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Probing the electromagnetic response of dielectric antennas by vortex electron beams
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Focused beams of electrons, which act as both sources and sensors of electric fields, can be used to characterize
the electric response of complex photonic systems by locally probing the induced optical near fields. This
functionality can be complemented by embracing the recently developed vortex electron beams (VEBs), made up
of electrons with orbital angular momentum, which could, in addition, probe induced magnetic near fields. In this
work we revisit the theoretical description of this technique, dubbed vortex electron energy-loss spectroscopy
(v-EELS). We map the fundamental, quantum-mechanical picture of the scattering of the VEB electrons to the
intuitive classical models, which treat the electron beams as a superposition of linear electric and magnetic
currents. We then apply this formalism to characterize the optical response of dielectric nanoantennas with
v-EELS. Our calculations reveal that VEB electrons probe electric or magnetic modes with different efficiency,
which can be adjusted by changing either beam vorticity or acceleration voltage to determine the nature of
the probed excitations. We also study a chirally arranged nanostructure, which in the interaction with electron
vortices produces dichroism in electron-energy-loss spectra. Our theoretical work establishes VEBs as versatile
probes that could provide information on optical excitations otherwise inaccessible with conventional electron
beams.
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I. INTRODUCTION

Electron energy-loss spectroscopy (EELS) in a scanning
transmission electron microscope (STEM) [1] is an emerg-
ing technique to characterize optical excitations with high
spatial and spectral resolution [2–5]. Recent experimental
and theoretical studies have demonstrated the capabilities of
STEM-EELS to map near fields of localized surface polari-
tons in plasmonic and phononic nanostructures that are of
high interest in the field of nanophotonics for their applica-
tions in focusing and engineering light below the diffraction
limit [6,7].

An alternative possibility to control light at the nanoscale is
to use resonant electromagnetic (EM) modes in nanoparticles
made of materials with high refractive index [8–13], which
have been, however, relatively rarely studied by near-field
spectroscopic methods [14–19]. It has been shown only by
recent experiments that focused electron beams such as those
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used in STEM-EELS can probe the response of dielectric
antennas [20–22]. Here we explore the possibilities of using
focused electron probes to distinguish electric and magnetic
modes and hot spots that are crucial for applications of di-
electric particles in nanophotonics [23–27] and thus fully
characterize the properties of their resonant modes.

Interestingly, besides conventional electron beams, recent
efforts have led to the generation of vortex electron beams
(VEBs) in (S)TEM [28–36]. VEBs carry orbital angular mo-
mentum (OAM), which could facilitate direct interaction of
the beam with excitations of both electric and magnetic na-
ture. Besides various applications in probing magnetic fields
[37,38], magnetic transitions in bulk materials [39–42], and
chirality of crystals [43], the introduction of VEBs (and
other shaped beams) in electron microscopy by using ad-
justable phase plates [44–46] might also open a pathway for
symmetry-based selective excitation of EM modes in photonic
nanostructures [47–49], separation of electric and magnetic
modes [50], or for developing the local investigation of the
dichroic response of chiral nanoantennas [49,51].

In this work we show that STEM-EELS with the use of
either a conventional or a vortex beam might be a suitable
technique for distinguishing between the electric and mag-
netic nature of electromagnetic modes supported by dielectric
antennas. We start by introducing a quantum-mechanical
description of the inelastic interaction of VEBs with a gen-
eral (classically responding) sample and with a pointlike
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FIG. 1. Models for describing the interaction between an elec-
tron beam with a sample. (a) In conventional STEM-EELS, the
beam is modeled in the frequency domain as a broadband electric
current density Je, tightly localized in the transverse plane. [(b),(c)]
In v-EELS, the inelastic scattering of VEBs described by a struc-
tured wave function �(r) can be calculated by modeling the beam
as a (b) helical electric current density characterized by axial and
azimuthal components of the vector W (Sec. II A), or (c) a superpo-
sition of electric Je and magnetic Jm currents, naturally extending the
conventional STEM-EELS model (Sec. II C).

polarizable object, for which we obtain a closed form in the
limit of a tightly focused VEB. To introduce the possibility
of calculating the EEL spectrum with a VEB (v-EELS) for a
spatially extended nanostructure, we find a source equivalent
to the VEB within the framework of classical electrodynamics
(see Fig. 1) and perform fully retarded calculations to retrieve
the electromagnetic field arising from the VEB-sample inter-
action. We calculate EEL spectra considering the interaction
with electron beams of both zero and nonzero OAM. We study
single and dimer dielectric antennas of different shapes, par-
ticularly spherical and cylindrical structures made of silicon.
We show that by varying excitation parameters or by compar-
ing the spectra acquired with a nonvortex and a vortex beam,
fast electrons preferentially couple to modes of electric and
magnetic nature, respectively. Finally, we explore dichroism
in v-EELS emerging for a chiral dielectric nanostructure.

II. THEORETICAL FRAMEWORK FOR VORTEX
ELECTRON ENERGY-LOSS SPECTROSCOPY

AT OPTICAL FREQUENCIES

A. Quantum-mechanical description of the beam

The wave function of a vortex electron � can be described
in the nonrelativistic approximation (for discussion of the
relativistic solutions, see Refs. [52,53]) as a solution of the
Schrödinger equation for a free-space moving electron with
a nonvanishing OAM l h̄. In cylindrical coordinates (R, φ, z),
one of the simplest solutions takes the form of a Bessel

beam [28–30]

�(R, φ, z) = 1√
L

eiqzz 1√
A

eilφJl (QR)︸ ︷︷ ︸
ψ⊥

, (1)

where Q and qz = mev/h̄ are the radial and perpendicular
wave-vector components of the electron with mass me moving
along the z axis at velocity v, respectively, where A stands for
a normalization area and L for a normalization length, and h̄
is the reduced Planck constant. The Bessel function of order l ,
Jl (QR) governs the radial shape variation of the beam profile,
whereas the helical form of the wave front is captured through
the exponential term eilφ .

We now express the probability of losing energy h̄ω per
electron considering a transition from a well-defined initial
state �i to final states �f (following the formalism introduced
in Ref. [51]), due to the interaction with the structured envi-
ronment, as

�(ω) = 2h̄e2L

ω2m2
ev

∑
f

∫
d3r d3r′�f (r)�∗

f (r′)∇[�∗
i (r)]

· Im[Ĝ(r, r′, ω)] · ∇[�i(r′)]δ(εf − εi + ω), (2)

where e is the elementary charge, h̄εf/i is the final/initial
electron energy, and Ĝ is the Green’s tensor describing the
electromagnetic response of the probed structure and where
we sum over the final states.

In the following we restrict ourselves to the states �i =
eiqz,izψ⊥,i/

√
L and �f = eiqz,f zψ⊥,f/

√
L with initial and final

longitudinal wave-vector components qz,i and qz,f , respec-
tively. We further consider ψ⊥,f = eilf φJlf (QfR)/

√
A with

a set of possible transverse wave vectors Qf and a well-
defined initial transverse wave-function component ψ⊥,i ≈
1/(Qc,i

√
π )

∫ Qc,i

0 QidQi eiliφJli (QiR), where Qc,i is an initial
wave-vector cutoff. The centers of the forming and collection
apertures are assumed to be aligned on top of each other.

Considering a detector imposing a cutoff of transverse
final wave vectors Qc due to a finite collection angle, we
can replace the schematic sum over final states

∑
f with

LA/(4π2)
∫

dqz,f
∫ Qc

0 QfdQf . We also rewrite the spatial inte-
grals over r and r′ in cylindrical coordinates and collect all the
z- and z′-dependent exponentials from the �’s [see Eq. (1)] to
evaluate the integral in the nonrecoil approximation:∫

dqz,f e
i(qz,f −qz,i )(z−z′ )δ(εf − εi + ω) = e−iω(z−z′ )/v

v
. (3)

Defining

Ĝ(R, R′, ω) =
∫

dz dz′ e−iω(z−z′ )/vĜ(r, r′, ω), (4)

we can express the loss probability as

�(ω) = e2

2π3h̄ω2Q2
c,i

∫ Qc

0
QfdQf Im

[∫
RdR R′dR′

× Jlf (QfR)Jlf (QfR
′) f (R) f (R′)

∫ 2π

0
dφ dφ′ ei
l (φ−φ′ )

× V∗(R, φ) · Ĝ(R, R′, φ, φ′, ω) · V(R′, φ′)
]
. (5)
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Above we introduced f (R) = ∫ Qc,i

0 QidQiJli (QiR), 
l = lf −
li, and defined the vector V related to the gradient of the
electron’s wave functions:

V(R, φ) = ez + eφ li
Rqz,i

− eRi f ′(R)

qz,i f (R)
, (6)

where ei denotes unit vectors along the directions i.
When all electrons are collected by the detector (Qc →

∞), we can use the identity
∫ ∞

0 x dx Jl (xR)Jl (xR′) = δ(R −
R′)/R′ to perform the integral over the final transverse wave
vectors to get

�(ω) = e2

2π3h̄ω2Q2
c,i

Im

[∫ ∞

0
R dR f 2(R)

∫ 2π

0
dφ dφ′

× ei
l (φ−φ′ ) V∗(R, φ) · Ĝ(R, R, φ, φ′, ω) · V(R, φ′)
]
.

(7)

Note that f 2(R) will be strongly peaked around an effective
initial VEB radius R0,li given by the initial cutoff value. There-
fore if we consider Ĝ slowly varying around R0,li , we can
roughly approximate the integral over R by

∫ ∞
0 R dR f 2(R) =

Q2
c,i/2 to obtain

�(ω) ≈ e2

4π3h̄ω2
Im

[∫ 2π

0
dφ dφ′ ei
l (φ−φ′ )

×W∗(R0,li , φ
) · Ĝ(

R0,li , R0,li , φ, φ′, ω
) ·W(

R0,li , φ
′)],

(8)

where we disregarded the radial component of V as it is much
smaller than the other components around R0,li , yielding

W(R, φ) = ez + eφ li
R0,li qz,i

. (9)

This formulation of v-EELS is depicted schematically in
Fig. 2(a).

B. Loss probability for a VEB interacting with a pointlike
dipolar particle in a focused beam limit

The formulation of the loss probability given in Eq. (8)
is general but does not easily simplify to a classical picture,
widely embraced to address conventional EELS. To aid that
simplification, here we present a calculation of loss probabil-
ity due to the interaction with a specific system—a pointlike
dipolar particle shown in Fig. 2(b). We will use this result in
the following Sec. II C to identify a semiclassical description,
shown schematically in Fig. 1(c).

The pointlike scatterer is situated at rp = (Rp, zp) and
is electrically and magnetically polarizable in the z direc-
tion, and characterized by the electric polarizability tensor
α̂EE = αEE(0, 0, ez ), magnetic polarizability tensor α̂MM =
αMM(0, 0, ez ), and crossed electric-magnetic and magnetic-
electric polarizability tensors α̂EM = αEM(0, 0, ez ) and α̂ME =
αME(0, 0, ez ), respectively. The latter two tensors are respon-
sible for a dichroic response and fulfill α̂ME = −α̂T

EM. For
simplicity, we assume the response only in the z direction;
however, a general direction should be considered in a realistic

(b)(a)

FIG. 2. Illustration of the semiclassical framework for calculat-
ing the interaction of the VEB with an environment. In (a) the
electron beam is modeled as quantum current density with axial
and azimuthal components characterized by the vector W, acting
like quantum analogs of the electric currents. Its interaction with
the environment is dictated by the Green’s function Ĝ [see Eq. (5)],
which describes the scattering of radiation from the electric dipolar
source in the environment. In (b) we consider an example of such
interaction, with the environment modeled as a dipolar pointlike
scatterer at rp, and axial polarizabilities α̂EE, α̂EM, α̂ME, and α̂MM. The
electric current density created electric and magnetic fields at the po-
sition of the scatterer, according to the Green’s function decomposed
as in Eq. (13), and induces dipolar momenta p and m, respectively.

scenario. The Green’s tensor is then

Ĝ(r, r′, ω)

=
∑
i={E,M}

∑
j=

{E,M}

ĜEi(r − rp, ω) · α̂i j (ω) · Ĝ jE(rp − r′, ω),

(10)

with ĜEE(r) = c2ĜMM(r) = (k2Î + ∇ ⊗ ∇ ) eikr/(4πε0r) and
ĜEM(r) = −ĜME(r) = −∇ × ĜEE(r)/(ikc), where k = ω/c
with the speed of light c, ε0 is the vacuum permittivity, and ⊗
denotes tensor product.

The integrals over z (and z′) involved in Ĝ [see Eq. (4)] are
analytical [51]:

ĜEE =
∫

dz e−iωz/vĜEE(r − rp)

= 1

2πε0

(
k2Î + ∇rp ⊗ ∇rp

)
e−iωzp/vK0

(
ω|R − Rp|2

vγ

)
,

(11)

and

ĜEM =
∫

dz e−iωz/vĜEM(r − rp) = 1

ikc
∇rp × ĜEE, (12)

which we use to obtain

Ĝ(R, R′) = ∑
i={E,M}

∑
j=

{E,M}

ĜEi(R, Rp) · α̂ij · Ĝ jE(Rp, R′),

where all tensors also depend on ω. We can expand the prod-
ucts of the currents and Green’s functions in the right-hand
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side of Eq. (8) as

W∗ · Ĝ · W =W ∗
z GzzWz + W ∗

z GzφWφ

+ W ∗
φ GφzWz + W ∗

φ GφφWφ. (13)

The first term expands as

W ∗
z GzzWz = W ∗

z

[
(ĜEE · α̂EE · ĜEE)zz

+ (ĜEM · α̂ME · ĜEE)zz︸ ︷︷ ︸
0

+ (ĜEE · α̂EM · ĜME)zz︸ ︷︷ ︸
0

+ (ĜEM · α̂MM · ĜME)zz︸ ︷︷ ︸
0

]
Wz, (14)

where the three terms vanish due to the symmetries of the
Green’s functions [e.g., (ĜME)zz = (ĜEM)zz = 0] and the axial
form of the polarizability. Similarly, one we can simplify

W ∗
z GzφWφ = W ∗

z (ĜEE · α̂EM · ĜME)zφWφ, (15)

W ∗
φ GφzWz = W ∗

φ (ĜEM · α̂ME · ĜEE)φzWz, (16)

W ∗
φ GφzWφ = W ∗

φ (ĜEM · α̂MM · ĜME)φφWφ. (17)

We now split the total loss probability as

�(ω) = �EE(ω) + �EM(ω) + �ME(ω) + �MM(ω), (18)

where the individual contributions are defined by the products
of the components of W, i.e., �EE ∝ |Wz|2, �EM ∝ W ∗

z Wφ ,
�ME ∝ W ∗

φ Wz, �MM ∝ |Wφ|2:

�EE(ω) ≈ e2

4π3h̄ω2
Im

[∫ 2π

0
dφ dφ′ ei
l (φ−φ′ )

× Ĝzz′
(
R0,li , R0,li , φ, φ′, ω

)]

= e2ω2Im[αEE(ω)]

4π3ε2
0 h̄v4γ 4

[
I
l

(
ωR0,li

vγ

)
K
l

(
ωRp

vγ

)]2

,

(19)

where we assumed R0,li � Rp and introduced the Lorentz fac-
tor γ = 1/

√
1 − v2/c2. With the same assumptions, we obtain

�MM(ω) ≈ e2l2
i

4π3h̄ω2R2
0,li

q2
z,i

Im

[∫ 2π

0
dφ dφ′

× ei
l (φ−φ′ )Ĝφφ′
(
R0,li , R0,li , φ, φ′, ω

)]

= e2l2
i ω2Im[αMM(ω)]

4π3ε2
0 h̄v2c4γ 2R2

0,li
q2

z,i

×
[

I ′

l

(
ωR0,li

vγ

)
K
l

(
ωRp

vγ

)]2

, (20)

and

�{EM/ME}(ω) ≈ e2li
4π3h̄ω2R0,li qz,i

Im

[∫ 2π

0
dφ dφ′ei
l (φ−φ′ ){Ĝzφ′

(
R0,li , R0,li , φ, φ′)/Ĝφz′

(
R0,li , R0,li , φ, φ′)}]

= {∓}e2liω2Re[α{EM/ME}(ω)]

4π3ε2
0 h̄v3c2γ 3R0,li qz,i

I ′

l

(
ωR0,li

vγ

)
I
l

(
ωR0,li

vγ

)
K2


l

(
ωRp

vγ

)
. (21)

We evaluated the integrals following Ref. [51]. We note that
for a well-focused VEB with ωR0,l/(vγ ) → 0, 
l = 0, and
thus using I0(x) ∼ 1 and I1(x) ∼ x/2 for small arguments, we
obtain

�(ω) = e2ω2

4π3ε2
0 h̄v4γ 4

K2
0

(
ωRp

vγ

){
Im[αEE(ω)]

+ l2
i ω2Im[αMM(ω)]

4c4q2
z,i

− liω

2c2qz,i
Re[αEM(ω) − αME(ω)]

}
. (22)

The well-focused-VEB limit is very accurate for R0,l � 10
nm at optical frequencies and for typical TEM acceleration
voltages. Such effective radii are achievable even for relatively
large l (∼100), as shown in Appendix A. We also note that for
li = 0, the result above coincides with the classical limit with
a well-focused beam at the origin interacting with an electric
dipole oriented along the z axis.

The loss probability in Eq. (22) can be readily evaluated
for a beam carrying OAM +h̄li and −h̄li, which yields the

dichroic signal

�−|li| − �|li| = e2|li|ω3

2π3ε2
0 h̄v4γ 4c2qz,i

K2
0

(
ωRp

vγ

)
Re[αEM(ω)],

(23)

where we used αME = −αEM. Interestingly, the proportion-
ality of the dichroic signal to Re[αEM] holds also for the
difference of optical absorption obtained with right- and
left-handed circularly polarized light (ARCP − ALCP) [54].
However, compared to the optical circular dichroism, the local
excitation by a focused VEB makes it possible to probe the
dichroic response with high spatial resolution, which is man-
ifested in the fast decay of the signal strength with increasing
distance of the electron beam from the particle, as the EEL
probability strongly depends on the field accompanying the
VEBs.

Importantly, considering typical scaling of polarizability
components (αMM ∼ c2αEE and αEM ∼ cαEE), we can see that
the contribution to the loss probability due to the interaction
with the electric dipole will be dominant as ω/(2qz,ic) ∼ 10−5

at optical frequencies and typical velocities of electron probes.
Significant improvements in detecting dichroism or purely
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(b)(a)

FIG. 3. Illustration of the classical frameworks for calculating
the interaction of the VEB with an environment, in which the electron
beam is modeled as classical electric and magnetic, axial current
densities Je and Jm. In (a) the electric fields generated by the currents
and scattered by the environment are acting back on the currents,
inducing loss [see Eq. (29)]. In (b) we consider an example of such
interaction, with the environment modeled as a dipolar pointlike
scatterer, as in Fig. 2. The energy loss experienced by the VEB is
calculated from the interaction between the dipoles p and m induced
in the scatterer, and the fields which induce the polarizations, gener-
ated by the VEB currents (see Sec. II C).

magnetic response from pointlike objects with well-focused
VEBs could be achieved by employing slower electrons with
large OAM.

C. Semiclassical formalism

The interaction of a well-focused VEB with a sample
can also be expressed using a semiclassical formalism by
introducing effective frequency-dependent electric and mag-
netic line currents Je and Jm, respectively, representing the
VEB. These sources induce the electromagnetic response of a
sample, which acts back on the electron beam and causes its
energy loss [2] [see schematic in Fig. 3(a)]. While we expect
that the electric current of a VEB will have a simple form,
identical to that used throughout the literature on conventional
EELS [2], we seek to identify the exact expression for the
magnetic current.

The total energy loss consists of the energy loss ex-
perienced by both the electric and the magnetic current
components of the beam: 
E = 
Ee + 
Em. The electric
and the magnetic energy losses in the nonrecoil approximation
are given by [50]


Ee = −1

π

∫ ∞

0
dω

∫ ∞

−∞
dr Re[Eind(r, ω) · J∗

e (r, ω)], (24)


Em = −1

π

∫ ∞

0
dω

∫ ∞

−∞
dr Re[Bind(r, ω) · J∗

m(r, ω)],

(25)

where Eind and Bind are electric and the magnetic fields,
respectively, induced by the radiation from the electric and
magnetic currents Je and Jm, respectively. The last two ex-
pressions can be related using the invariance of the Maxwell’s
equations and the corresponding Green’s functions, in free

space, under the transformation [55]

E → cB, B → −E
c

, p → m
c

. (26)

We can now introduce the electric and magnetic
loss probabilities �e and �m, respectively, as 
E{e/m} =∫ ∞

0 dω h̄ω �{e/m}. The total loss probability

�(ω) = �e(ω) + �m(ω) (27)

then corresponds to the measured electron energy-loss spec-
trum for the case that a perfectly focused VEB is employed
and that we disregard OAM exchange.

We find that the line current density sources mimicking the
well-focused excitation by a VEB centered at Rc are expressed
as

J{e/m} = J{e/m} e
iωz
v δ(R − Rc)ez, (28)

where Je = −e is the amplitude of the electric current density,
and Jm is a (complex) amplitude of the effective magnetic
current density to be determined. By inserting the current den-
sities from Eq. (28) into Eqs. (24) and (25), we can write down
an analog of Eq. (18), expressing the total loss probability of
the sum of the four contributions

� = �e,Je + �e,Jm + �m,Jm + �m,Je , (29)

where

�e,J{e/m} (ω) = e

π h̄ω

∫ ∞

−∞
dz Re

[
E ind

z,J{e/m} (Rc, z, ω) e− iωz
v

]
,

(30)

�m,J{e/m} = −1

π h̄ω

∫ ∞

−∞
dz Re

[
Bind

z,J{e/m} (Rc, z, ω) J∗
me− iωz

v

]
.

(31)

Here we split the induced electric field excited by the
electric and the magnetic current (Eind

Je
and Eind

Jm
), yielding the

corresponding loss probabilities �e,Je and �e,Jm , respectively.
Similarly, the induced magnetic field originates from the in-
teraction of the sample with both current sources (Bind

Je
and

Bind
Jm

), giving rise to the loss channels �m,Je and �m,Jm . This is
denoted schematically in Fig. 3(a).

Loss probability for a VEB interacting with a pointlike
dipolar particle in a semiclassical model

To identify the correct expression for the magnetic current
Jm amplitude, we now aim to find the correspondence between
the total loss given in Eq. (29) and the result considering the
quantum-mechanical description of the VEB given in Eq. (8).
To this end, we consider here the same problem of scattering
on a pointlike dipolar particle as discussed in Sec. II B.

The calculations are carried out in a different manner than
above, shown schematically in Fig. 3(b). Here we consider the
electric and magnetic dipolar moments, p and m respectively,
induced in the scatterer p = α̂EE(EJe + EJm ) + α̂EM(BJe +
BJm ) and m = α̂MM(BJe + BJm ) + α̂ME(EJe + EJm ), by the
fields generated by the electric and magnetic currents of
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the VEB:

E(rp) = EJe (rp) + EJm (rp), (32)

B(rp) = BJe (rp) + BJm (rp), (33)

where

EJe (r, ω) = eωe
iωz
v

2πε0γ v2

[
−K1

(
ωR

vγ

)
eR + i

γ
K0

(
ωR

vγ

)
ez

]
,

(34a)

BJe (r, ω) = −eωe
iωz
v

2πε0γ vc2
K1

(
ωR

vγ

)
eφ, (34b)

and

BJm (r, ω) = −Jmωe
iωz
v

2πε0γ v2c2

[
−K1

(
ωR

vγ

)
eR + i

γ
K0

(
ωR

vγ

)
ez

]
,

(35a)

EJm (r, ω) = −Jmωe
iωz
v

2πε0γ vc2
K1

(
ωR

vγ

)
eφ. (35b)

The loss of energy can be then calculated by considering the
work done in the scatterers as

�(ω) = 1

π h̄
Im[p · (E∗

Je
(rp, ω) + E∗

Jm
(rp, ω))

+ m · (B∗
Je

(rp, ω) + B∗
Jm

(rp, ω))]. (36)

By plugging Eqs. (34) and (35) into the above expression and
axial polarizabilities as considered in Sec. II B, we can find a
closed expression for the loss probability:

� = ω2

4π3ε2
0 h̄v4γ 4

K2
0

(
ωRp

vγ

)
Im

[
e2αEE + αMM

|Jm|2
c4

− eαEM
Jm

c2
− eαME

J∗
m

c2

]
. (37)

If we compare Eq. (37) with Eq. (22), we find

Jm = ilω μB

v
, (38)

where we introduced the Bohr magneton, μB = eh̄/(2me ) and
set li = l as we are anyways disregarding the OAM change
during the interaction.

In connection with our definition of different contributions
to the loss probability, we can now see that the dichroic
contribution stems from the crossed interaction between the
electrically induced magnetic response and the magnetic cur-
rent and vice versa, contained in the terms �m,Je and �e,Jm ,
respectively.

III. LOSS PROBABILITY FOR VEBS INTERACTING
WITH DIELECTRIC PARTICLES IN THE

SEMICLASSICAL APPROXIMATION

In the following we present calculations of the loss prob-
abilities [Eqs. (30) and (31)] for different sample geometries
where we solve for the induced EM field either analytically or
numerically (as described in Appendix C).

A. Spectroscopy of localized modes in spherical
dielectric nanoantennas

We first apply the theory presented above to the canonical
example of a single spherical nanoparticle. Due to its sym-
metry, the terms �e,Jm and �m,Je do not contribute to the loss
probability and we need to evaluate only the terms �e,Je and
�m,Jm . The fully retarded analytical solution of the induced
electric field arising from the excitation of a spherical particle
by an electric current was obtained in Ref. [56], and the
corresponding EEL probability is expressed as

�sph
e → �e,Je = e2

4πε0ch̄ω

∞∑
n=1

n∑
m=−n

K2
m

(
ωb

vγ

)

× [
CM

n,mIm
[
tM
n

] + CE
n,mIm

[
tE
n

]]
, (39)

where the summation is performed over multipoles (n, m),
Km(x) is the modified Bessel function of the second kind of
order m, b is the distance of the beam from the center of the
sphere (the impact parameter), and the coefficients CE/M

n,m take
into account the coupling with the field of the electron beam
(see Eqs. (30) and (31) of Ref. [56]). We use superscripts
M/E to denote the coefficients related to the excitation of the
magnetic/electric modes. Equation (39) also includes the Mie
coefficients:

tM
n = i

jn(ka)[kina jn(kina)]′ − jn(kina)[ka jn(ka)]′

h(1)
n (ka)[kina jn(kina)]′ − jn(kina)[kah(1)

n (ka)]′
, (40)

tE
n = i

jn(ka)[kina jn(kina)]′ − ε jn(kina)[ka jn(ka)]′

h(1)
n (ka)[qina jn(kina)]′ − ε jn(kina)[kah(1)

n (ka)]′
, (41)

where kin = √
εω/c represents the wave vector inside the

sphere characterized by the relative dielectric function ε, and
a is the radius of the sphere. jn(x) and h(1)

n (x) are the spherical
Bessel and Hankel functions of the first kind, respectively. The
derivatives in Eqs. (40) and (41) are performed with respect to
the functions’ arguments.

When we consider the excitation of the sphere by a mag-
netic current, the corresponding loss probability �

sph
m can

be readily obtained by utilizing the transformation given by
Eq. (26). The magnetic-current-mediated loss probability is
thus given by

�sph
m → �m,Jm =

(
l μB

v

)2
μ0ω

4πch̄

×
∞∑

n=1

n∑
m=−n

K2
m

(
ωb

vγ

)[
CM

n,mIm
[
tE
n

]
+ CE

n,mIm
[
tM
n

]]
. (42)

We now explore whether we can distinguish modes of
electric and magnetic nature excited in silicon nanoparticles
with the help of the v-EEL spectra. In Figs. 4(a) and 4(b) we
show the calculated spectral contributions �

sph
e [Eq. (39), solid

red line] and �
sph
m [Eq. (42), solid blue line], respectively, for a

single silicon nanosphere with radius a = 150 nm, an impact
parameter b = 157.5 nm [as depicted in the inset of Fig. 4(b)],
and a 100-keV beam (v = 0.548c). We note that while the
spectrum in (a) does not depend on h̄l and thus is identical for
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FIG. 4. (a) EEL probability, �sph
e , as calculated by evaluation of

Eq. (39) (solid red line) for an electron of energy 100 keV (v =
0.548c) interacting with a silicon spherical particle of radius a =
150 nm at an impact parameter b = 157.5 nm [see the inset of (b) for
the geometrical arrangement]. The dielectric function of amorphous
silicon is taken from Ref. [57]. (b) Magnetic-current-mediated loss
probability �sph

m , as calculated by evaluation of Eq. (42), for the same
parameters as in (a), and considering OAM h̄l = 100h̄ (solid blue
line). Contributions to the loss probabilities from different electro-
magnetic modes are split in (a), (b): magnetic dipole (M1, dark blue
dashed line), electric dipole (E1, light red dashed line), magnetic
quadrupole (M2, light blue dashed line), electric quadrupole (E2,
orange dashed line), and magnetic octupole (M3, purple dashed line).
Notice the different intensity scale of (b). (c) �sph

e evaluated for
varying electron’s velocity v. (d) Intensities of the peaks marked in
(c) (colored symbols), with the color coding corresponding to the
dashed lines in (a), (b). The contribution to the intensity of each
electromagnetic mode is also displayed by solid lines with the same
color code as in (a), (b).

a vortex and nonvortex beam, �m in (b) is nonzero only for a
vortex beam. We considered |l| = 100 for our vortex beam.

To understand the origin of the resulting spectral features,
we split the full spectra (solid lines) into the contributions of
the different electric (En) or magnetic (Mn) n-order multipoles
(dashed lines), i.e., the spectra in Eqs. (39) and (42) before
the summation over n. In the considered spectral range, the
probability �

sph
e [solid red line in Fig. 4(a)] exhibits four very

distinguishable peaks, which arise due to the excitation of a
magnetic dipolar mode (M1, dark-blue dashed line), electric
dipole (E1, light-red dashed line), magnetic quadrupole (M2,
light-blue dashed line), and electric quadrupole (E2, orange
dashed line), whose energy nearly coincides with the magnetic
octupole (M3, purple dashed line). On the other hand, due to
the interchange of the coupling coefficients [compare Eq. (39)
to Eq. (42)], only the magnetic modes (M1, M2, and M3) are
found in the plot of �

sph
m [solid blue line in Fig. 4(b)]. The

cross-coupling of the magnetic current to the electric modes is
negligible and produces only a small contribution [see dashed
light-red and orange lines in Fig. 4(b) close to zero].

In a typical measurement of EELS, one obtains the total
loss probability �sph = �

sph
e + �

sph
m [sum of solid spectra in

(a) and (b)]. Therefore in order to separate the loss probabil-
ity components �

sph
e and �

sph
m , two measurements would be

needed: one with a beam where l �= 0 and another one with
exactly the same experimental conditions with a nonvortex
beam (l = 0). After subtracting these two spectra, one would
obtain �

sph
m , which only shows the peaks corresponding to the

magnetic modes. Unfortunately, we can observe that even for
relatively large OAM, the magnetic part of the loss probability
�

sph
m is six orders of magnitude smaller than �

sph
e and thus

falls below the limit of the currently achievable signal-to-noise
ratio in STEM-EELS experiments.

Besides varying the OAM of the VEB, there is another
degree of freedom, which might be used to assign the spec-
tral peaks to the modes as either electric or magnetic: The
electron’s speed v, which governs the strength of the coupling
coefficients CE/M

n,m related to the electromagnetic field of the

fast electrons. In Fig. 4(c) we evaluate �
sph
e for varying v

and l = 0 (conventional electron beam). We observe that the
intensity ratio of the four visible peaks changes significantly.
With increasing accelerating voltage (electron’s speed), the
coupling of the beam with the magnetic modes is much more
efficient, which results from the fact that the accompanying
magnetic field is stronger for faster electrons. Further, the
intensity corresponding to the excitation of the M1 and M2
modes grows faster than the peak assigned to the E1 mode,
which starts to saturate for larger speeds (v > 0.7c). This
trend is confirmed in Fig. 4(d), where we plot the intensities
of the peaks extracted from spectra in Fig. 4(c) at the energies
corresponding to the M1 (dark blue points), E1 (light red
squares), M2 (light blue diamonds), and E2 (orange triangles)
modes, depending on the electron’s speed. We also plot the
peak intensities as if the modes were excited independently
by solid lines to eliminate the influence of the spectral overlap
of the excited modes [see Fig. 4(a) showing that, e.g., E1
contributes significantly even at the energy of the M1 peak].
This trend is similar for higher-order modes, and we suggest
that obtaining the EEL spectra at several acceleration voltages
might serve for a relatively straightforward classification of
the modes.

VEBs can also be applied to unravel the spectral response
of more complex dielectric nanostructures, such as dimers
of two (identical) particles separated by a small gap. The
nanoparticle dimers are also of large interest, as they can
provide a significant enhancement of the field in the gap or
yield directional scattering [12,14,58,59]. In Fig. 5 we thus
study numerically v-EELS of a pair of spherical dielectric
particles (each of them with the same properties as the single
spherical particle studied in Fig. 4) separated by a gap of dis-
tance g = 15 nm. It has been shown that in such a system, the
modes of the individual particles hybridize and form bonding
and antibonding modes of the dimer [60]. In Figs. 5(a) and
5(b) we analyze how these hybridized modes contribute to the
spectra for different VEB positions.

In Figs. 5(a) and 5(b) we consider a 100-keV electron beam
with |l| = 100 passing through the middle of the gap or close
to the side of one of the spheres and calculate the EEL prob-
ability. We note that the crossed loss probability components
�e,Jm and �m,Je are either identically zero or cancel. We can
thus again assign �e → �e,Je and �m → �m,Jm . Importantly,
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FIG. 5. [(a),(b)] Numerically calculated electric-current and
magnetic-current-mediated EEL probabilities, �e (solid red line)
from Eq. (30), and �m (solid blue line) from Eq. (31), respectively,
for a 100-keV electron beam with l = 100 exciting a spherical par-
ticle dimer. Each spherical particle of radius a = 150 nm is made of
silicon (dielectric response is taken from Ref. [57]). The distance of
the gap between the particles is g = 15 nm, and the beam is passing
either (a) through the middle of the gap or (b) by the side of one of
the particles at the axis of the dimer, 7.5 nm from its surface. We
denote the loss peaks corresponding to the hybridized dipolar modes
in the dimer as bonding and antibonding magnetic dipole (M1B and
M1A), and bonding and antibonding electric dipole (E1B and E1A).
Gray vertical lines denote spectral positions of the modes M1, E1,
and M2 in the EEL spectra calculated for a single spherical particle
(see Fig. 4). Next to the corresponding spectra, electric (red arrows)
and magnetic (blue arrows) coupled-dipole configurations excitable
by each of the current contributions is schematically depicted.

the symmetry of the electric or magnetic field produced by
the electric or magnetic part of VEB current dictates which
current component couples to specific modes of the dimer. We
schematically depict possible scenarios next to the graph.

If the electron beam is placed in the gap [Fig. 5(a)], �e

[solid red line in Fig. 5(a)] shows that the electric current
component can excite the magnetic dipolar bonding mode
(M1B), the electric antibonding mode (E1A), and the bonding
magnetic quadrupolar mode, yielding a peak close to 1.5 eV.
On the other hand, the magnetic part of the current couples

to the magnetic dipolar antibonding mode (M1A), the electric
dipolar bonding mode (E1B), and the antibonding magnetic
quadrupolar mode (see the peak above 1.5 eV), which appears
in �m [solid blue line in Fig. 5(a)]. The energy splitting of the
bonding and antibonding modes is apparent when the peak
positions are compared to the spectral positions of the modes
excited in the individual sphere (plotted by vertical gray lines,
extracted from Fig. 4).

When the beam is moved to the side of one of the spheres
along the dimer axis [see the schematics in Fig. 5(b)], bonding
and antibonding dipolar modes are excitable by both cur-
rent components, as schematically shown next to the graph.
However, some of the dipolar arrangements are excited pref-
erentially, which is apparent in the respective spectra. The
electric component of the current efficiently couples with the
M1B mode, E1A mode, and also E1B mode [solid red line in
Fig. 5(b)]. On the other hand, �m [solid blue line in Fig. 5(b)]
shows a spectral feature arising from the excitation of both
M1A and M1B. Interestingly, M1A is dominant with respect
to M1B, whose excitation gives rise to a small shoulder below
1.1 eV. We also observe that the magnetic current component
couples only weakly to the E1B and E1A modes. However,
we note that this loss contribution is still six to seven orders of
magnitude smaller than the electric part and would be difficult
to isolate, as discussed above.

B. Probing the photonic density of states in an infinite cylinder

Another canonical example of a dielectric system with a
strong electric and magnetic response, which can be charac-
terized via v-EELS, is that of dielectric waveguides [23,61–
65]. Previous theoretical analysis of the interaction of fast
electrons with dielectric cylindrical waveguides has already
suggested their potential for applications in single-photon
sources [66]. Here we study the EEL probability of a VEB
exciting an infinite cylindrical wire of radius a placed in
vacuum for a geometrical arrangement as sketched in Fig. 6:
an electron beam moving at speed v parallel to the axis of
the wire at a distance b > a from the center of the cylinder.
For this geometry, the retarded analytical solution of the EEL
probability was presented, e.g., in Ref. [67] and reproduced in
Appendix D, which we can easily modify to include the con-
tribution to the loss experienced by the magnetic component
of the current by using the transformation in Eq. (26). We can
write the two contributions to the overall loss probability of
the VEB per unit length as

d�e

dz
= d�e,Je

dz
= e2

2π2h̄ω2ε0

∞∑
m=0

Re
{
(2 − δm0)Km(κob)

(
k2

z − k2)be,m(kz, ω)
}

︸ ︷︷ ︸
γe (kz,ω)

∣∣
kz= ω

v

, (43)

d�m

dz
= d�m,Jm

dz
= μ2

Bl2μ0

2π2v2h̄

∞∑
m=0

Im
{
(2 − δm0)Km(κob)

(
k2

z − k2
)
dm,m(kz, ω)

}
︸ ︷︷ ︸

γm (kz,ω)

∣∣
kz= ω

v

, (44)

where m denotes different azimuthal modes, δm0 is the Kronecker delta, and kz = ω/v stands for the wave vector along
the cylinder axis, which has to match the wave-vector component transferred from the fast electron when calculating the
spectra. The dimensionless coefficients be,m(kz, ω) and dm,m(kz, ω) can be obtained as described in Appendix D. We also define
κo = √

k2
z − k2.
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FIG. 6. EEL probability calculations for an electron beam moving parallel to the axis of an infinite silicon cylinder along the z direction (see
the schematics) with speed v. The radius of the cylinder is a = 150 nm, and the beam distance from the center of the cylinder is b = 160 nm.
(a), (b) Electric- and magnetic-current mediated (kz, ω)-dependent loss probabilities γe from Eq. (43) and γm from (44) in logarithmic color
scale. Dashed lines overlaying the density plot correspond to dispersions of different azimuthal modes m from Eq. (45) (color coding shown in
the legend). Solid gray lines show the wave vectors provided by the electron beam, kz = ω/v, for velocities v = 0.777c (300-keV beam) and
v = 0.548c (100-keV beam). (c), (d) Loss probabilities per unit trajectory corresponding to the electric current component [Eq. (43)] and to
the magnetic current component [Eq. (44)] calculated for a 300-keV beam (solid black line) and l = 100. The dashed lines show contributions
of different azimuthal components m to the spectra. (e), (f) The same as (c), (d), but for a 100-keV beam. For plots (a), (b) we considered only
the first four azimuthal modes in the summation. The total probabilities in [(c)–(f)] were calculated with m = 0, 1, ..., 6.

The denominators of the coefficients be,m and dm,m yield the dispersion of all the modes supported by the cylinder with the
relative dielectric function ε:

k2k2
z m2

a2κ4
o κ2

i

Km(κoa)2Im(κia)2(ε − 1)2 +
[

κi

κo
Im(κia)K ′

m(κoa) − Km(κoa)I ′
m(κia)

][
εKm(κoa)I ′

m(κia) − κi

κo
Im(κia)K ′

m(κoa)

]
= 0,

(45)

where Im(x) and Km(x) are the modified Bessel functions of the first and the second kind, respectively, of order m, and
κi =

√
k2

z − k2
in .

In Figs. 6(a) and 6(b) we plot the (kz, ω)-dependent loss
probabilities γe and γm as implicitly defined in Eqs. (43)
and (44), respectively, for geometrical parameters a = 150
and b = 160 nm. On top of the density plots, we show the
dispersion curves corresponding to the guided EM modes (the
leaky modes above the light line, given by kz = ω/c, are not
shown as they are not excitable by the parallel beam) sup-
ported by the infinite cylinder obtained as solutions of Eq. (45)
for the different orders m denoting the modes’ azimuthal
symmetry. We consider only the first four azimuthal numbers
m = {0, 1, 2, 3}, and as higher-order modes are much more

damped, with these modes we can capture all the dominant
spectral features. We can observe that some of the modes
(denoted by using the standard notation from waveguide the-
ory, see, e.g., Refs. [68,69]) are visible only in the electrical
contribution to the spectra, γe [Fig. 6(a)] or, vice versa, in the
magnetic contribution, γm [Fig. 6(b)]. We can conclude that
due to the symmetry of the EM field produced by the current
components, transverse electric modes (TE01, TE02, . . .) are
excitable only by the magnetic current. On the contrary, trans-
verse magnetic modes (TM01, TM02, . . .) couple only to the
electric current component.
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FIG. 7. [(a),(b)] v-EEL spectra calculated for chirally arranged silicon rods with parameters a = 80 nm, L = 800 nm, g = 30 nm [see the
inset of (a)]. The dielectric response of silicon is taken from Ref. [57]. We consider the excitation by a 100-keV VEB with l = −100 and split
the spectral contributions according to Eqs. (30) and (31): �e,Je (solid red line), �e,Jm (dashed red line), and �m,Je (dashed blue line). We omit
the �m,Jm term. The green line shows v-EEL dichroism, obtained as a difference between spectra calculated for l = −100 and l = +100. In
(a) the beam is positioned according to the inset 10 nm from the surface of the rods, whereas in (b) the beam is placed 10 nm from the tip of one
of the rods as depicted. [(c)–(e)] Energy-filtered maps of the total EEL for l = −100, and [(f)–(h)] the dichroic signal at energies marked on
the left of each row. The selected energies correspond to positions of the peaks in the dichroic signal in (a). The spatial scaling is the same in all
maps and the boundaries of the cylinders are plotted by dashed gray lines, while their cross sections are shown as semitransparent rectangles.

From the (kz, ω)-dependent plots in Figs. 6(a) and 6(b) we
can readily obtain the EEL spectra by setting kz = ω/v [see
the gray lines in Figs. 6(a) and 6(b)]. In Figs. 6(c) and 6(d) we
plot d�e,Je/dz [Eq. (43)] and d�m,Jm/dz [Eq. (44)], respec-
tively, evaluated for a 300-keV electron beam (v = 0.777c).
The total probabilities (solid black lines) are split into con-
tributions of the different azimuthal modes m = {0, 1, 2, 3}
denoted by the colored dashed lines. We observe that the
hybrid HE21 mode produces the dominant spectral feature in
both cases. On the other hand, the peak corresponding to the
excitation of the TM01 mode is present only in the spectrum
of Fig. 6(c), and the peak arising from the excitation of the
TE01 mode appears only in Fig. 6(d). The hybrid EH11 is
also dominantly excitable by the magnetic current and has
only a negligible contribution in the electric-current-mediated
spectrum, as confirmed by evaluating the induced fields given
in Appendix D.

By changing the acceleration voltage to 100 kV, we obtain
the spectra in Figs. 6(e) and 6(f), where the same modes give
rise to peaks at slightly different energies due to the change
of the energy-momentum matching (higher kz is provided
at fixed energy compared to the faster 300-keV electron).

Importantly, the standard electrical component of the EEL
probability in geometries possessing translational invariance,
such as in the current situation of the beam moving parallel
to an infinite cylinder, can be related to the electrical part of
the projected photonic local density of states (LDOS) [70].
An analogous proportionality holds between the magnetic-
current-mediated loss and the magnetic part of the photonic
LDOS. Hence this relationship might be used in the context
of the interaction of magnetic emitters with such structures.
Our results are consistent with the findings in Ref. [71], where
the coupling of modes to differently oriented electric dipoles
was linked to the excitation by electric/magnetic current
components.

C. Dichroic spectroscopy with vortex electron beams

Now we demonstrate the emergence of the dichroic signal
when an extended chirally arranged nanostructure is probed
by a VEB. We adopt a similar geometry as the one studied
in Ref. [72] and perform the numerical modeling for two ver-
tically displaced cylindrical rods rotated by 90◦ and stacked
at their corners as shown in the schematics of Fig. 7. The
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overall response of the structure in such an arrangement yields
optical dichroism [72], and thus, according to the preceding
analysis, we should expect the emergence of dichroism also in
the VEB-EEL spectra. However, the finite spatial extent of the
structure, as well as the overlap of different electromagnetic
modes excited in the silicon rods, might produce a nontrivial
spatial dependence of the dichroic signal.

We set the length of each rod, L = 800 nm, radius a = 80
nm, and vertical spacing between the rods g = 30 nm, as
shown in the inset of Fig. 7(a). We calculate EEL spectra
for an excitation by a VEB with energy 100 keV and OAM
l = ±100 at different beam positions. The spectra in Fig. 7(a)
are obtained for the beam placed at the corner between the
rods, 10 nm from their boundaries, whereas in Fig. 7(b) the
beam is located at 10 nm from the tip of one of the rods
(see the corresponding insets). We split the relevant spectral
components as in Eqs. (30) and (31): The purely electric loss
probability term �e,Je (solid red line), and the crossed electric-
magnetic terms �e,Jm (dashed red line) and �m,Je (dashed blue
line). We do not plot the purely magnetic term �m,Jm , which
is several orders of magnitude weaker.

The modes of a finite silicon cylinder can be understood as
standing waves along the long axis of the cylinder, formed by
the different modes of an infinite cylinder [63,73] discussed
in Sec. III B. The first dominant peak in �e,Je close to 0.8 eV
in Figs. 7(a) and 7(b) originates mostly from the bonding
arrangement of two dipolar modes along both rods [as can
be noted also in the energy-filtered map in Fig. 7(c)] with
a TM01 transverse modal profile. This mode couples well
in this geometry to the EM field associated with the electric
current component as found from the analysis of the induced
field. The second-order mode with TM01 modal profile ap-
pears around 1.3 eV [the corresponding peak is clearly visible
in Fig. 7(b)], but it significantly overlaps with an admixture
of higher-order electric and magnetic modes from higher en-
ergies. Hence, due to this overlap, the energy-filtered maps at
energies 1.38 eV [Fig. 7(d)] and also at 1.6 eV [Fig. 7(e)] show
nearly homogeneous intensity for all beam positions close to
the rod surfaces.

Importantly, there is a small difference between the spectra
�− and �+, which we plot with solid green lines in Figs. 7(a)
and 7(b). The dichroism in EEL emerges from the crossed loss
terms �e,Jm and �m,Je [dashed lines in Figs. 7(a) and 7(b)].
As we can observe in the energy-filtered maps of (�− − �+)
[Figs. 7(f)–7(h)], the strongest dichroic response arises for
the beam close to the stacking point of the rods, where the
strongest interference and the phase difference between the
fields induced at each of the rods appear. Similar behavior was
predicted in a recent work [74]. The dichroic v-EEL spectra
also flip signs depending on the spatial distribution of the local
phase and the nature of the induced field along the z axis.
The sign change of the dichroic signal appears in the region
between 1.4 and 1.6 eV, where hybridized modes with TE
polarization, i.e., coupled magnetic dipoles and higher-order
modes polarized along the long axes of the rods, can be
excited. These modes couple preferentially to the EM field
of the magnetic current component, which changes its sign
depending on l [see Eq. (38)]. Hence, the sign of the dichroic
signal might, in this case, reflect whether a particular mode
preferentially couples with either the electric or the magnetic

current component of the VEB. However, we note that in-
terpreting spatially resolved dichroic v-EELS in a general
case can be rather involved and requires further theoretical
analysis.

Although the dichroic signal is three to four orders of
magnitude weaker than the overall spectra, experimental de-
velopment and involvement of high OAM might make it
detectable [36]. We note that our approach assuming an in-
finitely focused VEB presumably underestimates the intensity
of the dichroic signal. By taking into account an overlap
of a realistic beam profile with the electromagnetic field in
the structure (e.g., as in Refs. [49,51]), one might expect a
higher contribution of the dichroic signal to the overall loss
probability, with a qualitatively similar spatial dependence.

IV. CONCLUSIONS

We set a classical theoretical framework suitable for quali-
tative modeling of vortex electron energy-loss spectroscopy at
optical frequencies in the limit of a perfectly focused vortex
beam. We revealed that spatially resolved EELS acquired with
electron vortices could be a powerful technique for a detailed
characterization of the optical response of complex nanostruc-
tures, which we demonstrated in several examples: spherical
particles and cylindrical wires made of silicon. In particu-
lar, we showed how to interpret EEL spectra based on field
symmetry considerations and demonstrated that we could dis-
tinguish modes of electric or magnetic nature emerging in the
dielectric nanoparticles by varying the electron’s velocity or
OAM. We also proved the emergence of dichroism in electron
spectra recorded with vortex electrons, which could establish
v-EELS as a unique technique to characterize chirality at the
nanoscale.
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APPENDIX A: VEB RADIUS AS A FUNCTION
OF APERTURE SIZE AND OAM

In Fig. 8 we evaluate the dependence of the effective VEB
radius for different forming aperture sizes and OAM.

APPENDIX B: NOTE: CLASSICAL ELECTRIC
AND MAGNETIC CURRENT COMPONENTS

As we showed in the main text, we can find that
the approximate electric current Je = −eW(R)eiωz/v can be
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FIG. 8. Effective beam radius as a function of the initial trans-
verse wave-vector cutoff calculated for OAM of h̄, 10h̄, and 100h̄.
We find that numerically calculated data (points) approximately fol-
low 1/Qc,i dependence with the corresponding fits plotted as solid
lines. In practice, there is a finite achievable radius given by the
maximal possible convergence angle.

equivalently replaced by two sources, Je = −e eiωz/vez and

Jm ≈ ileω

2qz,i
eiωz/vez = ilωμB

v
eiωz/vez. (B1)

However, we note that especially for larger l or for probed
structures with dimensions comparable to the vortex focus, the
loss probability calculated using this model can differ both
qualitatively and quantitatively from the rigorous approach,
i.e., using the overlap integral in Eq. (5) within the quantum-
mechanical description of the VEBs. We also note that an
alternative magnetic current deduced from an effective spi-
ralling electric current, as presented in Ref. [50], is expressed
as Jm = 2ileh̄c2/(mevR2

0,lω)eiωz/vez, which involves an addi-
tional factor 4c2/(R2

0,lω
2) in their expression, as compared to

Eq. (B1), yielding several orders of magnitude larger values
for the magnetic field current amplitude.

APPENDIX C: NUMERICAL CALCULATIONS
OF (v-)EELS IN COMSOL MULTIPHYSICS

We utilize the RADIO FREQUENCY toolbox of COMSOL MUL-
TIPHYSICS software, where we solve the wave equation for
the total electric and magnetic field in the frequency domain
with electric and magnetic current sources. We perform the
calculations in a three-dimensional (3D) simulation domain in
the Cartesian coordinate system (x, y, z). The simulation do-
main includes the nanostructure characterized by a dielectric
response ε, a straight line representing the electron’s trajec-
tory, a simulation domain (typically a block) surrounding
the nanostructure characterized by ε = 1, and “PERFECTLY

MATCHED LAYERS” (PMLs) with Cartesian symmetry that help
to attenuate the electric field at the boundaries of the simula-
tion domain and prevent unphysical field reflections from the
boundaries.

We apply the FREE TETRAHEDRAL mesh with refined el-
ements in areas of high field concentration and gradients,
typically close to the electron’s trajectory and nanostructures.
We allow for an increase of the size of the mesh elements
towards outer boundaries of the simulation domain. The area
of PML is meshed by 5–10 “SWEPT” layers. The maximal

allowed elements’ dimensions depend on the simulated en-
ergy region and thus on the typical wavelengths involved. We
typically use fractions of the typical wavelength for the largest
elements.

The electric current density component assigned to either
conventional or a vortex electron beam is implemented as line
“EDGE CURRENT,” whereas the magnetic current is given by
line “MAGNETIC CURRENT,” as expressed in Eq. (28). The (v)-
EEL probability is evaluated from 3D calculations according
to Eqs. (30) and (31) directly with this software using an
“EDGE PROBE,” “INTEGRAL,” along the electron’s trajectory
between the boundaries at zmin and zmax.

All simulations were performed twice, with ε(r, ω) corre-
sponding to the probed structure and then with ε(r, ω) = 1
everywhere, so that only the field of the electron is present,
preserving the same discretization of the geometrical do-
mains. Afterwards, the loss probability obtained from these
two calculations is subtracted to obtain only the contribution
coming from the induced field arising from the interaction of
the electron beam with the nanostructure and to correct for
the finite length of the electron’s trajectory and nonzero values
of the fast electron’s field at the boundaries of the simulation
domain [5,75,76].

APPENDIX D: ELECTRON INTERACTING
WITH A DIELECTRIC CYLINDER

We adapt the expressions from Ref. [67] for the electro-
magnetic field expressed in cylindrical coordinates (R, φ, z)
for an electron beam moving in vacuum, parallel to an infinite
dielectric cylinder along the z axis. The cylinder has a radius
a, and the electron beam is positioned at radial distance b > a
from the center of the cylinder.

The electric and magnetic field components, produced by
the fast electron moving in vacuum, in cylindrical coordinates,
and Fourier-transformed in the kz space, are

Eel,z(R, φ, kz, ω) = iωeδ(ω/v − kz )

v2ε0γ 2

∞∑
m=−∞

[Km(R�)

× Im(b�)H (R − b)

+ Km(b�)Im(R�)H (b − R)]eimφ,

Eel,R(R, φ, kz, ω) = �eδ(ω/v − kz )

vε0

∞∑
m=−∞

[K ′
m(R�)

× Im(b�)H (R − b)

+ Km(b�)I ′
m(R�)H (b − R)]eimφ,

Eel,φ (R, φ, kz, ω) = iωeδ(ω/v − kz )

vε0

∞∑
m=−∞

m

R
t[Km(R�)

× Im(b�)H (R − b)

+ Km(b�)Im(R�)H (b − R)]eimφ,

Hel,z(R, φ, kz, ω) = 0,

Hel,R(R, φ, kz, ω) = − ieδ(ω/v − kz )
∞∑

m=−∞

m

R
[Km(R�)
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× Im(b�)H (R − b)

+ Km(b�)Im(R�)H (b − R)]eimφ,

Hel,φ (R, φ, kz, ω) = �eδ(ω/v − kz )
∞∑

m=−∞
[K ′

m(R�)

× Im(b�)H (R − b)

+ Km(b�)I ′
m(R�)H (b − R)]eimφ,

where Im(x) and Km(x) are the modified Bessel functions of
the first and the second kind, respectively, of order m, and
H (x) is the Heaviside step function. We also defined � =
ω/(vγ ). The components of the induced electric and magnetic
field inside the cylinder (R < a) characterized by a dielectric
function ε are

Ein,z(R, φ, kz, ω) =
∞∑

m=−∞
−κ2

i ae,mIm(κiR)eimφ,

EinR(R, φ, kz, ω) =
∞∑

m=−∞

[
ikzκiae,mI ′

m(κiR)

− ωμ0m

R
ce,mIm(κiR)

]
eimφ,

Ein,φ (R, φ, kz, ω) =
∞∑

m=−∞

[
−mkz

R
ae,mIm(κiR)

− iωμ0κice,mI ′
m(κiR)

]
eimφ,

Hin,z(R, φ, kz, ω) =
∞∑

m=−∞
−κ2

i ce,mIm(κiR)eimφ,

Hin,R(R, φ, kz, ω) =
∞∑

m=−∞

[mωεε0

R
ae,mIm(κiR)

+ ikzκice,mI ′
m(κiR)

]
eimφ,

Hin,φ (R, φ, kz, ω) =
∞∑

m=−∞

[
iωεε0κiae,mI ′

m(κiR)

− mkz

R
ce,mIm(κiR)

]
eimφ,

whereas the induced electric and magnetic fields outside the
cylinder (R > a) in vacuum are

Eout,z(R, φ, kz, ω) =
∞∑

m=−∞
−κ2

o be,mKm(κoR)eimφ,

Eout,R(R, φ, kz, ω) =
∞∑

m=−∞

[
ikzκobe,mK ′

m(κoR)

− ωμ0m

R
de,mKm(κoR)

]
eimφ,

Eout,φ (R, φ, kz, ω) =
∞∑

m=−∞

[
−mkz

R
be,mKm(κoR)

− iωμ0κode,mK ′
m(κoR)

]
eimφ,

Hout,z(R, φ, kz, ω) =
∞∑

m=−∞
−κ2

o de,mKm(κoR)eimφ,

Hout,R(R, φ, kz, ω) =
∞∑

m=−∞

[mωε0

R
be,mKm(κoR)

+ ikzκode,mK ′
m(κoR)

]
eimφ,

Hout,φ (R, φ, kz, ω) =
∞∑

m=−∞

[
iωε0κobe,mK ′

m(κoR)

− mkz

R
de,mKm(κoR)

]
eimφ.

In the above expressions we assumed only solutions not di-
verging at R = 0 and at infinity, and we also defined κi =√

k2
z − ε ω2

c2 and κo =
√

k2
z − ω2

c2 . The unknown coefficients
ae,m, be,m, ce,m, and de,m are obtained by imposing boundary
conditions at the boundaries of the cylinder:

Hin,z(R0, 0, qz, ω) = Hout,z(R0, 0, qz, ω), (D1a)

Ein,z(R0, 0, qz, ω) = Eout,z(R0, 0, qz, ω)

+ Eel,z(R0, 0, qz, ω), (D1b)

εEin,R(R0, 0, qz, ω) = Eout,R(R0, 0, qz, ω)

+ Eel,R(R0, 0, qz, ω), (D1c)

Hin,R(R0, 0, qz, ω) = Hout,R(R0, 0, qz, ω)

+ Hel,R(R0, 0, qz, ω). (D1d)

By using the transformation in Eq. (26), we can obtain the
electric and magnetic field produced in the presence of the
cylinder due to the magnetic current component with the
unknown coefficients redefined to am,m, bm,m, cm,m, and dm,m,
which can be evaluated by applying the same boundary con-
ditions as in Eqs. (D1). The loss probability per unit trajectory
due to the electric and magnetic current is then given by
Eqs. (43) and (44), respectively.
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