.135090 -2.689000 3.282211 39 10 0.605601 1.606802 4.042571 40 10 -0.598940 2.930150 3.947776 41 10 1.135527 3.316969 4.224087 42 10 3.306408 5.793783 -2.540764 43 10 1.031442 2.148528 -2.548635 44 10 1.459269 4.449769 1.083258 45 10 2.815549 6.102617 -0.128241 46 10 2.416602 3.816829 -3.756095 47 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.09609 3.013103 53 1 <t< th=""><th>30</th><th>1</th><th>0</th><th>1.065675</th><th>-3.586047</th><th>-1.379953</th></t<>	30	1	0	1.065675	-3.586047	-1.379953
3210 -3.876011 -1.759157 -4.390857 33 10 -2.372813 -0.984889 -4.957542 34 10 -1.907846 -3.246814 0.578218 35 10 -1.252707 -4.822843 0.088719 36 10 -4.821250 -1.253654 4.290783 37 10 -3.733884 -2.662377 4.384057 38 10 -5.135090 2.689000 3.282211 39 10 0.605601 1.606802 4.042571 40 10 -0.598940 2.930150 3.947776 41 10 1.135527 3.316969 4.224087 42 10 3.306408 5.793783 -2.540764 43 10 1.031442 2.148528 -2.548635 44 10 1.459269 4.449769 1.083258 45 10 2.815549 6.102617 0.128241 46 10 2.416602 3.816829 -3.756095 47 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 1 <t< td=""><td>31</td><td>1</td><td>0</td><td>-3.134355</td><td>-0.445960</td><td>-3.437392</td></t<>	31	1	0	-3.134355	-0.445960	-3.437392
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1	0	-3.876011	-1.759157	-4.390857
3410-1.907846-3.2468140.578218 35 10-1.252707-4.8228430.088719 36 10-4.821250-1.2536544.290783 37 10-3.733884-2.6623774.384057 38 10-5.135090-2.6890003.282211 39 100.6056011.6068024.042571 40 10-0.5989402.9301503.947776 41 101.1355273.3169694.224087 42 103.3064085.793783-2.540764 43 101.0314422.148528-2.548635 44 101.4592694.4497691.083258 45 102.8155496.102617-0.128241 46 102.4166023.816829-3.756095 47 102.994233-3.110384-1.316545 48 106.242172-2.454745-1.113746 49 105.866495-2.2367931.545340 52 104.264691-1.1096093.013103 53 10-2.775220-4.244369-0.610879 54 700.383419-2.913143-1.062477 55 70-2.872418-1.0458961.812712 56 70-3.2152581.320116-0.076457 57 704.472760	33	1	0	-2.372813	-0.984889	-4.957542
3510 -1.252707 -4.822843 0.088719 36 10 -4.821250 -1.253654 4.290783 37 10 -3.733884 -2.662377 4.384057 38 10 -5.135090 -2.689000 3.282211 39 10 0.605601 1.606802 4.042571 40 10 -0.598940 2.930150 3.947776 41 10 1.135527 3.316969 4.224087 42 10 3.306408 5.793783 -2.540764 43 10 1.031442 2.148528 -2.548635 44 10 1.459269 4.449769 1.083258 45 10 2.815549 6.102617 -0.128241 46 10 2.416602 3.816829 -3.756095 47 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 7 <t< td=""><td>34</td><td>1</td><td>0</td><td>-1.907846</td><td>-3.246814</td><td>0.578218</td></t<>	34	1	0	-1.907846	-3.246814	0.578218
3610 -4.821250 -1.253654 4.290783 37 10 -3.733884 -2.662377 4.384057 38 10 -5.135090 -2.689000 3.282211 39 10 0.605601 1.606802 4.042571 40 10 -0.598940 2.930150 3.947776 41 10 1.135527 3.316969 4.224087 42 10 3.306408 5.793783 -2.540764 43 10 1.031442 2.148528 -2.548635 44 10 1.459269 4.449769 1.083258 45 10 2.815549 6.102617 -0.128241 46 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.09609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 7 <t< td=""><td>35</td><td>1</td><td>0</td><td>-1.252707</td><td>-4.822843</td><td>0.088719</td></t<>	35	1	0	-1.252707	-4.822843	0.088719
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	1	0	-4.821250	-1.253654	4.290783
3810 -5.135090 -2.689000 3.282211 39 10 0.605601 1.606802 4.042571 40 10 -0.598940 2.930150 3.947776 41 10 1.135527 3.316969 4.224087 42 10 3.306408 5.793783 -2.540764 43 10 1.031442 2.148528 -2.548635 44 10 1.459269 4.449769 1.083258 45 10 2.815549 6.102617 -0.128241 46 10 2.416602 3.816829 -3.756095 47 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 -2.775220 -4.244369 -0.610879 54 70 -3.83419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -2.872418 -1.045896 1.812712 56 70 -2.872418 -1.045896 1.812712 56 70 -2.872418 -1.045896 1.812712 57 7<	37	1	0	-3.733884	-2.662377	4.384057
39100.6056011.6068024.042571 40 10-0.5989402.930150 3.947776 41 10 1.135527 3.316969 4.224087 42 10 3.306408 5.793783 -2.540764 43 10 1.031442 2.148528 -2.548635 44 10 1.459269 4.449769 1.083258 45 10 2.815549 6.102617 -0.128241 46 10 2.416602 3.816829 -3.756095 47 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -0.254911 1.264010 -0.679702 61 80 <td< td=""><td>38</td><td>1</td><td>0</td><td>-5.135090</td><td>-2.689000</td><td>3.282211</td></td<>	38	1	0	-5.135090	-2.689000	3.282211
4010 -0.598940 2.930150 3.947776 41 10 1.135527 3.316969 4.224087 42 10 3.306408 5.793783 -2.540764 43 10 1.031442 2.148528 -2.548635 44 10 1.459269 4.449769 1.083258 45 10 2.815549 6.102617 -0.128241 46 10 2.416602 3.816829 -3.756095 47 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 -3.872418 -1.045896 1.812712 56 70 -2.872418 -1.045896 1.812712 56 70 -2.872418 -1.045896 1.812712 56 70 -2.872418 -1.045896 1.812712 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 8	39	1	0	0.605601	1.606802	4.042571
4110 1.135527 3.316969 4.224087 42 10 3.306408 5.793783 -2.540764 43 10 1.031442 2.148528 -2.548635 44 10 1.459269 4.449769 1.083258 45 10 2.815549 6.102617 -0.128241 46 10 2.416602 3.816829 -3.756095 47 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.254911 1.264010 -0.679702 61 8 <td>40</td> <td>1</td> <td>0</td> <td>-0.598940</td> <td>2.930150</td> <td>3.947776</td>	40	1	0	-0.598940	2.930150	3.947776
4210 3.306408 5.793783 -2.540764 43 10 1.031442 2.148528 -2.548635 44 10 1.459269 4.449769 1.083258 45 10 2.815549 6.102617 -0.128241 46 10 2.416602 3.816829 -3.756095 47 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 -3.883419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.254911 1.264010 -0.679702 61 80 -0.287258 -4.040518 -2.192178 62 8	41	1	0	1.135527	3.316969	4.224087
4310 1.031442 2.148528 -2.548635 4410 1.459269 4.449769 1.083258 4510 2.815549 6.102617 -0.128241 4610 2.416602 3.816829 -3.756095 4710 2.994233 -3.110384 -1.316545 4810 6.242172 -2.454745 -1.113746 4910 5.084153 -3.660744 -1.717379 5010 6.059424 -4.017462 -0.276084 5110 5.866495 -2.236793 1.545340 5210 4.264691 -1.109609 3.013103 5310 -2.775220 -4.244369 -0.610879 5470 0.383419 -2.913143 -1.062477 5570 -2.872418 -1.045896 1.812712 5670 -3.215258 1.320116 -0.076457 5770 4.472760 -2.661102 0.022824 5880 -2.099799 -1.092513 -1.386314 5980 -0.070190 -1.419652 0.609490 6080 -0.2549111 1.264010 -0.679702 6180 0.699222 2.781572 2.312548 6280 -0.839620 1.218242 1.843107 63120 -1.569957 -0.1	42	1	0	3.306408	5.793783	-2.540764
4410 1.459269 4.449769 1.083258 45 10 2.815549 6.102617 -0.128241 46 10 2.416602 3.816829 -3.756095 47 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.2549111 1.264010 -0.679702 61 80 0.699222 2.781572 2.312548 62 80 -0.839620 1.218242 1.843107 63 120 -1.569957 -0.115174 0.312679 64 1<	43	1	0	1.031442	2.148528	-2.548635
4510 2.815549 6.102617 -0.128241 46 10 2.416602 3.816829 -3.756095 47 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.254911 1.264010 -0.679702 61 80 0.699222 2.781572 2.312548 62 80 -0.839620 1.218242 1.843107 63 120 -1.569957 -0.115174 0.312679 64 10 -0.877258 -4.040518 -2.192178 65	44	1	0	1.459269	4.449769	1.083258
46102.416602 3.816829 -3.756095 47 10 2.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.254911 1.264010 -0.679702 61 80 -0.839620 1.218242 1.843107 63 120 -1.569957 -0.115174 0.312679 64 10 -0.877258 -4.040518 -2.192178 65 70 -2.144691 -2.270760 -3.308513 66 10 -1.868159 -3.119760 -3.784188	45	1	0	2.815549	6.102617	-0.128241
47102.994233 -3.110384 -1.316545 48 10 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.254911 1.264010 -0.679702 61 80 0.699222 2.781572 2.312548 62 80 -0.839620 1.218242 1.843107 63 120 -1.569957 -0.115174 0.312679 64 10 -0.877258 -4.040518 -2.192178 65 70 -2.144691 -2.270760 -3.308513 66 10 -1.868159 -3.119760 -3.784188	46	1	0	2.416602	3.816829	-3.756095
4810 6.242172 -2.454745 -1.113746 49 10 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.254911 1.264010 -0.679702 61 80 0.699222 2.781572 2.312548 62 80 -0.839620 1.218242 1.843107 63 120 -1.569957 -0.115174 0.312679 64 10 -0.877258 -4.040518 -2.192178 65 70 -2.144691 -2.270760 -3.308513 66 10 -1.868159 -3.119760 -3.784188	47	1	0	2.994233	-3.110384	-1.316545
4910 5.084153 -3.660744 -1.717379 50 10 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.2549111 1.264010 -0.679702 61 80 -0.839620 1.218242 1.843107 63 120 -1.569957 -0.115174 0.312679 64 10 -0.877258 -4.040518 -2.192178 65 70 -2.144691 -2.270760 -3.308513 66 10 -1.868159 -3.119760 -3.784188	48	1	0	6.242172	-2.454745	-1.113746
5010 6.059424 -4.017462 -0.276084 51 10 5.866495 -2.236793 1.545340 52 10 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.254911 1.264010 -0.679702 61 80 -0.839620 1.218242 1.843107 63 120 -1.569957 -0.115174 0.312679 64 10 -0.877258 -4.040518 -2.192178 65 70 -2.144691 -2.270760 -3.308513 66 10 -1.868159 -3.119760 -3.784188	49	1	0	5.084153	-3.660744	-1.717379
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1	0	6.059424	-4.017462	-0.276084
5210 4.264691 -1.109609 3.013103 53 10 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.254911 1.264010 -0.679702 61 80 0.699222 2.781572 2.312548 62 80 -0.839620 1.218242 1.843107 63 120 -1.569957 -0.115174 0.312679 64 10 -0.877258 -4.040518 -2.192178 65 70 -2.144691 -2.270760 -3.308513 66 10 -1.868159 -3.119760 -3.784188	51	1	0	5.866495	-2.236793	1.545340
5310 -2.775220 -4.244369 -0.610879 54 70 0.383419 -2.913143 -1.062477 55 70 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.254911 1.264010 -0.679702 61 80 -0.839620 1.218242 1.843107 63 120 -1.569957 -0.115174 0.312679 64 10 -0.877258 -4.040518 -2.192178 65 70 -2.144691 -2.270760 -3.308513 66 10 -1.868159 -3.119760 -3.784188	52	1	0	4.264691	-1.109609	3.013103
54700.383419-2.913143-1.062477 55 70-2.872418-1.0458961.812712 56 70-3.2152581.320116-0.076457 57 704.472760-2.6611020.022824 58 80-2.099799-1.092513-1.386314 59 80-0.070190-1.4196520.609490 60 80-0.2549111.264010-0.679702 61 800.6992222.7815722.312548 62 80-0.8396201.2182421.843107 63 120-1.569957-0.1151740.312679 64 10-0.877258-4.040518-2.192178 65 70-2.144691-2.270760-3.308513 66 10-1.868159-3.119760-3.784188	53	1	0	-2.775220	-4.244369	-0.610879
5570 -2.872418 -1.045896 1.812712 56 70 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.254911 1.264010 -0.679702 61 80 0.699222 2.781572 2.312548 62 80 -0.839620 1.218242 1.843107 63 120 -1.569957 -0.115174 0.312679 64 10 -0.877258 -4.040518 -2.192178 65 70 -2.144691 -2.270760 -3.308513 66 10 -1.868159 -3.119760 -3.784188	54	7	0	0.383419	-2.913143	-1.062477
5670 -3.215258 1.320116 -0.076457 57 70 4.472760 -2.661102 0.022824 58 80 -2.099799 -1.092513 -1.386314 59 80 -0.070190 -1.419652 0.609490 60 80 -0.254911 1.264010 -0.679702 61 80 0.699222 2.781572 2.312548 62 80 -0.839620 1.218242 1.843107 63 120 -1.569957 -0.115174 0.312679 64 10 -0.877258 -4.040518 -2.192178 65 70 -2.144691 -2.270760 -3.308513 66 10 -1.868159 -3.119760 -3.784188	55	7	0	-2.872418	-1.045896	1.812712
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	7	0	-3.215258	1.320116	-0.076457
58 8 0 -2.099799 -1.092513 -1.386314 59 8 0 -0.070190 -1.419652 0.609490 60 8 0 -0.254911 1.264010 -0.679702 61 8 0 0.699222 2.781572 2.312548 62 8 0 -0.839620 1.218242 1.843107 63 12 0 -1.569957 -0.115174 0.312679 64 1 0 -0.877258 -4.040518 -2.192178 65 7 0 -2.144691 -2.270760 -3.308513 66 1 0 -1.868159 -3.119760 -3.784188	57	7	0	4.472760	-2.661102	0.022824
5980-0.070190-1.4196520.6094906080-0.2549111.264010-0.67970261800.6992222.7815722.3125486280-0.8396201.2182421.84310763120-1.569957-0.1151740.3126796410-0.877258-4.040518-2.1921786570-2.144691-2.270760-3.3085136610-1.868159-3.119760-3.784188	58	8	0	-2.099799	-1.092513	-1.386314
6080-0.2549111.264010-0.67970261800.6992222.7815722.3125486280-0.8396201.2182421.84310763120-1.569957-0.1151740.3126796410-0.877258-4.040518-2.1921786570-2.144691-2.270760-3.3085136610-1.868159-3.119760-3.784188	59	8	0	-0.070190	-1.419652	0.609490
61800.6992222.7815722.3125486280-0.8396201.2182421.84310763120-1.569957-0.1151740.3126796410-0.877258-4.040518-2.1921786570-2.144691-2.270760-3.3085136610-1.868159-3.119760-3.784188	60	8	0	-0.254911	1.264010	-0.679702
6280-0.8396201.2182421.84310763120-1.569957-0.1151740.3126796410-0.877258-4.040518-2.1921786570-2.144691-2.270760-3.3085136610-1.868159-3.119760-3.784188	61	8	0	0.699222	2.781572	2.312548
63120-1.569957-0.1151740.3126796410-0.877258-4.040518-2.1921786570-2.144691-2.270760-3.3085136610-1.868159-3.119760-3.784188	62	8	0	-0.839620	1.218242	1.843107
6410-0.877258-4.040518-2.1921786570-2.144691-2.270760-3.3085136610-1.868159-3.119760-3.784188	63	12	0	-1.569957	-0.115174	0.312679
65 7 0 -2.144691 -2.270760 -3.308513 66 1 0 -1.868159 -3.119760 -3.784188	64	1	0	-0.877258	-4.040518	-2.192178
66 1 0 -1.868159 -3.119760 -3.784188	65	7	0	-2.144691	-2.270760	-3.308513
	66	1	0	-1.868159	-3.119760	-3.784188

E(RB+HF-LYP) = -1782.92460380

Sum of electronic and thermal Enthalpies=	-1782.349648
Sum of electronic and thermal Free Energies=	-1782.474985
HF (B3LYP/6-311++G**//B3LYP/6-31G* in Me	eCN) = -1783.550159

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	-2.271024	4.492690	-2.420552	
2	6	0	-3.428051	1.698252	-0.046447	
3	6	0	-3.433626	2.019651	1.456414	
4	6	0	-2.454480	2.622035	-0.802533	
5	6	0	-2.217839	-0.530112	0.185218	
6	6	0	4.246462	-2.090154	-0.963532	
7	6	0	5.332952	-2.887777	-0.625292	
8	6	0	4.953223	-2.438121	1.731796	
9	6	0	-1.552081	-4.294601	0.349975	
10	6	0	0.354021	2.874647	4.805751	
11	6	0	3.401605	4.916977	-0.697934	
12	6	0	2.447627	3.847295	-0.434347	
13	6	0	-2.415568	-1.959262	0.219799	
14	6	0	0.277319	2.468613	3.408843	
15	6	0	-3.671561	-2.516998	0.156699	
16	6	0	-1.188115	-2.832758	0.445437	
17	6	0	-5.262202	-4.398766	0.212376	
18	6	0	-2.809631	-4.728984	0.236555	
19	6	0	2.366091	-0.571422	-0.197873	
20	6	0	1.640737	-0.390213	-1.562275	
21	6	0	3.498462	-1.448372	0.051869	
22	6	0	1.290479	-1.023664	-3.818571	
23	6	0	5.685043	-3.067858	0.715870	
24	6	0	3.875812	-1.630578	1.406168	
25	1	0	-5.389763	-5.127896	-0.593623	
26	1	0	-3.073027	-5.778783	0.182579	
27	1	0	-0.753315	-5.028342	0.389218	
28	1	0	-0.726313	-2.613975	1.420962	
29	1	0	-0.407535	-2.592246	-0.294449	

30	1	0	-3.670957	3.076878	1.613783
31	1	0	-5.453427	-4.890688	1.171965
32	1	0	-1.214242	4.401326	-2.175030
33	1	0	-2.622249	5.497640	-2.169955
34	1	0	-2.415577	4.316918	-3.490426
35	1	0	-2.467475	1.804773	1.913588
36	1	0	-4.200473	1.418421	1.953143
37	1	0	-3.929476	-0.182095	-0.858744
38	1	0	-0.175349	3.821760	4.949746
39	1	0	1.400491	3.003177	5.099578
40	1	0	-0.102799	2.109517	5.441292
41	1	0	3.555105	5.024706	-1.776236
42	1	0	4.360545	4.687903	-0.222642
43	1	0	3.022338	5.862007	-0.296588
44	1	0	1.451852	-0.015646	-4.203435
45	1	0	0.225845	-1.207720	-3.668156
46	1	0	1.732117	-1.772081	-4.472823
47	1	0	6.531660	-3.698294	0.971637
48	1	0	3.300813	-1.137153	2.181568
49	1	0	3.989811	-1.956627	-2.004881
50	1	0	5.909058	-3.371170	-1.407731
51	1	0	5.230134	-2.582347	2.771290
52	1	0	-4.566108	-1.902363	0.115677
53	1	0	-5.989151	-3.596082	0.076513
54	7	0	-3.193418	0.280018	-0.345717
55	7	0	1.690113	2.999494	-0.223290
56	7	0	0.213988	2.144577	2.300638
57	7	0	-3.908492	-3.843615	0.177022
58	8	0	-1.219084	2.591188	-0.615232
59	8	0	1.849963	0.127741	0.687791
60	8	0	0.755649	0.458048	-1.634601
61	8	0	-1.139633	-0.031688	0.618902
62	8	0	1.992081	-1.176751	-2.547288
63	12	0	0.204220	1.414376	0.230408
64	1	0	-4.433882	1.895920	-0.431014
65	7	0	-3.010571	3.497531	-1.644969
66	1	0	-4.016364	3.482579	-1.754556

E(RB+HF-LYP) = -1782.92612538Sum of electronic and thermal Enthalpies= -1782.353093

Sum of electronic and thermal Enthalph	-1/62.555095
Sum of electronic and thermal Free Ene	ergies= -1782.473547

Center	Atomic	Atomic	c Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.343209	4.673145	-2.737217	
2	6	0	1.485827	1.003321	-2.693570	
3	6	0	0.809313	2.296611	-2.201280	
4	6	0	2.138655	-0.288625	-0.599430	
5	6	0	3.146684	-1.146658	-0.027366	
6	6	0	4.229346	-1.578314	-0.758348	
7	6	0	-2.793145	3.409322	1.176222	
8	6	0	6.291496	-2.886504	-1.090894	
9	6	0	2.432202	3.334165	3.664551	
10	6	0	1.586739	2.680782	2.673980	
11	6	0	5.165984	-2.712751	1.106919	
12	6	0	4.134175	-2.391280	1.891364	
13	6	0	2.915324	-1.654398	1.390109	
14	6	0	-2.464672	-0.923188	0.117033	
15	6	0	-2.031821	-0.923831	1.610697	
16	6	0	-3.405382	-1.848168	-0.491730	
17	6	0	-3.834205	4.385898	1.469991	
18	6	0	-2.260239	-1.728438	3.827669	
19	6	0	-5.188167	-3.543738	-1.829696	
20	6	0	-3.863344	-1.529034	-1.794971	
21	6	0	-3.854012	-3.041413	0.122803	
22	6	0	-4.733991	-3.879765	-0.550777	
23	6	0	-4.751778	-2.365352	-2.450669	
24	6	0	0.435995	-0.012573	-3.174876	
25	1	0	-4.619490	4.334246	0.709306	
26	1	0	-4.274266	4.180653	2.450860	
27	1	0	-3.409490	5.394616	1.475267	
28	1	0	-0.349541	4.574404	-1.902887	
29	1	0	1.111337	5.411874	-2.488874	

30	1	0	-0.197682	5.002445	-3.628278
31	1	0	2.016607	3.184369	4.665959
32	1	0	3.441683	2.912705	3.631350
33	1	0	2.487401	4.407708	3.458730
34	1	0	-1.200386	-1.968611	3.923223
35	1	0	-2.465507	-0.738790	4.238181
36	1	0	-2.882438	-2.486933	4.297449
37	1	0	-5.882827	-4.200288	-2.345437
38	1	0	-3.519147	-0.613695	-2.263233
39	1	0	-3.507237	-3.316865	1.108645
40	1	0	-5.068596	-4.798165	-0.079301
41	1	0	-5.109917	-2.108441	-3.442510
42	1	0	4.342671	-1.331313	-1.810072
43	1	0	6.209878	-3.974727	-1.182924
44	1	0	6.236603	-2.443614	-2.086955
45	1	0	7.261465	-2.638198	-0.649197
46	1	0	6.033931	-3.257894	1.458964
47	1	0	4.165946	-2.688505	2.934799
48	1	0	0.943460	-0.894522	-3.576143
49	1	0	2.029585	-2.308920	1.431483
50	1	0	3.407009	0.526205	-1.967131
51	1	0	2.673962	-0.815368	2.059319
52	1	0	-0.228858	-0.322131	-2.368171
53	1	0	-0.167856	0.428926	-3.974355
54	7	0	0.914340	2.162586	1.888932
55	7	0	2.432780	0.462594	-1.711495
56	7	0	-1.967120	2.634848	0.941659
57	7	0	5.210736	-2.355708	-0.259250
58	8	0	-1.923636	0.000118	-0.513799
59	8	0	-2.638619	-1.754979	2.417521
60	8	0	0.129216	2.343506	-1.153474
61	8	0	0.995528	-0.210232	-0.062500
62	8	0	-1.176175	-0.115867	1.962190
63	12	0	-0.385343	1.168395	0.423188
64	1	0	2.108178	1.266239	-3.555334
65	7	0	0.954407	3.368284	-2.986557
66	1	0	1.525952	3.277970	-3.816598

E(RB+HF-LYP) = -1782.92757376

Sum of electronic and thermal Enthalpies=	-1782.352567
Sum of electronic and thermal Free Energies=	-1782.476979
HF (B3LYP/6-311++G**//B3LYP/6-31G* in M	(eCN) = -1783.553117

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	2.019651	5.336302	-0.137034	
2	6	0	2.663649	1.843934	-1.608431	
3	6	0	1.828297	1.494818	-2.851695	
4	6	0	1.970640	2.940177	-0.777024	
5	6	0	2.219426	-0.346885	-0.392675	
6	6	0	2.787341	-1.628495	-0.056365	
7	6	0	4.029032	-2.012001	-0.508873	
8	6	0	1.090526	0.856950	4.950290	
9	6	0	-2.334113	0.182485	-1.491692	
10	6	0	-3.563780	4.493146	1.840756	
11	6	0	-2.595476	3.503003	1.387066	
12	6	0	5.889285	-3.606577	-0.774746	
13	6	0	3.943332	-4.064541	0.684696	
14	6	0	2.713131	-3.813308	1.139091	
15	6	0	1.915662	-2.597341	0.732879	
16	6	0	-2.521366	-0.692308	-0.218837	
17	6	0	-3.428408	-1.821219	-0.092122	
18	6	0	0.673439	0.978882	3.559555	
19	6	0	-2.994182	0.819666	-3.677967	
20	6	0	-5.105852	-4.024383	0.330657	
21	6	0	-3.604512	-2.354356	1.209596	
22	6	0	-4.105018	-2.423381	-1.179382	
23	6	0	-4.931549	-3.518920	-0.961142	
24	6	0	-4.440668	-3.439099	1.416636	
25	1	0	5.752764	-4.483002	-1.416920	
26	1	0	4.511477	-4.945318	0.960170	
27	1	0	2.257959	-4.525457	1.820062	
28	1	0	1.033136	-2.898373	0.145888	

19A

29	1	0	1.501547	-2.098394	1.621426
30	1	0	-3.129797	1.863373	-3.391319
31	1	0	0.238681	0.559170	5.569690
32	1	0	1.475150	1.816125	5.310741
33	1	0	1.666891	2.393662	-3.455662
34	1	0	1.946370	6.156033	-0.856624
35	1	0	2.675868	5.637037	0.685314
36	1	0	1.030644	5.101592	0.253424
37	1	0	0.857786	1.078011	-2.581454
38	1	0	2.371918	0.766262	-3.460072
39	1	0	4.029465	0.545621	-0.662272
40	1	0	-3.141196	5.079029	2.662995
41	1	0	-4.472790	3.994013	2.190806
42	1	0	-3.821651	5.168255	1.018768
43	1	0	-2.005282	0.668721	-4.113371
44	1	0	1.877023	0.101185	5.039934
45	1	0	-3.777940	0.491117	-4.356861
46	1	0	-5.759528	-4.876365	0.493261
47	1	0	-3.082507	-1.893014	2.040261
48	1	0	-3.976640	-2.048107	-2.184601
49	1	0	-5.442617	-3.981745	-1.799206
50	1	0	-4.580352	-3.834973	2.417542
51	1	0	4.610846	-1.385060	-1.178457
52	1	0	6.597897	-3.855442	0.021380
53	1	0	6.304906	-2.793549	-1.372629
54	7	0	3.038265	0.680908	-0.795686
55	7	0	-1.826907	2.717257	1.027806
56	7	0	4.611722	-3.186432	-0.198058
57	7	0	0.340483	1.075620	2.456517
58	8	0	0.907894	2.738656	-0.150581
59	8	0	-1.469030	1.055255	-1.467762
60	8	0	0.971612	-0.161774	-0.291858
61	8	0	-3.139386	-0.030184	-2.499486
62	8	0	-1.806086	-0.295707	0.714702
63	12	0	-0.333210	1.215275	0.369631
64	1	0	3.618118	2.251279	-1.957835
65	7	0	2.548770	4.144888	-0.799758
66	1	0	3.413085	4.250049	-1.315261

E(RB+HF-LYP) = -1782.92730280

Sum of electronic and thermal Enthalpies=	-1782.352262
Sum of electronic and thermal Free Energies=	-1782.477360

Center	Atomic	Atomic	c Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	2.619534	-2.957297	-0.092419	
2	6	0	3.472799	-2.779260	-1.362569	
3	6	0	2.993218	-1.925346	0.991997	
4	6	0	0.470833	-1.940800	-0.910868	
5	6	0	-1.012726	-2.042424	-0.932865	
6	6	0	-1.726399	-2.827223	-0.049441	
7	6	0	2.105089	2.947316	2.306371	
8	6	0	-3.819014	-3.695737	0.917580	
9	6	0	5.190841	2.120431	-2.686231	
10	6	0	4.107278	1.615121	-1.853391	
11	6	0	-3.776689	-2.271408	-1.087298	
12	6	0	-3.145694	-1.451882	-1.972336	
13	6	0	-1.740712	-1.181152	-1.834558	
14	6	0	-1.395963	0.907779	-0.133827	
15	6	0	-0.811972	2.016690	-1.036935	
16	6	0	-2.746371	1.115000	0.509288	
17	6	0	2.307883	3.969393	3.324980	
18	6	0	-1.132102	3.816239	-2.546277	
19	6	0	-5.219289	1.414149	1.802868	
20	6	0	-2.867603	0.849983	1.883048	
21	6	0	-3.886219	1.505558	-0.215199	
22	6	0	-5.112145	1.658622	0.431986	
23	6	0	-4.094183	1.007545	2.525594	
24	1	0	4.529941	-2.918975	-1.115593	
25	1	0	-2.006133	4.324192	-2.948908	
26	1	0	-6.173247	1.543532	2.305678	
27	1	0	-1.986173	0.539884	2.433467	
28	1	0	-3.815887	1.709324	-1.278148	

29	1	0	-5.983515	1.974336	-0.134309
30	1	0	-4.171830	0.823606	3.593526
31	1	0	0.673842	-3.793168	-0.097361
32	1	0	-0.514528	4.503082	-1.965669
33	1	0	3.334177	-1.790928	-1.800012
34	1	0	3.192529	-3.536428	-2.100279
35	1	0	-1.254640	-3.396014	0.743554
36	1	0	-4.278214	-3.009539	1.634626
37	1	0	-3.133569	-4.364109	1.439319
38	1	0	-4.592420	-4.290903	0.428077
39	1	0	5.096335	3.204909	-2.800143
40	1	0	5.149559	1.654369	-3.675691
41	1	0	6.156913	1.894049	-2.224495
42	1	0	-4.841538	-2.468291	-1.118454
43	1	0	-3.723044	-0.976601	-2.756752
44	1	0	-1.197749	-0.780612	-2.688129
45	1	0	1.839130	3.658272	4.263779
46	1	0	1.859611	4.913402	2.999747
47	1	0	3.378128	4.123577	3.493992
48	1	0	-0.541050	3.358577	-3.341598
49	7	0	1.169176	-2.946158	-0.337448
50	7	0	3.245124	1.216496	-1.193973
51	7	0	-3.075558	-2.927831	-0.099848
52	7	0	1.942490	2.136718	1.498102
53	8	0	2.485916	-0.788201	1.036562
54	8	0	1.034031	-0.945320	-1.414684
55	8	0	-0.462552	0.335505	0.585247
56	8	0	0.412058	2.111750	-1.162739
57	8	0	-1.667583	2.782003	-1.672917
58	12	0	1.455962	0.641580	-0.042140
59	1	0	-1.690485	0.093544	-1.098104
60	1	0	2.820803	-3.954809	0.310634
61	7	0	3.917475	-2.326107	1.871240
62	1	0	4.281517	-3.267216	1.790052
63	6	0	4.470365	-1.485135	2.933536
64	1	0	5.508957	-1.221331	2.711215
65	1	0	4.431177	-2.023868	3.883520
66	1	0	3.869386	-0.579550	3.001661

E(RB+HF-LYP) = -1782.89449709

Sum of electronic and thermal Enthalpies= -1782.324389Sum of electronic and thermal Free Energies= -1782.442696HF (B3LYP/6-311++G**//B3LYP/6-31G* in MeCN) = -1783.533210Frequency: 717.0i

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-2.262614	-2.644669	-1.643412
2	6	0	-3.077557	-3.261762	-0.495798
3	6	0	-2.757481	-1.220905	-1.969623
4	6	0	-0.156552	-2.147962	-0.341990
5	6	0	1.344073	-2.296904	-0.331828
6	6	0	1.938616	-3.347664	0.312954
7	6	0	-2.844528	3.520939	0.241574
8	6	0	3.913855	-4.637310	1.045511
9	6	0	-4.771452	-0.513570	3.857107
10	6	0	-3.819441	-0.273838	2.780651
11	6	0	4.092214	-2.502403	-0.169231
12	6	0	3.567378	-1.426178	-0.821092
13	6	0	2.143580	-1.201062	-0.846797
14	6	0	1.216032	1.123261	0.061304
15	6	0	0.956332	1.112568	1.585666
16	6	0	2.269608	2.047379	-0.496487
17	6	0	-3.329625	4.892016	0.154562
18	6	0	1.760037	1.250084	3.809411
19	6	0	4.164977	3.742589	-1.682861
20	6	0	1.945193	2.783226	-1.647922
21	6	0	3.564965	2.154182	0.043112
22	6	0	4.501632	3.000396	-0.547427
23	6	0	2.885322	3.630698	-2.230962
24	1	0	-2.737653	-4.284528	-0.309533
25	1	0	2.746051	1.349736	4.258972
26	1	0	4.897012	4.403830	-2.136967
27	1	0	0.949416	2.686668	-2.065737
28	1	0	3.838851	1.587872	0.925892
29	1	0	5,496236	3.083659	-0.119144

30	1	0	2.619820	4.205331	-3.113590
31	1	0	-0.235340	-3.131998	-2.097496
32	1	0	1.128496	2.102854	4.063473
33	1	0	-4.134222	-3.300756	-0.778514
34	1	0	-2.978314	-2.678089	0.419496
35	1	0	1.366648	-4.155374	0.756430
36	1	0	4.261555	-5.336058	0.278777
37	1	0	3.179951	-5.131997	1.682357
38	1	0	4.757646	-4.320664	1.661532
39	1	0	-4.681291	0.272220	4.613722
40	1	0	-4.571033	-1.482271	4.325336
41	1	0	-5.792036	-0.511790	3.461777
42	1	0	5.159475	-2.682321	-0.107438
43	1	0	4.235484	-0.717302	-1.296368
44	1	0	1.724458	-0.632864	-1.682863
45	1	0	-2.710415	5.462233	-0.544943
46	1	0	-3.282778	5.367076	1.139470
47	1	0	-4.366173	4.901353	-0.196500
48	1	0	1.277426	0.320637	4.116491
49	7	0	-3.063563	-0.081009	1.927343
50	7	0	-2.458007	2.433583	0.310654
51	7	0	3.295089	-3.454434	0.418012
52	7	0	-0.804613	-2.668586	-1.399983
53	8	0	-2.588548	-0.260910	-1.194131
54	8	0	-0.717648	-1.534298	0.580048
55	8	0	0.103722	0.992589	-0.607199
56	8	0	-0.196643	0.972128	2.000432
57	8	0	2.000397	1.230487	2.374386
58	12	0	-1.542825	0.442378	0.431258
59	1	0	1.854513	-0.053914	-0.041895
60	1	0	-2.397521	-3.267864	-2.532267
61	7	0	-3.421501	-1.080604	-3.120298
62	1	0	-3.561991	-1.893787	-3.705187
63	6	0	-4.022448	0.182445	-3.554484
64	1	0	-3.372279	1.006908	-3.259842
65	1	0	-5.008717	0.321267	-3.100104
66	1	0	-4.124113	0.165439	-4.640463
 E(RB+	HF-LYP) = -178	2.88531600		
Sum of	f electron	ic and th	ermal Enthal	lpies=	-1782.3152

Sum of electronic and thermal Enthalpies= -1782.315295 Sum of electronic and thermal Free Energies= -1782.436008 Frequency: 923.9i

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	5.042465	0.765980	-2.363974
2	6	0	2.822844	2.766579	0.040533
3	6	0	3.402598	2.780291	1.466284
4	6	0	3.345253	1.541427	-0.744372
5	6	0	0.495319	2.061313	0.653775
6	6	0	-3.898878	-1.388752	-0.558737
7	6	0	-5.074872	-2.125876	-0.433830
8	6	0	-3.899581	-3.783968	0.876375
9	6	0	-0.974865	2.342906	0.678710
10	6	0	3.358350	-2.330233	4.352093
11	6	0	2.904424	-4.885936	-1.758465
12	6	0	2.506206	-3.611122	-1.175969
13	6	0	-1.568868	3.479700	0.175351
14	6	0	2.839440	-1.821442	3.089580
15	6	0	-3.520706	4.933263	-0.258917
16	6	0	-3.705316	2.779107	0.909747
17	6	0	-3.188725	1.634358	1.440507
18	6	0	-1.414948	-1.073549	-0.046743
19	6	0	-0.898640	-0.610184	-1.432356
20	6	0	-2.707354	-1.851717	0.025809
21	6	0	-1.801296	1.321603	1.280252
22	6	0	-1.277956	-0.124810	-3.720590
23	6	0	-5.077486	-3.326789	0.280768
24	6	0	-2.722362	-3.047278	0.758724
25	1	0	4.495541	2.809061	1.415518
26	1	0	-1.317677	0.633628	1.973047
27	1	0	-0.508428	-0.821632	-4.056337
28	1	0	-0.868178	0.886111	-3.671636
29	1	0	-2.148082	-0.163468	-4.373175

30	1	0	-5.994122	-3.901624	0.374091	
31	1	0	-1.803804	-3.385397	1.224903	
32	1	0	0.984681	3.684981	-0.488173	
33	1	0	-3.844076	0.953211	1.970903	
34	1	0	5.915505	0.407587	-1.808786	
35	1	0	5.368328	1.185050	-3.317611	
36	1	0	4.362735	-0.067171	-2.541532	
37	1	0	3.099146	1.895507	2.025954	
38	1	0	3.062616	3.675077	1.995498	
39	1	0	-3.907060	-0.460711	-1.121710	
40	1	0	-5.989830	-1.766149	-0.895606	
41	1	0	-3.899539	-4.715619	1.434647	
42	1	0	4.437513	-2.495210	4.274853	
43	1	0	2.868850	-3.277697	4.598565	
44	1	0	3.163017	-1.610641	5.153214	
45	1	0	2.996907	-4.789235	-2.844671	
46	1	0	2.152702	-5.648470	-1.531592	
47	1	0	3.867729	-5.201270	-1.345650	
48	1	0	-1.014411	4.287550	-0.288630	
49	1	0	-2.749781	5.554755	-0.714396	
50	1	0	-3.990981	5.485459	0.558570	
51	1	0	-4.270381	4.680488	-1.012631	
52	1	0	-4.752600	3.046505	0.991164	
53	7	0	1.349410	2.885446	0.009832	
54	7	0	2.187963	-2.601387	-0.711416	
55	7	0	-2.906172	3.696393	0.265431	
56	7	0	2.424994	-1.419913	2.087932	
57	8	0	2.932529	0.382412	-0.558597	
58	8	0	0.899287	1.038320	1.233277	
59	8	0	-0.413507	-1.476160	0.701014	
60	8	0	-1.768456	-0.527662	-2.413647	
61	8	0	0.291585	-0.301878	-1.549048	
62	12	0	1.420922	-0.781443	0.253841	
63	1	0	-1.770249	0.079860	0.342856	
64	1	0	3.171312	3.666236	-0.475455	
65	7	0	4.333396	1.800653	-1.609234	
66	1	0	4.662631	2.752711	-1.701413	
E(RB+HF-LYP) = -1782.88358570						

Sum of electronic and thermal Enthalpies= -1782.313746 Sum of electronic and thermal Free Energies= -1782.433989 Frequency: 584.2i

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-5.465562	0.619492	-1.567240
2	6	0	-2.854231	-2.179654	-1.561473
3	6	0	-3.513576	-3.295312	-0.722029
4	6	0	-3.483495	-0.805084	-1.242553
5	6	0	-0.700359	-2.067169	-0.295682
6	6	0	3.779573	1.368193	-1.179000
7	6	0	5.076698	1.771954	-0.868717
8	6	0	4.524739	1.759608	1.485389
9	6	0	0.778605	-2.255396	-0.329482
10	6	0	-2.713553	-0.039939	5.143121
11	6	0	-2.103527	5.194974	1.436018
12	6	0	-1.881085	3.778074	1.179687
13	6	0	1.362453	-2.764225	0.811877
14	6	0	-2.285569	0.145001	3.762958
15	6	0	3.288422	-3.555409	2.127613
16	6	0	3.503175	-2.756548	-0.188396
17	6	0	3.010864	-2.211867	-1.331644
18	6	0	1.430278	0.712927	-0.423754
19	6	0	0.570154	1.395551	-1.498277
20	6	0	2.835922	1.169017	-0.155321
21	6	0	1.627389	-1.793647	-1.406790
22	6	0	0.394677	2.589604	-3.538238
23	6	0	5.451924	1.972931	0.462077
24	6	0	3.228031	1.350810	1.181457
25	1	0	-4.591322	-3.324958	-0.907370
26	1	0	1.204301	-1.683788	-2.406151
27	1	0	-0.207444	3.383905	-3.094511
28	1	0	-0.253397	1.851534	-4.014795
29	1	0	1.112461	2.995750	-4.248213

30	1	0	6.461812	2.294025	0.699576
31	1	0	2.500407	1.183801	1.968184
32	1	0	-0.890806	-2.552228	-2.264576
33	1	0	3.675864	-2.056341	-2.172917
34	1	0	-5.863867	0.616283	-0.548198
35	1	0	-6.292040	0.640198	-2.278015
36	1	0	-4.844818	1.507198	-1.704529
37	1	0	-3.344673	-3.132585	0.343273
38	1	0	-3.094873	-4.264591	-1.007675
39	1	0	3.500649	1.220614	-2.216686
40	1	0	5.795631	1.931889	-1.666767
41	1	0	4.812290	1.917828	2.520872
42	1	0	-3.662520	0.478528	5.312378
43	1	0	-1.959736	0.366153	5.824945
44	1	0	-2.848127	-1.105598	5.352876
45	1	0	-2.427285	5.695063	0.517902
46	1	0	-1.176625	5.659441	1.787150
47	1	0	-2.876340	5.320064	2.200861
48	1	0	0.761366	-3.014632	1.677383
49	1	0	2.495649	-3.817527	2.828059
50	1	0	3.942746	-2.807237	2.582903
51	1	0	3.865127	-4.451819	1.887478
52	1	0	4.540642	-3.047320	-0.074043
53	7	0	-1.703534	2.653489	0.977425
54	7	0	2.688411	-3.007540	0.897003
55	7	0	-1.946716	0.292059	2.667691
56	7	0	-1.384716	-2.184046	-1.461523
57	8	0	-2.977321	0.044269	-0.484282
58	8	0	-1.279388	-1.767554	0.764736
59	8	0	0.695751	0.330791	0.586043
60	8	0	1.200688	1.951558	-2.510217
61	8	0	-0.655761	1.347458	-1.390878
62	12	0	-1.317361	0.517984	0.585519
63	1	0	1.659532	-0.406837	-1.140194
64	1	0	-3.056375	-2.380350	-2.618568
65	7	0	-4.669600	-0.584526	-1.817194
66	1	0	-5.060242	-1.293824	-2.423499
 E(RB+	HF-LYP) = -178	32.88081755		
Sum of	felectron	ic and th	ermal Entha	lpies=	-1782.3111

Sum of electronic and thermal Enthalpies= -1782.311102 Sum of electronic and thermal Free Energies= -1782.430305 Frequency: 892.1i

Center	Atomic	inates (Angstro	oms)		
Number	Number	Туре	Х	Y	Z
1	6	0	5.422103	-0.028790	-1.311339
2	6	0	2.137848	-1.290263	-2.793271
3	6	0	3.047005	-0.486570	-1.847729
4	6	0	0.519535	-1.852045	-0.927238
5	6	0	-0.884323	-2.289635	-0.631981
6	6	0	-1.038788	-3.349404	0.229530
7	6	0	1.879189	3.718755	0.986153
8	6	0	-2.388091	-5.063372	1.383289
9	6	0	4.501517	-0.581429	3.999419
10	6	0	3.590238	-0.274317	2.904921
11	6	0	-3.389153	-3.310276	-0.025565
12	6	0	-3.319653	-2.226062	-0.845115
13	6	0	-2.057838	-1.563247	-1.080191
14	6	0	-1.470880	0.781881	0.020038
15	6	0	-1.307053	0.505552	1.534018
16	6	0	-2.515231	1.755955	-0.455687
17	6	0	2.053679	5.157947	1.130302
18	6	0	-2.246440	0.213823	3.690571
19	6	0	-4.387301	3.572242	-1.485973
20	6	0	-2.149393	2.656514	-1.470184
21	6	0	-3.837916	1.761829	0.023952
22	6	0	-4.763005	2.668740	-0.487867
23	6	0	-3.079122	3.562534	-1.975714
24	6	0	1.882657	-0.445307	-4.056417
25	1	0	-1.440730	-5.251436	1.888655
26	1	0	-4.144572	1.065257	0.795661
27	1	0	-5.780475	2.670671	-0.108351
28	1	0	-2.784262	4.262018	-2.752551
29	1	0	1.273450	-1.005513	-4.774136

30	1	0	1.366747	0.482225	-3.793402	
31	1	0	2.827132	-0.198620	-4.548776	
32	1	0	0.123286	-1.869287	-2.906918	
33	1	0	-1.131640	2.638024	-1.843616	
34	1	0	4.980869	0.802341	-0.763456	
35	1	0	5.961220	-0.683153	-0.620161	
36	1	0	6.120356	0.356455	-2.059516	
37	1	0	-0.182712	-3.855369	0.661001	
38	1	0	-2.645636	-5.926014	0.761979	
39	1	0	-3.166704	-4.907057	2.132913	
40	1	0	4.022455	-0.353166	4.956702	
41	1	0	4.767457	-1.642855	3.978187	
42	1	0	5.413123	0.017245	3.907209	
43	1	0	-4.320629	-3.817054	0.199153	
44	1	0	-4.228737	-1.838640	-1.290784	
45	1	0	-1.969052	-0.950112	-1.980031	
46	1	0	1.117020	5.671862	0.892670	
47	1	0	2.342181	5.399364	2.158055	
48	1	0	2.834881	5.508388	0.448517	
49	1	0	-1.744023	-0.739575	3.863236	
50	1	0	-1.667087	1.027032	4.130465	
51	1	0	-3.260825	0.202396	4.084398	
52	1	0	-5.111946	4.278241	-1.880604	
53	7	0	0.843969	-1.681541	-2.220492	
54	7	0	1.740369	2.576803	0.870076	
55	7	0	-2.260518	-3.854655	0.546744	
56	7	0	2.866281	-0.029216	2.037790	
57	8	0	1.336294	-1.695161	0.007113	
58	8	0	-0.308923	0.775600	-0.569513	
59	8	0	-2.399467	0.440459	2.261013	
60	8	0	-0.175146	0.318136	1.987974	
61	8	0	2.629648	0.438644	-1.123281	
62	12	0	1.380235	0.441203	0.502529	
63	1	0	-2.041701	-0.385491	-0.306736	
64	1	0	2.666301	-2.209893	-3.077281	
65	7	0	4.347855	-0.769208	-1.970620	
66	1	0	4.618996	-1.529753	-2.581286	
E(RB+HF-LYP) = -1782.88247389						

Sum of electronic and thermal Enthalpies= -1782.312726 Sum of electronic and thermal Free Energies= -1782.433097 Frequency: 894.5i

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	2.793869	2.615529	-0.409832	
2	6	0	3.091450	1.747735	0.836246	
3	6	0	0.547700	1.808766	-1.049470	
4	6	0	-0.924379	1.998545	-1.035146	
5	6	0	-1.563556	2.858716	-0.165574	
6	6	0	2.026876	-3.043740	2.310842	
7	6	0	-3.574154	3.889868	0.818327	
8	6	0	5.069498	-2.414285	-2.754487	
9	6	0	4.018790	-1.861982	-1.909564	
10	6	0	-3.673482	2.377750	-1.117721	
11	6	0	-3.118065	1.488851	-1.986290	
12	6	0	-1.726031	1.146429	-1.881265	
13	6	0	-1.431153	-0.897648	-0.117419	
14	6	0	-0.914885	-2.059979	-0.994995	
15	6	0	-2.772628	-1.028971	0.564317	
16	6	0	2.212149	-4.050091	3.348257	
17	6	0	-1.345259	-3.882578	-2.447857	
18	6	0	-5.222503	-1.187511	1.924694	
19	6	0	-2.848349	-0.720038	1.932066	
20	6	0	-3.945267	-1.392418	-0.120838	
21	6	0	-5.159821	-1.475563	0.559527	
22	6	0	-4.063919	-0.807813	2.607970	
23	6	0	4.365697	1.480882	2.940147	
24	1	0	-2.248760	-4.352704	-2.830929	
25	1	0	-6.168118	-1.262111	2.453684	
26	1	0	-1.941474	-0.431696	2.452144	
27	1	0	-3.910053	-1.629494	-1.178632	
28	1	0	-6.057325	-1.770686	0.023771	
29	1	0	-4.107266	-0.589908	3.671446	

30	1	0	0.944443	3.664107	-0.262608
31	1	0	-0.761303	-4.586488	-1.853043
32	1	0	-1.035056	3.432244	0.587036
33	1	0	-4.076278	3.264811	1.561788
34	1	0	-2.832344	4.518336	1.311741
35	1	0	-4.305116	4.528022	0.317574
36	1	0	4.929000	-3.494388	-2.862480
37	1	0	5.033993	-1.950522	-3.745233
38	1	0	6.050122	-2.226306	-2.306394
39	1	0	-4.726375	2.632864	-1.124512
40	1	0	-3.746216	1.015337	-2.731762
41	1	0	-1.233173	0.685041	-2.734410
42	1	0	1.718113	-3.729814	4.270865
43	1	0	1.779377	-5.002105	3.025406
44	1	0	3.279084	-4.193156	3.545597
45	1	0	-0.736487	-3.478894	-3.258817
46	1	0	3.701183	0.627535	3.065753
47	1	0	4.390997	3.109219	1.572232
48	1	0	5.398443	1.131758	2.845124
49	1	0	4.287275	2.140254	3.808113
50	7	0	3.182336	-1.426590	-1.240536
51	7	0	1.339202	2.772013	-0.528671
52	7	0	3.961849	2.208530	1.735733
53	7	0	-2.905653	3.033937	-0.180673
54	7	0	1.878686	-2.245520	1.487714
55	8	0	-0.457607	-0.343063	0.561533
56	8	0	0.300701	-2.221267	-1.132165
57	8	0	-1.816693	-2.798031	-1.598930
58	8	0	2.521960	0.644447	0.970130
59	8	0	1.042141	0.768983	-1.538578
60	12	0	1.433103	-0.766486	-0.079745
61	1	0	-1.717304	-0.103151	-1.098376
62	1	0	3.110136	2.006154	-1.263651
63	6	0	3.475545	3.982865	-0.480407
64	1	0	4.564917	3.878620	-0.482918
65	1	0	3.203538	4.483579	-1.413814
66	1	0	3.187098	4.636327	0.352177

E(RB+HF-LYP) = -1782.89751880

Sum of electronic and thermal Enthalpies= -1782.327558Sum of electronic and thermal Free Energies= -1782.444852HF (B3LYP/6-311++G**//B3LYP/6-31G* in MeCN) = -1783.532440Frequency: 708.1i

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	5.703889	0.257376	-1.494093
2	6	0	2.733533	-2.129116	-0.902009
3	6	0	3.578037	-0.842585	-0.931812
4	6	0	0.422444	-2.349627	-0.065020
5	6	0	-3.584696	1.702489	-0.997624
6	6	0	-4.871479	2.077783	-0.615151
7	6	0	-4.270747	1.798586	1.710648
8	6	0	-1.031562	-2.176998	-0.357218
9	6	0	2.101871	-2.047118	4.175993
10	6	0	2.820813	5.020953	2.476362
11	6	0	2.418052	3.760874	1.869467
12	6	0	-1.886354	-2.762507	0.553124
13	6	0	1.994082	-1.032614	3.139247
14	6	0	-4.108994	-3.404237	1.397541
15	6	0	-3.785252	-2.243235	-0.747260
16	6	0	-3.017258	-1.640182	-1.691821
17	6	0	-1.219664	0.968294	-0.357740
18	6	0	-0.411200	1.750538	-1.407748
19	6	0	-2.620151	1.385999	-0.022319
20	6	0	-1.594326	-1.450235	-1.484050
21	6	0	-0.305502	3.017428	-3.411718
22	6	0	-5.217034	2.131922	0.737094
23	6	0	-2.984511	1.419238	1.335718
24	6	0	3.096660	-3.190329	-1.951524
25	1	0	-1.045107	3.351843	-4.136163
26	1	0	-4.534357	1.845084	2.763340
27	1	0	-6.217742	2.434881	1.030728
28	1	0	-2.240843	1.166675	2.083228
29	1	0	3.005539	-2.807697	-2.974405

30	1	0	4.113122	-3.574212	-1.810199
31	1	0	2.426634	-4.047053	-1.842419
32	1	0	0.968492	-1.485375	-1.858223
33	1	0	0.443148	2.376252	-3.879978
34	1	0	6.083701	0.453738	-0.487252
35	1	0	6.537894	0.024335	-2.156356
36	1	0	5.185130	1.146281	-1.858513
37	1	0	-3.329803	1.674573	-2.050717
38	1	0	-5.604450	2.333051	-1.374682
39	1	0	3.137584	-2.127220	4.520500
40	1	0	1.463391	-1.785978	5.025656
41	1	0	1.781231	-3.007865	3.760372
42	1	0	3.116283	5.731187	1.697601
43	1	0	1.986567	5.441371	3.047001
44	1	0	3.667594	4.855057	3.149908
45	1	0	-1.484634	-3.268701	1.422298
46	1	0	-3.500445	-3.951204	2.117412
47	1	0	-4.680829	-2.630127	1.916647
48	1	0	-4.793015	-4.099673	0.905864
49	1	0	-4.856662	-2.366470	-0.852308
50	1	0	-3.487532	-1.273251	-2.596491
51	1	0	-1.469967	-0.135089	-1.134422
52	1	0	0.176624	3.865452	-2.923661
53	7	0	2.097947	2.759629	1.387742
54	7	0	1.902397	-0.241424	2.301546
55	7	0	-3.227944	-2.783978	0.390640
56	7	0	1.317396	-1.767703	-0.950463
57	8	0	3.155596	0.215220	-0.407393
58	8	0	0.812179	-2.959732	0.927135
59	8	0	-0.451966	0.537736	0.605497
60	8	0	0.815272	1.837859	-1.270969
61	8	0	-1.063337	2.254103	-2.427177
62	12	0	1.511816	0.896501	0.502094
63	1	0	-1.002978	-1.370812	-2.400032
64	1	0	2.876595	-2.557857	0.096976
65	7	0	4.786100	-0.885825	-1.485375
66	1	0	5.099938	-1.751756	-1.900748

E(RB+HF-LYP) = -1782.88729308

Sum of electronic and thermal Enthalpies=	-1782.317542
Sum of electronic and thermal Free Energies=	-1782.436073
Frequency: 863.5i	

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	0	-4.947096	0.462679	-2.361995		
2	6	0	-3.129018	2.250867	0.540205		
3	6	0	-3.508347	1.164944	-0.499159		
4	6	0	-0.710783	1.898932	0.865847		
5	6	0	4.046860	-0.981849	-0.539843		
6	6	0	5.295343	-1.593048	-0.439958		
7	6	0	4.304248	-3.424129	0.788909		
8	6	0	0.710758	2.354855	0.813959		
9	6	0	-3.094288	-2.995923	4.226737		
10	6	0	-2.337358	-5.084987	-2.047688		
11	6	0	-2.079960	-3.820120	-1.371801		
12	6	0	1.137703	3.534097	0.242781		
13	6	0	-2.629332	-2.356160	3.003395		
14	6	0	2.879103	5.187964	-0.342768		
15	6	0	3.376081	3.117166	0.883493		
16	6	0	3.028637	1.934116	1.466634		
17	6	0	1.540983	-0.958767	-0.025366		
18	6	0	0.983995	-0.470634	-1.387876		
19	6	0	2.911199	-1.595907	0.016182		
20	6	0	1.684218	1.453320	1.382745		
21	6	0	1.313740	0.190871	-3.638926		
22	6	0	5.426983	-2.816818	0.221623		
23	6	0	3.054591	-2.814235	0.695381		
24	6	0	-4.011701	3.500225	0.569501		
25	1	0	2.184561	0.293074	-4.283775		
26	1	0	4.403549	-4.374081	1.305997		
27	1	0	6.400287	-3.292840	0.295403		
28	1	0	2.176874	-3.269344	1.140063		
29	1	0	-3.958761	4.071602	-0.365851		
30	1	0	-5.056032	3.234612	0.758401		
-------------------------------	----	---	-----------	-----------	-----------	--	--
31	1	0	-3.697544	4.158456	1.384642		
32	1	0	-1.545257	3.569555	-0.011636		
33	1	0	0.790265	1.143017	-3.530808		
34	1	0	-5.481009	-0.359356	-1.875984		
35	1	0	-5.618105	0.970060	-3.055670		
36	1	0	-4.092995	0.056641	-2.907624		
37	1	0	3.956227	-0.035138	-1.062875		
38	1	0	6.166716	-1.117143	-0.880538		
39	1	0	-4.153357	-3.256139	4.134945		
40	1	0	-2.517094	-3.907699	4.409943		
41	1	0	-2.964895	-2.317152	5.075419		
42	1	0	-2.400977	-4.926039	-3.128619		
43	1	0	-1.526281	-5.789501	-1.838375		
44	1	0	-3.280882	-5.512626	-1.694575		
45	1	0	0.468655	4.244016	-0.229995		
46	1	0	2.021419	5.689217	-0.791290		
47	1	0	3.306019	5.829313	0.432445		
48	1	0	3.627305	4.995829	-1.115514		
49	1	0	4.385689	3.511059	0.904897		
50	1	0	3.787025	1.351692	1.976891		
51	1	0	1.326494	0.714386	2.097459		
52	1	0	0.630166	-0.566227	-4.026274		
53	7	0	-1.873577	-2.818171	-0.833349		
54	7	0	-2.257393	-1.850506	2.032746		
55	7	0	2.442110	3.909527	0.254781		
56	7	0	-1.718420	2.650935	0.373528		
57	8	0	-2.931311	0.059663	-0.505061		
58	8	0	-0.949972	0.790372	1.377276		
59	8	0	0.584567	-1.521755	0.677967		
60	8	0	-0.231388	-0.280926	-1.497265		
61	8	0	1.842708	-0.236210	-2.355168		
62	12	0	-1.309391	-0.997227	0.257901		
63	1	0	1.762216	0.193243	0.432298		
64	1	0	-3.190700	1.739571	1.506569		
65	7	0	-4.483227	1.434910	-1.369117		
66	1	0	-4.959536	2.323888	-1.314950		
E(RB+HF-LYP) = -1782.88541352							

Sum of electronic and thermal Enthalpies=	-1782.315700
Sum of electronic and thermal Free Energies=	-1782.435429
Frequency: 508.6i	

6.4 B3LYP/6-31G* distances (Å) for hydride transfer in Transition States **TS-26-TS-33**

	d1	d2
TS26	1.50	1.28
TS27	1.45	1.33
TS28	1.58	1.26
TS29	1.43	1.34
TS30	1.41	1.34
TS31	1.48	1.30
TS32	1.42	1.34
TS33	1.51	1.30