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Abstract 

Diameter-modulated nanowires offer an important paradigm to design the magnetization 

response of 3D magnetic nanostructures by engineering the domain wall pinning. With the aim 

to understand its nature and to control the process, we analyze the magnetization response in 

FeCo modulated polycrystalline two-segment nanowires varying the minor diameter. Our 

modelling indicates a very complex behavior with a strong dependence on the disorder 

distribution and an important role of topologically non-trivial magnetization structures. We 

demonstrate that modulated nanowires with a small diameter difference are characterized by an 

increased coercive field in comparison to the straight ones which is explained by a formation of 

topologically protected walls formed by two 3D skyrmions with opposite chiralities. For a large 
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diameter difference we report the occurrence of a novel pinning type called here the 

“corkscrew”:  the magnetization of the large diameter segment forms a skyrmion tube with a 

core position in a helical modulation along the nanowire. This structure is pinned at the 

constriction and in order to penetrate the narrow segments the vortex/skyrmion core size should 

be reduced. 

Keywords: Magnetic nanowire, pinning, domain wall. 

Among other possibilities, cylindrical magnetic nanowires could provide new opportunities for 

nanotechnological applications such as 3D magnetic recording (in which the data are stored 

vertically, for example, in the racetrack architecture1), actuators or sensors2 and logical devices 

where the control over the position and motion of domain wall plays an essential role.   It is well 

known that these nanowires are demagnetized via the domain wall propagation either of 

transverse or vortex type3. Importantly for applications, the domain wall velocity can achieve 

very high speed with the absence of the Walker breakdown4. 

The future of domain-wall logic devices, registers or race-track-memories requires precise 

control of domain walls dynamics including their pinning and depinning. Another possible 

application is the use of nanowires as permanent magnets where the engineering of the pinning 

of domain walls is necessary in order to increase the coercivity5. The domain wall pinning can be 

produced by artificial defects (e.g. notches6), including the nanowires with modulations in 

diameter 7-13 and multisegmented nanowires14, 8.  Magnetometry measurements show a strong 

influence of the constrictions on the coercive field7,10.  In addition, magnetic-force microscopy13, 

15, 10, electron holography8, 11 and XMCD-PEEM imaging15 indicate strong stray field coming 

from the diameter transitions where magnetic charges accumulate. They also have revealed the 
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domain wall pinning at certain positions although the definite control and understanding of the 

pinning conditions are far from being unveiled.  

In this article, we investigate theoretically the domain wall pinning in two-segment FeCo 

modulated nanowires. The FeCo nanowires are chosen due to their high magnetic moment5, 16-17 

which produces large longitudinal (shape) anisotropy with high coercive field18.  The nanowires 

of this composition with uniform diameter have been reported to demagnetize via vortex (Bloch-

point) or transverse domain wall propagation3, 16. However for the diameters of the present study 

only the vortex-type domain wall is present. The modulated FeCo nanowires are previously 

grown by electrodeposition inside the nanopores of anodic alumina templates7, 17 and specially 

designed for periodical modulations in diameter.  The electron holography imaging, at 

remanence, on FeCoCu modulated nanowires have shown the presence of the vortex states at the 

end of the large segments11. Importantly, measurements by Kerr-magnetometry on individual 

nanowires17, when focusing on different spots along the wires, showed different local squared-

shape hysteresis cycles with either a single or several jumps.  

From the theoretical point of view, modulated nanowires composed by two segments with 

different diameters have been modelled considering Ni19, 20 and FeNi6,12,21,28. The micromagnetic 

simulations show that the demagnetization process starts with the formation of the vortex domain 

wall in the segment of larger diameter. Under reverse field, these domain walls penetrate into the 

segment with smaller diameter and harder magnetic behavior12, 21. If this diameter is small and 

the difference between the two is moderate, then the transformation of the vortex domain wall 

into the transverse one could happen19, 20.  No strong domain wall pinning is typically observed. 

In our case no conversion from the vortex to the transverse domain wall is expected due to 

higher saturation magnetization value.  Besides, deterministic micromagnetic programs, used up 
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to now, do not allow changes as, for example, of the vortex domain wall chirality. Thus, in our 

view, the existing theoretical studies are limited in materials, geometries, consider mostly two 

segments and do not clarify the reason of pinning observed in experiments with some exceptions. 

Furthermore, the role of different non-trivial magnetization structure in hysteresis processes 

such as swirls, hedgehogs, helices have been discussed in the past22, 23. The helicoidal 

magnetization domain wall for example, have been introduced as possible magnetic 

configuration in iron whiskers23. However, a new burst of interest to topological structures has 

recently appeared in relation to the dynamics of vortices and skyrmions, topologically non-trivial 

magnetization objects, due to their very interesting dynamical behavior and potential applications 

as the information carriers24. Cylindrical magnetic nanowires offer an additional possibility to 

nucleate topological defects due to curling magnetization instabilities at the ends of the 

nanowires25.  In this article, we show theoretically that magnetization processes in modulated 

magnetic nanowires are characterized by the existence of topologically non-trivial 3D 

magnetization configurations such as vortex and skyrmion tubes and their helicoidal structures. 

These structures are stabilized by the finite-size effects in nanowires of different diameters and 

play important role in the pinning process. 

In order to elucidate the nature of the pinning we perform the micromagnetic modelling in the 

situation close to the experimental one. The nanowire geometry is presented in Fig. 1.  We 

consider magnetic nanowires modulated in diameter with 5 segments and two different diameters 

(modulations). The two largest modulations have diameter D= 130 nm and length 1m, and the 

narrow modulation has a variable diameter 40 nm < d <100 nm and length 300nm. The 

constriction between the two diameters is 50 nm and the diameter is linearly varied from the 

smallest to the largest value. The two parts at the ends of nanowires have the minor and large 
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diameters respectively and are intentionally considered to be different as depicted in Fig. 1 to 

induce an asymmetric propagation. 

For the micromagnetic modelling of the demagnetization processes the state-of the art mumax3 

code was used26. The micromagnetic parameters correspond to that of realistic experimental 

values2, 3, 5, 16 with magnetization saturation Ms=2T, the anisotropy energy constant K1=104 

J/m3, and exchange stiffness Aex=25 pJ/m. Nanowires are considered to have a granular bcc 

structure (modelled by the Voronoi tessellation with a grain size of 5nm) textured along [110] 

direction16.  The other two easy axes components are assumed to be randomly distributed in the 

plane perpendicular to [110] direction in each grain16,2.  Different realizations of disorder (i.e. the 

grain distributions) were modelled by changing the seed number for the random distribution. 
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Figure 1.  (Top left)The geometry of the simulated nanowire. (a-c) Hysteresis loops obtained for three 

disorder distributions, labelled 1 - 3 respectively and for a minor constriction diameters 40, 80 and 100 

nm. (d) Switching field as a function of minor diameter for the three distributions.   

Examples of hysteresis loops under field H applied parallel to the nanowire axis are presented 

in Fig. 1 for several minor diameters and grain distributions. Their shapes depend substantially 

on the disorder distribution, i.e. the particular polycrystalline microstructure of the nanowire. As 

for the common features, the hysteresis loops become less squared and more inclined in all cases 

as the minor diameter is reduced. The remanence decreases with the increase of the minor 

diameter and is practically independent on the considered distribution for each minor diameter d.    

  Every hysteresis loop exhibits a nucleation stage (the nucleation field increases with the 

increase of the minor diameter d), the magnetization propagation/rotation inside the segment of 

major diameter and the irreversible magnetization jump in the segments with minor diameter 

(depinning effect from constrictions). When the difference between diameters is small the 

propagation and the depinning part occur at the same field stage (this is called below “weak” 

pinning since the magnetization changes in large and narrow modulations occur at the same field 

stage but with an increased coercive field), see the case of d=100nm in Fig. 1.  In nanowires with 

narrowest minor diameter (d<100 nm) the propagation of the vortices domain walls occur along 

the inclined slope before the magnetization jumps in small diameter modulations (” strong” 

pinning) as depicted in Fig. 1 by green and blue loops. In addition, the propagation stage is 

characterized by additional small jumps related to the change of internal structures in 

magnetization of the largest segments (see below).  The field of the largest “jump” defines the 

switching field Hs. The value of Hs typically decreases as a function of the difference between 

diameters, see Fig. 1(d). The particular local disorder as well as defects reduce or enhance the 

pinning field of the whole simulated nanowire as illustrated by diameters d=100nm and d=80nm 
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in Fig. 1(c). However, generally the simulations show a high pinning field (“strong” pinning) for 

the case of the large difference between the constrictions diameters. Some rare exceptions of the 

general tendency also depend on particular disorder distribution as evidenced for the distribution 

1 and d=40 nm corresponding to Fig. 1(a).   

The detailed analysis of magnetization configurations during the hysteresis processes shows 

that each case has its own peculiarities. It is well known that the switching field is smaller for 

nanowires with larger diameter3. Consequently, we observe that the demagnetization process 

always starts in the segments of larger diameter (or at the nanowire ends). This is also in 

agreement with previous micromagnetic modelling results on Ni and FeNi in two-segments6,19-21. 

As a common observation, the hysteresis process always starts with the formation of the vortex 

structures at the nanowires ends, see Figs 2(a, b). In the completely ideal case the vortices should 

appear in the alternating chirality pattern due to the dipolar energy minimization. However, the 

state with the same vortex chiralities in the nanowire of 1 µm (as the length of our large 

segments) has a very similar energy. Importantly, the granular structure has a major role here 

promoting a completely random chirality pattern, see Fig. 2(a-b) and the analysis in the 

Supplementary Information (SI).  The formation of the vortex structures is followed by further 

rotation of magnetic moments inside the larger modulations leading to the formation of vortex 

tubes which expand from the ends towards the center of the modulation. As the field becomes 

more and more negative, the spins in the outer shells rotate towards its directions and the vortex 

tubes propagate inside the segments of larger diameter. Consequently, they become the Bloch 

skyrmion tubes (see Fig. 2(c-d) as a particular example) since the spins in the outer shells are 

directed antiparallel to the core direction.  These skyrmions are of the Bloch (bubble) type, i.e. 

they have an arbitrary chirality since they are stabilized by the nanowire border and not by the 
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Dzyaloshinkii-Moriya interactions as in chiral magnets27. However, they have the same topology 

and bear a non-zero topological charge. 

The penetration of these structures into the constrictions with small diameters corresponds to 

the switching field (different in each case) and takes place in one step if the difference between 

the diameters is small (see SI for more details). The switching field depends on the particular 

chirality pattern, if the vortices/skyrmions in the same modulation are formed with the opposite 

chirality, when the two tubes with opposite chiralities meet, the resulting complex domain wall 

(called helical domain wall in Ref.28) has a strong topological protection and is difficult to 

annihilate. Particularly, the reversal of magnetization in smaller segment may take place before 

the complete switching in the segment of larger diameter.  For a detailed analysis of the 

coercivity for each disorder distribution see the SI.  
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Figure 2. Simulated magnetization distribution in two-segment nanowires with a particular disorder and 

small difference between diameters just before the switching field. (a-b) Longitudinal magnetization 

component at the nanowire surface and in the cross sections for d=100 nm for grain distributions with 

hysteresis cycles of Fig. 1(a, b) respectively (mx>0 red color, mx<0 blue color and grey color for mx close 

to 0. C stands for the clockwise and A for the anticlockwise chiralities of the vortices along the length of 

each nanowire. (c) Surface magnetization distribution in a nanowire with disorder distribution No.1 with 

d=80 nm just before the switching showing the magnetization spiral and the vortex/skyrmion 

magnetization structure (d-e) views of cross sections of the nanowire at two positions showing the 

displaced skyrmion structure. The right color map shows color scale for the whole figure. 

 

In the opposite case of large diameter difference, we have a “strong pinning”, i.e.  the 

skyrmion tubes structures become pinned at the constrictions and an additional field is necessary 
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to unpin them. Again, the chiralities are formed with an arbitrary pattern and the vortices are 

transformed into the skyrmion tubes as the applied field becomes negative. For the detailed 

analysis of particular hysteresis process and the influence of the chirality pattern see the SI.  In 

order to understand the nature of the pinning, in Fig. 3(a) (bottom panels) we indicate by the red 

color the regions where the magnetization is directed along the nanowire before the 

magnetization unpinning (locus of the magnetization with mx>0.97). The narrow segments (seen 

here as wide) are still magnetized parallel to the core.  Along the wide segments skyrmion tubes 

(with the shell magnetized parallel to the field and the core - antiparallel to it) are present, see 

also Fig. 4(b).  In the bottom panels of Fig. 3(a) one can clearly see the oscillatory behavior of 

the skyrmion core position for large diameter differences. This can be also seen from the 

presentation of the magnetization components along the nanowire center in Fig. 3(c). The 

skyrmion core position thereby forms a helicoidal structure, pinned at the constrictions between 

segments, called here the “corkscrew” pinning.   
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Figure 3. (a) The longitudinal magnetization component on the nanowire surface (upper images), and 

(bottom images) the magnetization with the locus of mx>0.97 for each minor diameter for the distribution 

No. 1. (b) The locus of mx>0.97 in the nanowire with minor diameter 60 nm (left) is compared with the 

helix of a corkscrew (right). (c) Magnetization components in the nanowire center along the x axis in the 

nanowire with minor diameter 80 nm.  

To further understand its nature, we analyze the vortex (d=100nm)/skyrmion (d=40-80nm) 

shape before the switching at a constant distance from the constriction, see Figs. 4(a-c). 

Following the helicoidal structure, its center is displaced from the nanowire center and the 

helicoidal amplitude increases with the increase of the difference between diameters. Note that 

for this particular disorder distribution the vortex for d=100nm is placed in the nanowire center, 

however, depending on the disorder we also found a helicoidal behavior for this diameter, see SI.   

Fig. 4(c) presents the vortex/skyrmion profile along the direction of the line joining its core and 

the nanowire centers as depicted by red dark arrows in Fig. 4(b). The displacement of the 

skyrmion core from the nanowire center is larger for a larger difference of the diameters 

indicating that in order to penetrate into the small modulation the core is first displaced (in other 

words, repelled from the constriction to minimize the magnetostatic charges). The magnetic 

charges are then redistributed over the whole volume forming a spiral. The spiral amplitude and 

the frequency increases with the diameter difference.  Another effect is the narrowing of the 

skyrmion core in order to get accommodated into the narrower modulation.  Since the skyrmion 

core size depends on the applied field, a larger field is necessary when the difference between the 

diameters is larger. 
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Figure 4. (a) A nanowire and its longitudinal magnetization distribution showing the fixed position used 

for the analysis of the vortex/skyrmion for each nanowire. (b) Cross sections of the magnetization at the 

marked position for three different nanowires of the disorder distribution No. 1 colored by mz (top) and 

mx (bottom). The red arrows join the nanowire and vortex centers for each cross section and indicate the 

direction along which the core size was measured. (c) Longitudinal component of the magnetization 

along the red arrows for the nanowires of distribution No.1. (d) Core width and displacement from the 

nanowire axis as a function of the minor diameter. 

 In conclusion, we have shown that the modulated nanowires can be engineered for 

magnetization pinning by varying the diameter of the narrow segment. The magnetization 

process occurs by vortex formation in large segments with arbitrary chiralities.  As the field 

increases in the negative direction, the vortices expand in length and form tubes which are later 

transformed into the skyrmion tubes. Thus, the presence of topologically non-trivial 

configurations is inherent for the magnetization reversal processes and defines the pinning 

nature.  As a general rule, the larger the difference between diameters, the stronger the pinning. 
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The value of the pinning field is significantly affected by two main contributions: (i) the 

difference in diameters between the constrictions, and (ii) the particular disorder which 

determines the chiralities of the vortex domain walls.  

For nanowires with moderate difference between the two segments diameter, the switching 

field is determined by the annihilation of skyrmion tube structures. When two of these tubes with 

the opposite chiralities meet, the resulting structure is strongly topologically protected and 

requires and additional field.  The uncontrollable vortex chirality suggests the difficulty of 

precise control of some properties such as the coercive or switching field of modulated 

nanowires.  

For larger difference between diameters, a strong pinning is observed and a much stronger 

field is required to switch the small diameter modulations. The corresponding constrictions are 

characterized by stronger magnetostatic charges and, in order to minimize them, the skyrmion 

core is displaced from the nanowire axis. Here we report a new type of pinning, called 

corkscrew-like, since the skyrmion core positions form a helicoidal structure. The amplitude of 

this structure increases as a function of the diameter difference and the skyrmion core size near 

the switching field decreases.  Our analysis introduces a new type of pinning and offers novel 

perspectives to its control. This is important for geometrical design of magnetic nanowires 

aiming at multiple nanotechnological applications. 

Associated content 

The Supporting Information is supplied in an additional PDF. This includes further analysis, 

comments and figures. 
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Magnetization pinning in modulated nanowires: from topological protection 

to the “corkscrew” mechanism 
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Supplementary information 

S1: Magnetization configurations during the magnetization reversal processes 

We present a more detailed analysis of the configurations during the magnetization reversal 

processes. For a small diameter difference, this happens in one field step so that a dynamical 

magnetization evolution is presented in Fig. SI1. The vortices are formed with the chirality 

pattern A-CC-CC-A.  The vortices centers also form a helicoidal structure in this case. The 

reversal starts with the vortex cores reduction, the skyrmion tubes formation and propagation 

inside the middle narrow segment (Fig. SI1a-c) where the size of the core has been largely 

reduced. The tube breaks into two tubes by the formation of Bloch points (Fig. SI1d). The Bloch 

points propagate with different velocities in opposite directions (Fig. SI1d-g). During this 

propagation, the structures formed by the skyrmion tubes with opposite chiralities at the first left 

and last right modulation transitions are annihilated simultaneously due to the high concentration 

of magnetostatic charges in those regions as represented in Fig. SI1e. Simultaneously several 

new Bloch points are formed and start propagating in opposite directions (Fig. SI1e-g).  The 

effect of different chiralities can be observed in Figs. SI1 e and g: we see that the magnetization 

reversal is the last to happen in the left and right ends where the vortex chiralities are opposite. 
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The reversal process is retarded there due to topological protection between opposite chiral 

skyrmion tubes, which is absent in the middle section. 

 

 

Figure SI1. (a-g) Longitudinal component of the magnetization in the middle cross section of a nanowire 

with diameter 100 nm and disorder distribution No.1 at different times during reversal. The nanowire 

exhibits vortices with chiralities A-CC-CC-A along the nanowire length. 

 

An example of the reversal process is presented in Fig. SI2 for nanowires with the minor 

diameter 40 nm and the disorder distribution No.1 (Fig. 1a).  The nucleated vortices at the 

modulation and at the nanowire ends quickly propagate inside the larger modulations and as the 

field is gradually reduced below zero they become skyrmion tubes.  In the left large segment, the 

vortices have opposite chiralities at the two ends while in the right one show the same chiralities. 
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Consequently, the propagation in the right segment is easy and at H=-170 Oe only one skyrmion 

tube with a unique chirality   is present (See Figure SI2a).  In the left wide modulation the 

vortices at the end of skyrmion tubes with the opposite chirality cannot be easily annihilated and 

when met, they are divided by a complex domain wall25 (called a helical domain wall in Ref. 28). 

Additional field is thus required to annihilate this structure.  At H=-180 Oe a small magnetization 

jump appears in the hysteresis loop (Fig. SI2a), related to a transformation of this wall to a 

different configuration characterized by a vortex and an antivortex on the surface of the wire 

(Fig. SI2e). This new structure becomes larger as the field is further increased (See vortex in the 

inset picture in Figure SI2d). Overall, the narrow segments remain uniformly magnetized until 

H=-455 Oe when the complete switching takes place in one irreversible jump.   
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Figure SI2. Longitudinal component of the surface magnetization of a modulated nanowire with a minor 

diameter of 40 nm for distribution 2 at different fields marked in the hysteresis cycle (f). (a) remanence, 

(b) -170 Oe, (c) 180 Oe and (d) and (e) -450 Oe before and after the jump. Inset figures are transverse 

cross sections of the nanowire at the marked positions in (b-d) where the colors indicate z-component.  

(e) A cropped perspective of the segment surface longitudinal magnetization at the marked site. Red and 

blue arrows show the chirality of each vortex/skyrmion. C and A stand for the, Clockwise or 

Anticlockwise chirality, respectively. 

 

S2: Analysis of the chirality influence 

The magnetization switching in these nanowires takes place by the formation of vortex 

domains with arbitrary chiralities in the larger segments which should penetrate into the smaller 

ones. It is clear that there are many possibilities of different chiralities patterns.  For small 

difference in segment diameter we present below the transverse magnetization components and 

the chirality pattern for the three disorder distributions with hysteresis cycles presented in Fig. 1. 

On clearly see the arbitrary chirality pattern which is summarized in Table SI1. The patterns are 

labelled as X-XX-XX-X, with X, either A or C for Anticlockwise of Clockwise vortex domain 

chirality, respectively.  

 

 d (nm) 100 80 60 40 

D
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1 A-CC-CC-C A-CC-CC-C A-CC-CC-C A-CA-CC-A 

2 A-CA-CC-C A-CA-CC-C A-CA-CC-C A-CC-CC-C 

3 A-CA-CA-C A-AA-CC-A C-AA-AC-A A-AA-AA-A 

 

Table SI1. Chiralities of the vortex structures nucleated at the ends of the wire and at the ends of 

modulations for each distribution and minor diameter. C (A) indicates the Clockwise (Anticlockwise) 

chirality following a scheme X-XX-XX-X along the nanowire profile according to Fig. 1.  
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By examining the magnetization structures during the hysteresis process in each case we can 

conclude that in the case of the large difference between the segment diameters, the chiralities of 

the formed vortex domains have a small effect in the depinning field and the disorder seems to 

play the crucial role.  Consider as an example the disorder distribution corresponding to the case 

No.3 and d=40nm (Fig. 1c, “strong” pinning) which produced a vortex pattern with the same 

chirality along the whole nanowire and have the largest depinning field. However, the chiralities 

of different vortices have a large effect during the propagation stage (which affects the coercive 

field) resulting (or not) in additional jumps corresponding to the annihilation of vortices of 

different (or the same) chirality but not on the depinning field itself. 

 

 

Figure SI3. (a-c) Schematic representation of the transverse magnetization component inside the 

nanowires in the middle cross section along the nanowire profile before the switching for d=100 nm for 
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grain distributions with hysteresis cycles of Fig. 1 (my>0 red color, my<0 blue color and grey color for my 

close to 0). Fig.(a-c) correspond to the grain size distributions labelled (1-3) of Fig. 1, respectively.  The 

chirality of each vortex is shown by C(Clockwise) or A (Anticlockwise). (d-f) Surface magnetization 

distribution corresponding to the nanowire depicted in Fig. SI3(c) showing also the cross-sections with 

the vortex chiralities. 

 

The conclusions are different when the difference between the diameters is small (“weak” 

pinning). In this case the observed chirality pattern plays a major role since the propagation and 

depinning stage occurs here at the same field.  Let us analyze in detail the case with a minor 

diameter d=100nm. Fig. SI3(a-c) shows schematically the patterns observed for this case. The 

lowest Hs =-225 Oe corresponds to the nanowire with the distribution 1, for which all vortices 

have the same diameter and the nanowire nucleates in an almost uniform pattern: clockwise 

vortices at the ends of all modulations and at the right end of the wire, and a small anticlockwise 

vortex part on the left end of the wire, see Figure SI3 (a). These domain walls easily propagate 

along the largest segments and the switching field is minimum. Nevertheless, for disorders 2 and 

3, different chiralities are found for the nucleated vortex structures, which lead to different 

switching fields: H=-255 Oe (for distribution 2) and H=-275 Oe (for distribution 3). When 

meeting inside a large segment, the vortex domain wall (which have become the skyrmion tubes) 

with different chiralities produce a complex 180-degree domain wall which requires an extra 

Zeeman energy for annihilating. The highest switching field value for d=100 nm is obtained for 

the distribution 3.  In this case a completely alternating pattern of vortices with opposite 

chiralities is produced (Figure SI3 (c)).  Note also the helicoidal structure for the vortex domain 

for the disorder No.2 

 

S3: Analysis of the helicoidal structure 
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The helicoidal structures presented in Fig. 3(a-b) have been analyzed for the other distributions 

before the switching field. The results are summarized in Fig SI4 (d-e). The typical “corkscrew” 

helicoidal shape for the core positions of the skyrmion tubes is depicted in SI4(a-b) 

corresponding to different selected diameters. They are characterized by the uniform 

magnetization at the minor segments and helicoidal tubes connecting them. The effect of the 

minor diameter variation is the decrease of the amplitude of the helix with d, which are less 

frequent for d=100nm SI4(c), but not completely absent for every distribution SI4(d). The helix 

chirality (the handedness of the helix) is found to be arbitrary and the pitch is not uniform along 

the large segments, becoming larger in the middle of the large segments in the absence of tubes 

of opposite chiralities.  It is also noticed that the minor segments are almost magnetized 

uniformly for larger diameters which can be seen comparing the last right minor segment for 

each diameter in Fig SI4(d). The minimization of magnetic charges at the diameter transition 

regions leads to partial demagnetization of the minor segments. It also makes the skyrmion tubes 

longer by allowing them to partially penetrate into the minor segments. This reduction of 

magnetized area in the minor segments due to magnetostatic energy minimization increases the 

switching field observed in Fig. 1. 

As is previously mentioned, the effect of the opposite chiralities of two consequent vortices is 

to create a topologically protected structure which may be present for every diameter even 

without the corkscrew shape. These structures are seen in Figs. SI4(b, c). This effect is even 

stronger for minor diameters and leads to the high switching fields in Fig. 1 as a consequence of 

the confinement of the skyrmion tubes inside the minor segments.  
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Figure SI4. (a) Locus of mx>0.97 in the nanowire with minor diameter 40 nm of distribution No. 2.  (b) 

and (c) locus of mx>0.97 in the nanowires with minor diameters 60 and 100 nm of distribution No.3.   (e-

f) From top to bottom, the longitudinal component of magnetization on the surface, and the locus of 

mx>0.97 for each minor diameter of the nanowires of distribution No. 1 

Fig. SI4(d-e) show that the information of the inner part and the surface magnetization in a 

nanowire are correlated. Thus, measuring the longitudinal magnetization over the surface of the 

nanowire can give an idea about the magnetization inside. Summarizing, the following 

information form the inner part is encoded on the surface: First the presence of vortices/skyrmion 

tubes by a color magnetization gradient. If those tubes have opposite chiralities, the position 

where they meet can be inferred on the surface as an abrupt area where the magnetization is not 

reversed as a result of the vortex core displacement to the shell as is seen for diameters 80 and 60 

nm from SI4(d) and 60 nm in SI4(e). Furthermore, the presence of a corkscrew structure is 

characterized by a twisted pattern of two opposite magnetization values on the surface and 

presents the same pitch as the inner helix. The chirality of the helix is also defined by the 
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twisting direction. On the other hand, the transverse component of magnetization leads to a direct 

measurement of the chiralities of the vortices as shown in Fig SI3. In the case of 100 nm for 

SI4(d) helix also propagates inside the minor information.  The latter provides useful information 

for analyzing XMCD-PEEM experimental data from the surface and the inner parts.  

The characteristics of the core of the skyrmion tube have been studied at the fixed position in 

Fig 4a) along one line joining the nanowire center and the core of each skyrmion for each wire as 

shown in Fig 4 (b) and Fig SI5(a-b). The rotated angle of the core along the length is arbitrary. 

The longitudinal magnetization component along that line shows that the core of the skyrmion 

tube is magnetized along the saturation field direction (Fig. SI5(c-f)). The core width is reduced 

for narrow minor diameters and displaced form the center of the nanowire. The core width and 

displacement values are independent of the distribution with an eventual exception ascribed to 

the particular disorder differences. 

 

Figure SI5. (a-b) Cross sections of the magnetization at the marked position in Fig 4(a) for nanowires 

with minor diameters 100, 80 and 40 nm (top to bottom) of distributions No. 2 and 3 respectively. Red 

arrows join the nanowire and the vortex/skyrmion centers for each cross section. (c) and (e) Longitudinal 
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component of the magnetization along the red arrows for the nanowires of disorder distributions No.2 

and 3, respectively. (d) and (f) Core width and displacement from the nanowire axis as a function of the 

minor diameter for disorder distributions No. 2 and 3. 

The longitudinal magnetization components along the nanowire axis have been investigated 

for each distribution and diameter and confirm the non-periodic pitch of the helix in Fig. 3(c) and 

FigSI6(a-f). The presence of the corkscrew is determined by a large drop of the longitudinal 

magnetization component which has a “valley” -like shape when the initial vortices have the 

same chirality FigSI6(b-c, e-f) and presents a peak when they have opposite chiralities. The 

partial demagnetization of the minor segments is characterized by a step at each end of the 

catenary curve. For the nanowire with d=100nm of the disorder distribution 2, the vortex is 

deformed by the penetration inside of the minor diameter and there is a large shift of half 

catenary to lower values. The other magnetization components show information about the 

helical curling of the skyrmion tube.  Despite the lack of periodicity of the helical structure, a 

quasiperiodic behavior is observed in the cases of vortices with same chirality in the modulations 

(Fig. SI6 (a-c, e, f)) which are particularly clear in Fig. SI6 (c, f) and Fig. 3(c): The local maxima 

of the oscillations of y and z magnetization components in the first modulation of Fig. 3(c) are 

separated by 308, 368 and again 308 nm, while in the second modulation by 294, 351 and 274 

nm.  

The complexity and the rich diversity of situations, begin a consequence of the particular 

disorder distribution of each nanowire, motivates further studies on the influence of the 

chiralities patterns in modulated nanowires for the future advanced technological applications. 
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Figure SI6. (a) and (b) Longitudinal magnetization components along the nanowire in nanowires with 

minor diameters d=100, 60 and 40 nm for disorder distributions No. 2 and 3, respectively. In each graph 

the geometry of the nanowire (bottom) and the locus of magnetization with mx> 0.95 (top) are shown. 

 

 


