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Supplementary Note 1. COMSOL Multiphysics simulations

S1.1 Details of the numerical simulations

To calculate the electron energy loss (EEL) probability Γ(ω) shown in Figs. 1, 4 and 5 of the

main text, we use the classical dielectric theory [1, 2]. We assume that the induced electric field,

coming from a response of the nanodisk to the incident electromagnetic field of the electron beam,

acts back on the beam, thus causing an energy loss which reveals the energy and strength of the

excitation induced in the nanodisk. We assume that the electron beam is traveling in the z-direction

and we model it as a vertical line (nonrecoil approximation) carrying a current I = −I0e
iωz/v, where

I0 = 1 A, ω is the angular frequency, v = 0.7c (200 keV) is the velocity of the electron and c is the

speed of light in vacuum. Then, the EEL probability Γ(ω) of the electron beam to lose an energy ~ω

is given by the following expression

Γ(ω) =
e2

π~ωI0

∫ LPML/2

−LPML/2

dzRe[Eind
z (xe, ye, z) e

−iωz/v], (1)

where e is the elementary charge, LPML is the length of the simulation box (equal to 12× R, R the

disk radius), Re[x] represents the real part of the complex number x, Eind
z (r) is the z-component

of the induced electromagnetic field in the nanodisk and Eind
z (r) is evaluated along the trajectory

of the electron beam re(t) = (xe = b, ye = 0, z = vt). To calculate Eind
z (r) of the WS2 disk, we

perform the simulation for each frequency twice: one simulation considering the nanodisk with the

permittivity function of WS2 (see Supplementary Note S1.2, Supplementary Eqs. 4-5) and another

simulation considering the nanodisk with permittivity ε = 1, preserving the same mesh in all do-

mains. Their difference yields Eind
z (r), which can be integrated along the electron beam trajectory

to find Γ(ω) (Supplementary Eq. 1).

To obtain the electron energy loss probability of the WS2 flake (green lines in Figs. 4e, 4f and

5e, 5j of the main text), we calculate the non-retarded bulk loss probability Γbulk(ω) experienced by

a fast electron beam traveling a distance d = 70 nm in WS2. The calculation is performed using the

following expression [3]

Γbulk(ω) =
e2d

(2π)2v2~ε0

Im

[
− 1

εxx
ln

(
εzz ω

2/v2 + εxx q
2
c

εzz ω2/v2

)]
, (2)

where Im[x] represents the imaginary part of the complex number x, qc = 1 Å−1 is the maximum
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perpendicular wavevector of the electrons selected by the collection aperture of the EELS spectrom-

eter and εxx, εzz are the in- and out-of-plane permittivies of WS2, respectively, discussed in the next

subsection.

The scattering cross sections of the disks shown in Figs. 2b and c of the main text are calculated

as

σscat(ω) =
1

S0

∮
A

d2r Sscat(r) · n̂, (3)

where S0 = |Einc|2/(2Z0), |Einc| = 1 V/m is the amplitude of the incident plane wave and Z0 is

the impedance of vacuum. Sscat(r) is the time-averaged Poynting vector, d2r is the surface element

with outward normal unit vector n̂ and the integration is performed along the complete surface A of

a sphere that encloses the disk.

S1.2 Permittivities used in the simulations

To obtain the numerical calculations shown in Figs. 1 and 2 of the main text, we use a constant

value of ε = 18 for the permittivity of the high-index dielectric nanodisk. For simplicity, these

simulations are performed without considering any substrate whereas numerical calculations shown

in Figs. 4 and 5 are performed with the nanodisk being on top of a 50 nm thick substrate layer with

permittivity εSiN = 4.1853.

For the simulations shown in Figs. 4 and 5, we use the following in- and out-of-plane permittiv-

ities of WS2 [4], εxx = εyy and εzz, respectively

εxx = εyy = ε∞ + fex
ω2

ex

ω2
ex − ω2 − iγexω

, (4)

εzz = 7, (5)

where ε∞ = 18 is the high-frequency permittivity, fex = 0.4 is the oscillator strength, ωex = 1.96 eV

is the exciton frequency and γex = 90 meV is the exciton damping constant. The in-plane component

εxx (Supplementary Eq. 4) considers only the A-exciton absorption band of the WS2.

For comparison, we plot in Supplementary Fig. 1 the dielectric function of WS2 obtained from

Ref. [5] (see Supplementary Fig. 1a) and the dielectric function of WS2 used in our simulations

(see Supplementary Fig. 1b). The labels A, B and C in Supplementary Fig. 1 indicate the resonance

peaks associated with the A-, B- and C-exciton absorption bands of WS2.
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Supplementary Figure 1: Permittivity of WS2. a Complex in- and out-of-plane permittivities of WS2,
εxx = εyy (solid lines) and εzz (dashed lines), respectively. Blue lines represent real parts and gray lines
imaginary parts. The dielectric functions are obtained from Ref. [5]. The labels A, B and C indicate the A-,
B-, and C-exciton absorption bands of WS2. b Same as a but the components of the dielectric function are the
ones given by Supplementary Eqs. 4 and 5. Inset in panel a illustrates the atomic structure of WS2.
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Supplementary Note 2. EEL spectrum for different velocities of

the electron beam

In Supplementary Fig. 2, we show the simulated EEL spectra of a high-index dielectric (ε = 18)

nanodisk with radius R = 250 nm and thickness d = 55 nm. We calculate the EEL spectra for

the fixed impact parameter b = 1.1R and different electron velocities v = 0.8c, 0.7c, 0.6c, 0.5c

and 0.4c. By comparing the simulated EEL spectra, we can observe that the intensity of the visible

peaks diminishes as the velocity decreases. Most importantly, the peaks and dips (marked by the

gray dashed lines) appear close to the same spectral positions, indicating that anapole excitation is

not significantly influenced by variations in the velocity of the electron.

Supplementary Figure 2: Theoretical EEL spectrum for different electron velocities v. Comparison
of simulated EEL spectra for v = 0.8c, 0.7c, 0.6c, 0.5c and 0.4c, as indicated in the inset. The numerical
calculations are performed for a nanodisk with R = 250 nm, d = 55 nm and ε = 18 excited by an electron
beam traveling in an aloof trajectory along the z-axis at a distance b = 1.1R with respect to the nanodisk
center. The gray dashed lines mark the four anapole dips AE

11, AE
21, AE

12 and AE
22. Yellow spectrum is the same

as the one shown in Fig. 1c of the main text.
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Supplementary Note 3. Modes of the cylindrical nanoresonator

Supplementary Figure 3: Cylindrical resonator modes. a Simulated EEL probability Γ(ω) for a nanodisk
withR = 250 nm and d = 55 nm. Gray dashed lines mark the first three peak positions at ~ωTE110 = 1.09 eV,
~ωTE210 = 1.44 eV and ~ωTE310 = 1.70 eV. The field plots in panels b-d show the amplitude of the total
electric field |E(ω)| in the plane z = 0 (half of the nanodisk height) for the energies marked by the gray dashed
lines. Green dots indicate the electron beam position. e-g Same as b-d but for the plane x = 0. The maximum
value of |E(ω)| in each case is: b 2× 109 V/m, c 1.2× 109 V/m, d 3× 109 V/m and e-g 2× 109 V/m. h-j
Same as e-g but showing the amplitude of the z-component of the total magnetic field |Bz(ω)| in the plane
x = 0. The maximum value of |Bz(ω)| in each case is: h 1.7 T, i 1.6 T and j 20 T. Insets at the left of panels
b, e and h illustrate top and side views of the nanodisk being probed by the electron beam. The scale bar in
panels b-j is 100 nm.

As we pointed out in the main text, one can notice that the EEL probability Γ(ω) spectra exhibit

different peaks (see spectrum in Fig. 1c of the main text). They are attributed to the different modes
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excited in the nanodisk by the fast electron beam as we discuss in the following paragraph.

In Supplementary Fig. 3a we show the Γ(ω) spectrum of a high-index dielectric (ε = 18)

nanodisk of radius R = 250 nm and thickness d = 55 nm (same as in Fig. 1c of the main text). In

the simulations, the electron beam travels with velocity v = 0.7c (200 keV, c being the speed of light

in vacuum) along the z-axis (symmetry axis of the nanodisk) with impact parameter b = 1.1R, as

depicted in the inset at the left of Supplementary Fig. 3b. For simulation details, we refer the reader

to the Methods section and Supplementary Note 1. We observe in Supplementary Fig. 3a clear peaks

at around 1.09 eV, 1.44 eV, 1.70 eV, 1.8 eV and 2.25 eV. To elucidate the nature of these peaks, we

show the amplitude of the total electric field |E(ω)| inside the nanodisk in the plane z = 0 (half of

the disk height) at the three energies indicated by the gray dashed lines: 1.09 eV (panel b), 1.44 eV

(panel c) and 1.70 eV (panel d). In panel b, we observe a mode that is localized at the center and edge

of the nanodisk, whereas the field plots in panels c and d reveal modes with 4 and 6 nodes along the

azimuthal direction with zero nodes along the z-direction (panels e-g). Additionally, the amplitude

of the z-component of the total magnetic field |Bz(ω)| is different from zero inside the disk at the

energies corresponding to the peaks (see panels h-j), and thus, we classify these modes as transverse

electric (TE). Furthermore, to label these modes we use the standard nomenclature of cylindrical

resonator modes: TEn,k,p where indices n, k, p denote azimuthal, radial and axial wavenumbers,

respectively [6, 7].
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Supplementary Note 4. Multipole decomposition

The electric spherical and Cartesian multipole moments of the nanodisks are calculated using the

standard expressions reported in Refs. [8, 9]. In this section, we present the close expressions for

the spherical electric dipole Psph(ω) and the spherical electric quadrupole Q̂sph(ω) moments. We

also show that in the long-wavelength approximation, spherical electric dipole and spherical electric

quadrupole moments are a combination of Cartesian electric and toroidal multipole moments.

S4.1 Electric dipole

We calculate the spherical electric dipole moment Psph(ω) in the nanodisk using the following

expression [8]:

Psph(ω) = − 1

iω

∫
V

d3r

{
Jind j0(k0r) +

k2
0

2

[
3(r · Jind)r− r2Jind

] j2(k0r)

(k0r)2

}
. (6)

Here the integral extends over the whole volume V of the nanodisk with volume element d3r, k0 =

ω/c is the magnitude of the wavevector in vacuum, j`(x) is the spherical Bessel function of the first

kind, r is the magnitude of the position vector r = (x, y, z) and Jind = Jind(r) is the induced current

density distribution in the nanodisk.

In the long-wavelength approximation (k0r � 1), the spatial size of Jind(r) is much smaller than

the wavelength of the electromagnetic field, and thus one can expand the spherical Bessel functions

j0(k0r), j2(k0r) using the small argument limit as [10]

j0(k0r) ≈ 1− (k0r)
2

6
, (7)

j2(k0r) ≈
(k0r)

2

15
. (8)

By substituting Supplementary Eqs. 7 and 8 into Supplementary Eq. 6, we can obtain the following

expression for the spherical electric dipole moment in the long-wavelength approximation

Pk0r�1
sph (ω) ≈ − 1

iω

∫
V

d3r

{
Jind

[
1− (k0r)

2

6

]
+
k2

0

2

[
3(r · Jind)r− r2Jind

] (k0r)
2

15(k0r)2

}
(9)

≈ − 1

iω

∫
V

d3r Jind︸ ︷︷ ︸
Pcar(ω)

+ik0

{
1

10c

∫
V

d3r
[
(r · Jind)r− 2r2Jind

]}
︸ ︷︷ ︸

Tcar(ω)

,
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where one recognizes from the last equality the conventional expressions of Cartesian electric and

toroidal dipole moments [9]. From this analysis, we conclude that in the long-wavelength approxi-

mation the spherical electric dipole moment Psph(ω) is determined by the sum of Cartesian electric

Pcar(ω) and toroidal Tcar(ω) dipole moments as:

Psph(ω) ≈ Pcar(ω) + ik0Tcar(ω). (10)

S4.2 Electric quadrupole

To calculate the spherical electric quadrupole moment Q̂sph(ω) induced in the nanodisk, we use

the following expression [8]:

Q̂sph(ω) = − 3

iω

∫
V

d3r

{[
3(rJind + Jindr)− 2(r · Jind)Î

] j1(k0r)

k0r
(11)

+2k2
0

[
5rr(r · Jind)− (rJind + Jindr)r

2 − r2(r · Jind)Î
] j3(k0r)

(k0r)3

}
,

with Î being the identity tensor. In the long-wavelength approximation, one can expand the spherical

Bessel functions j1(k0r), j3(k0r) as [10]

j1(k0r) ≈
k0r

3
− (k0r)

3

30
, (12)

j3(k0r) ≈
(k0r)

3

105
, (13)

and substituting Supplementary Eqs. 12 and 13 into Supplementary Eq. 11 one finds that

Q̂k0r�1
sph (ω) ≈ − 3

iω

∫
V

d3r

{[
3(rJind + Jindr)− 2(r · Jind)Î

] 1

k0r

[
k0r

3
− (k0r)

3

30

]
(14)

+2k2
0

[
5rr(r · Jind)− (rJind + Jindr)r

2 − r2(r · Jind)Î
] (k0r)

3

105(k0r)3

}
≈ − 1

iω

∫
V

d3r
[
3(rJind + Jindr)− 2(r · Jind)Î

]
︸ ︷︷ ︸

Q̂(e)
car(ω)

+ i3k0

{
1

42c

∫
V

d3r
[
4rr(r · Jind)− 5r2(rJind + Jindr) + 2r2(r · Jind)Î

]}
︸ ︷︷ ︸

Q̂(T)
car (ω)

,
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where Q̂(e)
car(ω) and Q̂(T)

car (ω) are the conventional electric Cartesian and toroidal quadrupole moments

[9], respectively. Thus, in the long-wavelength approximation spherical electric quadrupole moment

Q̂sph(ω) is determined by the sum of Cartesian electric Q̂(e)
car(ω) and toroidal Q̂(T)

car (ω) quadrupole

moments as:

Q̂sph(ω) ≈ Q̂(e)
car(ω) + i3k0Q̂(T)

car (ω). (15)

In our simulations, we calculate the multipole moments Psph(ω), Pcar(ω), Tcar(ω), Q̂sph(ω),

Q̂(e)
car(ω) and Q̂(T)

car (ω) applying the following procedure:

(i) We calculate the total electric field E(r) inside the nanodisk. The total electric field is the one

produced by the probing electron plus the electric field induced in the nanodisk.

(ii) We next calculate the induced current density as Jind(r) = −iωε0(ε̂−1)E(r) and perform the

volume integrals (Supplementary Eqs. 6, 9, 11 and 14) with functions predefined in COMSOL

Multiphysics software.

S4.3 Partial scattering contributions of the multipoles moments

From the multipole moments induced in the nanodisk, one can obtain the scattered power by the

disk, Pscat(ω), using the following expression [8, 11]:

Pscat(ω) = P
Psph
scat (ω) + P

Q̂sph
scat (ω) + P

msph
scat (ω) + · · · , (16)

=
k4

0c

12πε0

[
|Psph(ω)|2 +

k2
0

120

∣∣∣Q̂sph(ω)
∣∣∣2 +

∣∣∣∣msph(ω)

c

∣∣∣∣2 + · · ·

]
,

where

P
Psph
scat (ω) =

k4
0c

12πε0

|Psph(ω)|2 , (17)

P
Q̂sph
scat (ω) =

k6
0c

1440πε0

∣∣∣Q̂sph(ω)
∣∣∣2 and (18)

P
msph
scat (ω) =

k4
0c

12πε0

∣∣∣∣msph(ω)

c

∣∣∣∣2 , (19)

are the scattered powers from the spherical electric dipole, spherical electric quadrupole, and spher-

ical magnetic dipole moments, respectively. The scattered powers of higher-order electric and mag-

netic multipoles are implicitly indicated by the three dots in Supplementary Eq. 16. In this work,

S12



however, we focus on the electric dipole and electric quadrupole multipole contributions.

As discussed in the previous sections, in the long-wavelength approximation, spherical electric

dipole and quadrupoles can be expressed in terms of Cartesian multipoles (Supplementary Eqs. 10

and 15). Thus, to obtain the scattered power from Cartesian multipoles, we substitute Supplementary

Eqs. 10 and 15 into Supplementary Eq. 16 and find that

P k0r�1
scat (ω) ≈ k4

0c

12πε0

[
|Pcar(ω) + ik0Tcar(ω)|2 +

k2
0

120

∣∣∣Q̂(e)
car(ω) + i3k0Q̂(T)

car (ω)
∣∣∣2 + · · ·

]
, (20)

where one identifies the following expressions:

PPcar
scat (ω) =

k4
0c

12πε0

|Pcar(ω)|2 , (21)

PTcar
scat (ω) =

k4
0c

12πε0

|ik0Tcar(ω)|2 , (22)

P Q̂(e)
car

scat (ω) =
k6

0c

1440πε0

∣∣∣Q̂(e)
car(ω)

∣∣∣2 and (23)

P Q̂(T)
car

scat (ω) =
k6

0c

1440πε0

∣∣∣i3k0Q̂(T)
car(ω)

∣∣∣2 . (24)

The partial scattering cross sections of the disk shown in Figs. 2d and 2e of the main text are

calculated as

σscat(ω) =
1

S0

Pscat(ω) =
1

S0

P
Psph
scat (ω) +

1

S0

P
Q̂sph
scat (ω) +

1

S0

P
msph
scat (ω) + · · · (25)

= σ
Psph
scat (ω) + σ

Q̂sph
scat (ω) + σ

msph
scat (ω) + · · · ,

and

σPcar
scat (ω) =

1

S0

PPcar
scat (ω), (26)

σTcar
scat (ω) =

1

S0

PTcar
scat (ω), (27)

σQ̂(e)
car

scat (ω) =
1

S0

P Q̂(e)
car

scat (ω), (28)

σQ̂(T)
car

scat (ω) =
1

S0

P Q̂(T)
car

scat (ω), (29)

where S0 = |Einc|2/(2Z0), |Einc| = 1 V/m is the amplitude of the incident plane wave and Z0 is the

impedance of vacuum.
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Supplementary Note 5. Nanodisk fabrication

In this section we show a detailed schematics (see Supplementary Fig. 4) of the step-by-step

procedure we apply to fabricate the WS2 nanodisks on a thin SiN membrane. The details of each

steps are described in Methods section of the main text.

Supplementary Figure 4: Fabrication scheme for the WS2 nanodisks on a thin SiN TEM membrane. It
starts with (1) a dry-transfer of a mechanically-exfoliated WS2 flake onto a ∼ 50 nm thick SiN membrane,
and followed by (2) a spin-coating of positive an e-beam resist. In order to pattern WS2 into various sizes of
nanodisks, (3) the deposited e-beam resist was exposed using e-beam lithography with donut-shape patterns.
(4) Subsequently, the exposed positive resist was developed for creating dry-etching resist mask. As a final
step, we performed (5) dry-etching of the WS2 flake through a donut-shaped resist mask, and (6) removed the
left-over resist with an oxygen-plasma stripping. This process of e-beam exposure of a positive e-beam resist
combined with a dry etching, enables the fabrication of donut-shaped etched patterns with isolated nanodisks
at their center that have controllable diameters.
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Supplementary Note 6. Nanodisk thickness determination

We determine the thickness of the WS2 nanodisks using the following three methods: (i) elec-

tron energy loss spectroscopy, (ii) tilted-view STEM imaging and (iii) the combination of normal-

incidence optical reflectivity measurements with a proper transfer-matrix fitting using a permittivity

of WS2 obtained from Ref. [5]. As discussed in the following, the thickness d extracted from each

of these methods is consistent and close to the value of 70 nm.

S6.1 Electron energy loss spectroscopy

In EELS experiments, electrons that pass through the sample are separated into a spectrum based

on how much energy they lose while interacting with the sample due to inelastic scattering events.

The probability that electrons undergo inelastic scattering while passing through the sample in-

creases as the thickness of the sample is increased. As a consequence, one obtain a stronger EEL

signal (associated with inelastic scattering events) when the thickness of the sample is increased.

This relationship between inelastic scattering events and sample thickness allows us to measure the

nanodisk thickness d by comparing the number of electrons that do not undergo inelastic scatter-

ing to the number of electrons that do. The electrons that do not undergo inelastic scattering are

contained wihtin the zero-loss peak, which is typically the largest peak in an EEL spectra located

at 0 eV. The relative magnitudes of these two components are determined by the inelastic mean-

free-path of the electrons in the material and thus it is straightforward to obtain the thickness of the

sample in the unit of the number of inelastic mean free paths. From this value, the sample thickness

can be estimated by utilizing known experimental and sample parameters with an accuracy of±10 %

to 20 %, as described in Ref. [12].

In practice, we estimate the thickness of the WS2 nanodisks using this EELS method that is

implemented in the Gatan Microscopy Suite 3 software (Gatan, Inc.). For our experiments, deter-

mining the nanodisk thickness using EELS is further complicated due to the SiN substrate below and

residual resist material above the nanodisk. When acquiring an EEL spectrum from a nanodisk, the

electron beam passes through all three layers (resist material, WS2 and SiN) and thus the measured

EEL signal is a combination of the three contributions. Disentangling the signal coming from each

of these three layers is complicated without knowing the precise thickness and chemical composi-

tion of each layer. Therefore, to estimate the nanodisk thickness we first assume that the EEL signal

acquired from the nanodisk only comes from WS2, and the SiN and the residual resist contributions
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are disregarded in the thickness calculation. The WS2 nanodisk is the thickest and most strongly

inelastically scattering component of the sample, and therefore should be the dominant contributor

to the inelastic EEL signal. However, this assumption increases the inaccuracy of the method by

an amount that is difficult to quantify. This overestimates the actual nanodisk thickness d because

of the added inelastic scattering from the SiN and resist material in the EELS signal. To attempt to

correct for part of this overestimation, we measure the thickness of the SiN membrane on an area

of the sample where there is no WS2 or resist material using the same EELS method, and subtract

this value from the measured thickness of the nanodisk to get our final estimated nanodisk thickness.

This method yields a nanodisk thickness d of 60 nm − 65 nm. Because of the relatively large and

unpredictable uncertainty associated with this methodology, we also use two other independent and

more straightforward methods.

S6.2 Tilted-view STEM imaging

As a complementary method to the one discussed above, we use STEM images of tilted nan-

odisks to determine their thicknesses. Specifically, by acquiring a STEM image of a nanodisk that

is tilted at an angle θ from the [0001] crystallographic direction of WS2, one can measure the pro-

jected disk thickness d′ defined in Supplementary Fig. 5. Once we know d′, we obtain the nanodisk

thickness d using the following expression:

d =
d′

sin θ
. (30)

We acquire simultaneous SE and HAADF images of various nanodisks at a tilt angle of θ = 53◦

and we identify the top and bottom nanodisk edges in the images, as shown by the red ellipses in

Supplementary Figs. 5a, b. The projection of the tilted circular nanodisk edges creates ellipses in

the images, which can be used to determine the projected disk thickness d′ (distance between the

center of the top and bottom ellipse) marked by the blue line in Supplementary Figs. 5a, b. From

different tilted images, we find a projected disk thickness of d′ = 57 nm consistently from multiple

nanodisk diameters and, using Supplementary Eq. 30, we obtain a disk thickness of d = 71 nm.

The uncertainty in this approach is limited by the accuracy of identifying the ellipse-shaped edges

of the nanodisk in the images and then measuring the distance between them. We estimate the error

in measuring d′ to be about 5 nm, which translates to an uncertainty in d of around ±10 %.
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Supplementary Figure 5: STEM imaging of a nanodisk. Simultaneously acquired a HAADF and b SE
STEM images of a nanodisk with overlays to portray how the projected disk thickness d′ is determined. The
red ellipses indicate the estimated edges of the top and bottom circular surfaces. The red dashed lines indicate
the center line of each ellipse. The blue line indicates the distance between the center of the top and bottom
ellipse, that is, d′.

S6.3 Optical reflection spectroscopy

To corroborate the nanodisk thickness obtained with EELS and STEM imaging, we additionally

perform a normal-incidence optical reflectivity measurements of the WS2 flake. Then we employ

transfer-matrix simulations to find the value of the thickness d required to reproduce the position of

the experimental dips in the reflectivity spectra.

Reflection spectra at normal-incidence from the WS2 flake were collected using a 20× objective

(Nikon, NA = 0.45), directed to a fiber-coupled spectrometer and normalized with reflection from a

standard dielectric-coated silver mirror. The obtained reflectivity spectra are reproduced and fitted by

employing the transfer-matrix simulations using the permittivity of WS2 reported in Ref. [5]. Then

we extract the thickness d of the WS2 flake from the fitting. The transfer-matrix formalism allows

to obtain the total reflection rs(p)total and transmission ts(p)total coefficients of a s(p)-polarized planewave,

for any layered system, in terms of the thickness di and the dielectric function εi of each layer i. In

our case, the nanodisk is located on top of a 50 nm SiN membrane (see Supplementary Note 5) and

thus the multilayer system is composed of a WS2 layer of thickness d on top of a 50 nm thick layer

made of SiN, as depicted in Supplementary Fig. 6.

To calculate the total reflection rtotal and reflectivityR, we follow the transfer-matrix procedure

described in Ref. [13] which we briefly discuss next. For the multilayer system shown in Supple-

mentary Fig. 6, considering that each layer has dielectric tensor ε̂i = diag(εi,x, εi,y, εi,z), and for

normal incidence illumination, the Fresnel coefficients ri,i+1 and ti,i+1 of each interface between
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Supplementary Figure 6: Schematics of the multilayer system. WS2 layer of thickness d on top of a 50 nm
SiN layer. Labels 1, 2 and 3 refer to Air, WS2 and SiN, respectively. The half cylinder on top of the layer
system represents the detector used to collect the reflected light.

layers i and i+ 1 are given by

ri,i+1 =

√
εi,x −

√
εi+1,x

√
εi,x +

√
εi+1,x

, (31)

ti,i+1 =
2
√
εi,x

√
εi,x +

√
εi+1,x

. (32)

We remove s and p indices from Fresnel coefficients, ri,i+1 and ti,i+1, since the angle of the incident

illumination is zero (normal incidence). The total transfer matrix T̂ can then be obtained as

T̂ =

 T11 T12

T21 T22

 = M̂1,2 P̂2 M̂2,3 P̂3 M̂3,1, (33)

where each matrix M̂i,i+1 and P̂i are determined by the following expressions

M̂i,i+1 =
1

ti,i+1

 1 ri,i+1

ri,i+1 1

 , (34)

P̂i =

 e−ik0di
√
εi,x 0

0 eik0di
√
εi,x

 . (35)

Once we obtain total matrix T̂, we use the matrix elements to calculate the reflection coefficient rtotal

and reflectivityR of the multilayer system as rtotal = T21
T11

andR = |rtotal|2.

In Supplementary Fig. 7 we show experimental reflectivity spectra (dots) together with the fits
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Supplementary Figure 7: Fitting of experimental reflectivity spectra obtained from a WS2 flake on top
of the SiN membrane of 50 nm thickness. a-c Reflectivity spectra (blue dots) collected at three different
positions in the WS2 flake. The diameter of the detection spots is ∼ 4µm. d-f Reflectivity spectra (red dots)
collected at three different positions in the WS2 flake. The diameter of the detection spots is ∼ 2µm. The
reflectivity spectra are normalized to that obtained on a Ag reference layer of 200 nm. In all panels, the dots
are the experimental values of the reflectivityR and the solid lines are the simulations obtained with transfer-
matrix formalism (Supplementary Eqs. 31-35). Insets in panels a and d illustrate the multilayer system and
the detectors with different spot diameters D1 > D2. The fitting values obtained for the WS2 layer thickness,
d, are: a 74.5 nm, b 74.1 nm, c 74.7 nm, d 75.0 nm, e 75.3 nm and f 73.7 nm.

(solid lines) obtained from the transfer-matrix formalism (Supplementary Eqs. 31-35). From the

6 fittings, we obtain an average value of 74.5 nm for the thickness of the WS2, which is in good

agreement with the thicknesses obtained with EELS and STEM imaging.
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Supplementary Note 7. Chemical composition from energy dis-

persive X-ray spectroscopy (EDS)

We measure the spatial variations in chemical composition of the fabricated nanodisks using

energy dispersive X-ray spectroscopy (EDS) STEM spectrum imaging. For these measurements,

we raster scan a 1-2 Angstrom electron probe across the sample. For every electron probe position

in the image (pixel), we collect an X-ray spectrum. This process creates a three dimensional data

cube where the x and y dimensions of the data cube are the sample x and y coordinates, and the z

dimension is the X-ray spectrum. We also collect the HAADF STEM image simultaneously to view

the sample structure. From the EDS data cube, maps are generated which, for each pixel, integrate

the EDS signal within a chosen characteristic X-ray peak. This enables the direct imaging of the

nanodisk structure while simultaneously mapping the spatial variations of its constituent elements.

We map the spatial variations of the W L, S K, C K, O K, F K, and Al L X-rays for three nanodisks

with different diameters. All nanodisks are mapped at lower magnification to visualize the complete

etched donut-shaped structure. The smallest nanodisk (with 88 nm radius) is also mapped both, at

higher magnification to visualize smaller details around the nanodisk structure, and at a 30◦ tilt angle

from the [0001] crystallographic direction of WS2 to reveal information about the relative heights of

the X-ray signals.

In Supplementary Fig. 8, we show the HAADF STEM images and extracted EDS maps of

the R = 295 nm, R = 110 nm and R = 88 nm disks. We can observe that the W and the S

signals come from the nanodisks at the center of the etched donut-shaped structure (see red and

yellow panels). Additionally, the tungsten and sulfur X-ray signals obtained from the nanodisks

are confined below the C, O, F, and Al X-ray signals (see panel e). The C, O, F, and Al X-ray

signals come from the residual resist material (located above the nanodisk) that remains after the

nanofabrication process (compare the first two columns in Supplementary Fig. 8e with the last four

columns). From this analysis we can conclude that the residual resist material is not uniform in

morphology or composition, and appears to have a tapered-edge structure and an outer cylindrical-

shaped shell of different composition (higher W, O, F, and Al content) that is primarily filled with

C.
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Supplementary Figure 8: Chemical composition of the fabricated nanodisks. STEM-EDS composition
data from a the R = 295 nm disk, b the R = 110 nm and c-e the R = 88 nm disk. c and d show a lower
and higher magnification of the nanodisk, respectively. e Shows a 30◦ tilted view of the sample revealing
information about the relative heights where the X-rays originate. The first column (gray) is the HAADF
STEM image that is acquired simultaneously to the EDS data. The second (red), third (yellow), fourth (green),
fifth (blue), sixth (magenta), and seventh (white) columns are the extracted EDS maps using the integrated
signal from the W L, S K, C K, O K, F K, and Al K X-rays, respectively. The scale bars in panels a-e are
0.4µm, 0.26µm, 0.16µm, 0.04µm, and 0.2µm, respectively, and are the same for all the EDS maps in the
row.
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Supplementary Note 8. Experimental EEL spectra

In Supplementary Fig. 9, we show the experimental data shown in Fig. 4a of the main text.

Supplementary Figure 9: Experimental EEL spectra. The spectra are the same as the ones shown in Fig.
4a of the main text but offset for better visualization. The green dashed line indicates the A-exciton frequency
(see Supplementary Note 10).
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Supplementary Note 9. Analysis of anisotropy effects in anapole

excitation

Supplementary Figure 10: Anisotropic effects. a Comparison of simulated EEL spectra for the anisotropic
(green dashed line) and isotropic (black line) permittivity. The numerical calculations are performed for a
nanodisk with radius R = 250 nm and thickness d = 55 nm excited by an electron beam traveling with
velocity v = 0.7c in an aloof trajectory along the z-axis at a distance b = 1.1R with respect to the nanodisk
center. The red dots and the gray dashed lines mark the anapole dips AE

11 and AE
12. b Scattered power of the

dipole moments induced in the anisotropic nanodisk. c Scattered power of the dipole moments induced in the
isotropic nanodisk.

In Supplementary Fig. 10a we show the simulated EEL spectra (green dashed line) for a nanodisk

with permittivity ε̂ = diag(18, 18, 7) (corresponding to the permittivity of WS2 without the A-

exciton resonance). For comparison, we also show the results obtained for the model disk with
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ε̂ = diag(18, 18, 18) (black line) and indicate the anapole dips with the gray dashed lines. From the

EEL spectra, we can observe that the effect of using an anisotropic permittivity does not modify the

spectral positions of the dips, nor does it affect the excited anapole states within the nanodisk.

To further validate this claim, we calculate the spherical electric Psph(ω), Cartesian electric

Pcar(ω) and toroidal Tcar(ω) dipole moments induced in the anisotropic nanodisk. We plot the

scattered power PP
scat(ω) from these dipoles in Supplementary Fig. 10b, where one can see that the

dips at around 1.25 eV and 1.87 eV are the result of the Cartesian electric dipole and toroidal dipole

moments having similar amplitude but opposite phase (green and magenta lines intersect at an ener-

gies marked with AE
11 and AE

12 in Supplementary Fig. 10b). For comparison, we include the plot of

PP
scat(ω) for the isotropic nanodisk (see Supplementary Fig. 10c) and corroborate that the intersec-

tions of the green and magenta lines coincide with the energy obtained for the anisotropic nanodisk

(compare the spectral positions of the red dots in Supplementary Figs. 10b and c). Based on this

analysis, we can conclude that, in our particular case, the anisotropy of WS2 does not influence the

excitation of anapole states in the nanodisk.
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Supplementary Note 10. Analysis of the anapole-exciton coupled

system

In order to analyse the experimental and simulated EEL spectra of the WS2 nanodisks (Figs. 4a

and 4d in the main text), we reproduce the spectra using temporal coupled mode theory (TCMT).

This theoretical formalism has been widely used to model the scattered and absorbed power of an

object when it is illuminated with a monochromatic plane wave [14–16]. We thus develop here an

extended TCMT assuming that the incident illumination is the one produced by a fast electron beam.

We then apply this formalism to reproduce the EEL spectra of the WS2 nanodisks and to obtain the

spectral dips that result from the coupling between the first electric dipole, AE
11, anapole and the

A-exciton resonance. We model the anapole-exciton system via three coupled modes excited in the

disk by the probing electron. At the end of this supplementary note we show the results obtained

with TCMT, together with the parameters extracted from it.

S10.1 Details of the incident electric field and the scattering channels

One of the key ingredients in TCMT is the expansion of the incident field over a set of appropriate

scattering channels. In this subsection we thus show that the electric field, Ebg(r;ω), produced

by a fast electron beam can be decomposed as a sum of incoming and outgoing spherical waves

propagating toward and outward the electron beam, respectively. Each spherical wave defines a

scattering channel as we discuss next.

We consider an electron traveling in vacuum along the z-axis, with impact parameter b and

velocity v (see Fig. 1a of the main text). This fast electron produces a broadband electromagnetic

field that can be expressed on the basis of vector spherical harmonics as follows [17]:

Ebg(r;ω) =
∞∑
`=0

∑̀
m=−`

aTE
`m (ω)ETE

`m (r;ω) + aTM
`m (ω)ETM

`m (r;ω), (36)

where

aTE
`m (ω) = −iev

ε0

m√
`(`+ 1)

ω

c2
φTE
`m (ω), (37)

aTM
`m (ω) =

ev

cε0

1√
`(`+ 1)

φTM
`m (ω), (38)
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and the overlap integrals φTE
`m (ω) and φTM

`m (ω) are determined as:

φTE
`m (ω) =

4πk0

v
i

∫ ∞
−∞

dz eiωz/vh
(1)
` (k0re)Y

∗
`m(θe, φe), (39)

φTM
`m (ω) = c`m e

−iφe
(
∂

∂b
− i

b

∂

∂φe

)
φTE
`m−1(ω)− d`m eiφe

(
∂

∂b
+
i

b

∂

∂φe

)
φTE
`m+1(ω). (40)

Here h(1)
` (x) is the spherical Hankel function of the first kind, Y`m(θ, φ) is the scalar spherical har-

monic, c`m =
√
`(`+ 1)−m(m− 1), d`m =

√
`(`+ 1)−m(m+ 1) and the variables (re, φe, θe)

are the spherical coordinates of the electron beam trajectory re(t) = (xe = b, ye = 0, z = vt).

In Supplementary Eq. 36, the fields vectors ETE
`m (r;ω) and ETM

`m (r;ω) are defined according to the

standard vector spherical harmonics relations:

ETE
`m (r;ω) = j`(k0r)X`m(θ, φ), (41)

ETM
`m (r;ω) = − i

k0

∇× [j`(k0r)X`m(θ, φ)] , (42)

X`m(θ, φ) =
1√

`(`+ 1)
L [Y`m(θ, ϕ)], (43)

where L = −i(r × ∇) is the angular momentum operator. By expressing the spherical Bessel

function j`(k0r) as

j`(k0r) =
1

2

[
h(1)(k0r) + h(2)(k0r)

]
, (44)

with h(2)
` (x) being the spherical Hankel function of the second kind, one finds that the fields vectors

ETE
`m (r;ω) and ETM

`m (r;ω) (Supplementary Eqs. 41 and 42) can be written as the following equally

weighted superposition of incoming (+) and outgoing (-) spherical waves:

ETE
`m (r;ω) =

h(1)(k0r)

2
X`m(θ, φ)︸ ︷︷ ︸

E+
TE,`m

+
h(2)(k0r)

2
X`m(θ, φ)︸ ︷︷ ︸

E−
TE,`m

, (45)

ETM
`m (r;ω) = − i

2k0

∇×
[
h

(1)
` (k0r)X`m(θ, φ)

]
︸ ︷︷ ︸

E+
TM,`m

− i

2k0

∇×
[
h

(2)
` (k0r)X`m(θ, φ)

]
︸ ︷︷ ︸

E−
TM,`m

. (46)

Substituting Supplementary Eqs. 45 and 46 into Supplementary Eq. 36, one further finds that the

electric field Ebg(r;ω) can be described as the following incoming and outgoing waves (propagating
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toward and outward the electron beam) coupled to different scattering channels:

Ebg(r;ω) =
∞∑
`=0

∑̀
m=−`

aTE
`m (ω)

[
E+

TE,`m(r;ω) + E−TE,`m(r;ω)
]

+ (47)

aTM
`m (ω)

[
E+

TM,`m(r;ω) + E−TM,`m(r;ω)
]
.

Here, each TE or TM polarization together with the pair {`,m} defines a scattering channel that can

be labeled as {q, `,m} with q representing the polarization of the field. The power carried by the

outgoing waves can be obtained by summing the radiated power along each scattering channel:

Pbg(ω) =
1

8ck2
0

∞∑
`=0

∑̀
m=−`

(∣∣aTE
`m (ω)

∣∣2 +
∣∣aTM
`m (ω)

∣∣2). (48)

The incident field decomposed in different scattering channels provides a convenient tool to

calculate the scattered power of an object interacting with a fast electron beam. A model of the

optical anapole state (strong suppression of the scattered power) based on these scattering channels

is discussed in the following section.

S10.2 Anapole-exciton coupled system within TCMT

We next consider the case of the nanodisk being illuminated by the fast electron beam. The scat-

tering of the disk, coming from the response to the electromagnetic field of the electron beam, cou-

ples to the infinite set of scattering channels {q, `,m} determined by the incident field, as sketched in

Supplementary Fig. 11. The optical anapole characterized by complete suppression of the scattered

field by the disk is well described by TCMT and particularly, it can be modeled as a single-channel

scattering problem as we discuss next.

The first electric dipole, AE
11, anapole state originates from the destructive interference of the

radiation produced by the Cartesian electric and toroidal dipoles, both of which radiate in the TM,

` = 1 channel [8, 18, 19]. This constrains the AE
11 anapole to occur in three linearly-independent

scattering channels: {TM, 1,−1}, {TM, 1, 0} and {TM, 1, 1}. The Cartesian electric and toroidal

dipoles showing the fields of a linearly polarized dipole (X11 + iX1−1) further constrain the AE
11

anapole to the m = ±1 channels which have identical scattering coefficients. To model the AE
11

anapole state excited by the fast electron beam, we thus assume that the scattered field of the nan-

odisk couples dominantly to the single scattering channel {TM, 1, 1}. We then approximate the
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Supplementary Figure 11: Schematics of the fast electron beam illuminating the nanodisk. Solid arrows
represent incoming waves s+ toward the disk, whereas dashed arrows represent outgoing waves s− outward
from the disk. In the schematics, the two disk modes with amplitudes a1, a2 interact with the exciton with
amplitude aex. The nanodisk scatters along the channel {TM, 1, 1} to produce the AE

11 anapole state.

scattered field of the disk as follows:

Escat(r;ω) ≈ bTM
11 (ω)E−TM,11(r;ω), (49)

with bTM
11 (ω) being the amplitude of the scattered field in the {TM, 1, 1} channel. We further assume

that the first electric dipole anapole is the result of the far-field coupling of two resonant modes of

the disk radiating in the channel {TM, 1, 1}. These resonant modes have amplitudes a1(t), a2(t),

resonant frequencies ω1, ω2 and total decay rates γ1, γ2, respectively. Thus, the anapole-exciton

coupled system can be modeled by considering the two resonant modes coupled to a third nonra-

diating mode representing the exciton resonance with amplitude aex(t), resonant frequency ωex and

absorptive decay rate γex.

Within TCMT, the dynamics of the anapole-exciton coupled system is determined by the follow-

ing equation:
dA3(t)

dt
= −iĤ3 A3(t) + K3 s

+(t), (50)

where A3(t) = (a1(t), a2(t), aex(t))> is the vector with the amplitudes of the three modes of the

disk (symbol > denotes transpose of a matrix), s+(t) describes the incoming field (in our case the

one produced by the electron beam) in the scattering channel {TM, 1, 1}, K3 = (κ1, κ2, κex)> is the

vector of radiative coupling coefficients to the incoming field, and the effective 3 × 3 Hamiltonian

Ĥ3 is given by
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Ĥ3 =


ω1 0 0

0 ω2 0

0 0 ωex


︸ ︷︷ ︸

Ω̂

−i


γabs

1 /2 0 0

0 γabs
2 /2 0

0 0 γex/2


︸ ︷︷ ︸

Γ̂abs
3

−i


γrad

1 /2 γ12 0

γ12 γrad
2 /2 0

0 0 0


︸ ︷︷ ︸

Γ̂rad
3

(51)

+


0 0 g1ex

0 0 g2ex

g1ex g2ex 0


︸ ︷︷ ︸

Ĝ3

.

From Supplementary Eq. 51 one can observe that the matrix Ĥ3 has the information of the resonant

frequencies ω1, ω2, ωex, the absorptive decay rates γabs
1 , γabs

2 , γex and the radiative decay rates, γrad
1 ,

γrad
2 of each mode. The total decay rate is the sum of the absorptive and radiative contributions

(γ = γabs + γrad) and determines the linewidth (full width at half-maximum) of the resonance. We

assume that the AE
11 anapole is the result of the far-field interference of the two resonant modes with

γabs
1 = γabs

1 = 0. This far-field interference is represented by matrix elements γ12 =
√
γrad

1 γrad
2 /4

[20]. In Supplementary Eq. 51 the parameters g1ex and g2ex are the coupling strengths between each

of the resonant modes and the A-exciton.

The scattered field of the disk, together with the incident field, produce the following outgoing

wave

s−(t) = D>3 A3(t) + C s+(t), (52)

where D3 = K3 = (
√
γrad

1 ,
√
γrad

2 , 0)> and C is a constant which includes all non-resonant scat-

tering processes in the channel [16]. In our case we assumed C = 1. Through a time-to-frequency

Fourier transform of Supplementary Eqs. 50 and 52, we find the following steady-state solution for

the amplitudes of the modes

A3(ω) =
[
i(Ĥ3 − ωÎ)

]−1

D3 s
+(ω), (53)

and the following expression for the outgoing wave

s−(ω) =

[
D>3

[
i(Ĥ3 − ωÎ)

]−1

D3 + C

]
︸ ︷︷ ︸

Ŝ(ω)

s+(ω), (54)
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with Â3(ω) = F
[
Â3(t)

]
and s±(ω) = F [s±(t)]. Here, F is the time-to-frequency Fourier trans-

form. Equation 54 relates the incoming wave s+(ω) and the outgoing wave s−(ω) via the scattering

matrix Ŝ(ω), which, under our assumption of a single scattering channel, reduces to a single matrix

element. On the other hand, the amplitude of the outgoing wave can be written as a sum of the con-

tributions of the scattered and the incident fields, i.e., s−(ω) = aTM
11 (ω) + bTM

11 (ω). Substituting this

last relation into Supplementary Eq. 54, one finds that the amplitude of the scattered field bTM
11 (ω)

results in

bTM
11 (ω) = aTM

11 (ω)
[
Ŝ(ω)− 1

]
, (55)

where the incoming radiation is s+(ω) = aTM
11 (ω).

According to Supplementary Eq. 48, the radiated power by the nanodisk can be calculated as

Pscat(ω) = |bTM
11 (ω)|2 = |Ŝ(ω)− 1|2| s+(ω)|2, (56)

whereas the absorbed power can be obtained as the sum of the absorbed power by each mode,

Pabs(ω) = γabs
1 |a1(ω)|2 + γabs

2 |a2(ω)|2 + γex|aex(ω)|2 = 2A†3(ω) Γabs
3 A3(ω), (57)

where M̂† denotes conjugate transpose of matrix M̂.

Finally, to calculate the electron energy losses within the TCMT formalism, we assume that the

energy lost by the electron beam when interacting with the nanodisk is equal to the energy dissipated

by the nanodisk either via heating (ohmic losses) or radiation into the far field [21]. Thus, we assume

that the electron energy loss probability Γ(ω) is proportional to the sum of the scattered and absorbed

power (extinction) by the nanodisk excited by the probing electron

Γ(ω) ∝ Pscat(ω) + Pabs(ω) = |Ŝ(ω)− 1|2| s+(ω)|2 + 2A†3(ω) Γabs
3 A3(ω), (58)

where the vector A3(ω) and the scattering matrix (a scalar in our case) Ŝ(ω) are determined by

Supplementary Eqs. 53 and 54, respectively.
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S10.3 Reproducing the EEL spectra with TCMT

To extract the parameters ω1, ω2, γrad
1 , γrad

2 , g1ex and g2ex, we employ the developed TCMT and

reproduce the EEL spectra shown in Figs. 4a and 4d of the main text. To that end, we apply the

following procedure:

1. We normalize the simulated and experimental EEL spectra (Figs. 4a and 4d of the main text) to

the peak maximum in the energy range between 0.5 eV and 2.5 eV. Following the description

discussed in the previous section, we model the electron energy losses with Supplementary

Eq. 58:

Γ(ω) = α
Pscat(ω) + Pabs(ω)

| s+(ω)|2
+ β, (59)

where α is a proportionality constant and β is a parameter that accounts for the background in

the EEL signal.

2. We reproduce using TCMT the first dip in the simulated EEL spectra of the high-index di-

electric (ε = 18) disks with radius R = 268 nm, 240 nm, 215 nm, 190 nm, 165 nm, 138 nm,

110 nm and thickness d = 70 nm (see Supplementary Figs. 12a and 12d). The red lines in

Supplementary Figs. 12a and 12d are guides to the eye and indicate the position of the first dip

in the EEL spectra. From the TCMT results (Supplementary Fig. 12d), we obtain the eigen-

frequencies ω1, ω2 and radiative decay rates γrad
1 , γrad

2 for each disk. The extracted parameters

as a function of the inverse radius 1/R are shown in Supplementary Figs. 12g and 12h. For

this step, we set g1ex = g2ex = 0 and assume that β is constant in Supplementary Eq. 59.

Note in Supplementary Figs. 12g and 12h the typical linear dispersion of the Mie-resonances

sustained by high-index dielectric nanostructures [22].

3. We then reproduce with TCMT the simulated EEL spectra of the WS2 disks (Supplementary

Figs. 12b and 12e) and find the coupling strengths g1ex and g2ex. The red lines in Supple-

mentary Figs. 12b and 12e are guides to the eye and indicate the position of the anapole-

exciton-hybrids in the EEL spectra. In the TCMT results, the maximum values of the coupling

strengths g1ex and g2ex are limited to that of the bulk polariton [13, 23] which in our case is

around 0.14 eV. The resonance frequency and decay rate of the exciton are fixed to the values

γex = 0.09 eV and ωex = 1.96 eV, corresponding to the same values of the WS2 dielectric

function (Supplementary Eq. 4). We limit ω1, ω2, γrad
1 and γrad

2 within a few meV from its ini-

tial value obtained in step 2. From the parameters ω1, ω2, ωex, γrad
1 , γrad

2 , γex, g1ex and g2ex, we
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Supplementary Figure 12: Reproducing simulated and experimental EEL spectra through TCMT. EEL
spectra obtained from a numerical (COMSOL) simulations of the disks with ε = 18, b COMSOL simulations
of the WS2 disks, and c experiments. Panels d-f show the EEL spectra obtained through TCMT. Panels g-l
show the parameters extracted from the TCMT results plotted as a function of the inverse radius, 1/R.
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obtain the eigenfrequencies ωLP, ωMP and ωUP of the hybrid modes by calculating the eigen-

values of the effective 3 × 3 Hamiltonian Ĥ3 (Supplementary Eq. 51). The eigenfrequencies

of the hybrid modes, together with the coupling strengths are shown in Supplementary Figs.

12i and 12j.

4. We repeat step 3 but for the experimental EEL spectra (Supplementary Fig. 12c). In this step,

γex = 0.11 eV and ωex = 1.97 eV are fixed according to the values obtained when reproducing

with TCMT the experimental EEL spectra of an unpatterned WS2 flake (green lines shown in

Figs. 4b and 4c of the main text). We assume that the background of the experimental EEL

signal, β in Supplementary Eq. 59, is a linear function of energy. The TCMT results together

with the extracted parameters are shown in Supplementary Figs. 12f, 12k and 12l.

S10.4 Parameters obtained from the TCMT results

Supplementary Tables 1, 2 and 3 show all parameters obtained from the TCMT results.

R ω1 γrad
1 ω2 γrad

2

(nm) (eV) (eV) (eV) (eV)
110 1.73 0.35 2.28 0.30
138 1.45 0.34 1.95 0.29
165 1.26 0.33 1.67 0.22
190 1.12 0.33 1.52 0.22
215 1.01 0.32 1.35 0.16
240 0.93 0.34 1.24 0.14
268 0.86 0.30 1.15 0.14

Supplementary Table 1: Parameters obtained by reproducing with TCMT the EEL spectra of the high-index
(ε = 18) dielectric disks shown in Supplementary Fig. 12a. These parameters are plotted in Supplementary
Figs. 12g, h.
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R ω1 γrad
1 g1ex ω2 γrad

2 g2ex ωLP ωMP ωUP

(nm) (eV) (eV) (meV) (eV) (eV) (meV) (eV) (eV) (eV)
110 1.64 0.36 48 2.20 0.30 126 1.68 1.91 2.21
138 1.43 0.34 70 1.89 0.29 100 1.48 1.79 2.01
165 1.24 0.33 70 1.65 0.22 100 1.27 1.58 1.99
190 1.06 0.33 79 1.53 0.22 129 1.09 1.46 1.99
215 1.01 0.32 72 1.35 0.16 138 1.03 1.29 1.99
240 0.92 0.34 83 1.24 0.14 127 0.94 1.19 1.99
268 0.86 0.30 70 1.15 0.14 130 0.89 1.10 1.98

Table 2: Parameters obtained by reproducing with TCMT the simulated EEL spectra of the WS2 disks shown
in Fig. 4d of the main text and Supplementary Fig. 12b. These parameters are plotted in Supplementary Figs.
12i, j.

R ω1 γrad
1 g1ex ω2 γrad

2 g2ex ωLP ωMP ωUP

(nm) (eV) (eV) (meV) (eV) (eV) (meV) (eV) (eV) (eV)
110 1.75 0.36 80 2.01 0.30 87 1.81 1.90 2.02
138 1.58 0.34 79 1.90 0.29 81 1.65 1.80 2.01
165 1.33 0.33 76 1.76 0.22 97 1.36 1.68 2.01
190 1.21 0.33 80 1.61 0.22 123 1.25 1.53 2.01
215 1.12 0.32 74 1.45 0.16 84 1.15 1.40 1.99
240 1.04 0.34 84 1.33 0.14 91 1.06 1.28 1.99
268 0.97 0.30 71 1.25 0.14 100 1.01 1.20 1.99

Table 3: Parameters obtained by reproducing with TCMT the experimental EEL spectra of the WS2 disks
shown in Fig. 4a of the main text and Supplementary Fig. 12c. These parameters are plotted in Supplementary
Figs. 12k, l.
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Supplementary Note 11. Substrate influence in anapole excitation

In Supplementary Fig. 13a, we show a comparison between the EEL spectrum of a disk with

(blue line) and without (blue shaded curve) a SiN substrate. From the spectra, we clearly see that

the SiN substrate shifts the peaks and dips to lower energies (redshift) but does not alter the exci-

tation of the anapole states, as verified in Supplementary Figs. 13b, c. The electromagnetic field

at the resonant frequencies (modes) is predominantly confined within the disk (see the field plots in

Supplementary Fig. 13). Notably, for higher-order modes and anapoles, the field exhibits increased

localization inside the disk, leading to a reduced influence of the SiN substrate.

Supplementary Figure 13: Influence of the substrate. a Comparison of EEL spectra with (blue line) and
without (blue shaded curve) a thin isotropic substrate of 50 nm thickness and constant permittivity εSiN =
4.1853. The numerical calculations were performed for a nanodisk with radius R = 250 nm and thickness
d = 55 nm excited by an electron beam traveling with velocity v = 0.7c in an aloof trajectory along the z-axis
at a distance b = 1.1R with respect to the nanodisk center. The red dots and the red dashed lines mark the
anapole dips AE

11, AE
21, AE

12 and AE
22. The black dashes lines mark the peak positions at the energies 1.332 eV,

1.616 eV and 1.86 eV. b Scattered power of the dipole moments in the disk on top of a substrate. c Scattered
power of the quadrupole moments in the disk on top of a substrate. d-i Amplitude of the total electric field
|E(ω)| at the plane x = 0 (depicted in the schematics above the field plots) for some energies marked by the
dashed lines in panel a. The field plots are normalized to the maximum value |Emax| in each case and the scale
bar is 100 nm.
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