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Abstract: The term neurodegeneration with brain iron accumulation (NBIA) brings together a
broad set of progressive and disabling neurological genetic disorders in which iron is deposited
preferentially in certain areas of the brain. Among NBIA disorders, the most frequent subtype is
pantothenate kinase-associated neurodegeneration (PKAN) caused by pathologic variants in the
PANK2 gene codifying the enzyme pantothenate kinase 2 (PANK2). To date, there are no effective
treatments to stop the progression of these diseases. This review discusses the utility of patient-
derived cell models as a valuable tool for the identification of pharmacological or natural compounds
for implementing polytarget precision medicine in PKAN. Recently, several studies have described
that PKAN patient-derived fibroblasts present the main pathological features associated with the
disease including intracellular iron overload. Interestingly, treatment of mutant cell cultures with
various supplements such as pantothenate, pantethine, vitamin E, omega 3, α-lipoic acid L-carnitine
or thiamine, improved all pathophysiological alterations in PKAN fibroblasts with residual expression
of the PANK2 enzyme. The information provided by pharmacological screenings in patient-derived
cellular models can help optimize therapeutic strategies in individual PKAN patients.

Keywords: neurodegeneration with brain iron accumulation (NBIA); pantothenate kinase-associated
neurodegeneration (PKAN); pantothenate kinase 2 (PANK2); pantothenate; pantethine; vitamin E;
omega 3; α-lipoic acid; L-carnitine; thiamine; fibroblasts; induced neurons; precision medicine

1. Introduction

NBIA represents a group of rare genetic neurodegenerative diseases that clinically man-
ifest the presence of severe dystonia, rigidity, dysarthria, loss of ambulation, parkinsonism,
choreathetotic movements, retinal degeneration or optic nerve atrophy, neuropsychiatric
disorders and can lead to premature mortality [1]. The most frequent pathological findings
are iron deposits in the basal ganglia and adjacent areas, and generalized axonal dilations
(called spheroid bodies) in the central nervous system (CNS), representing degenerated
neurons [2]. At present, more than 15 genes are associated with NBIA disorders [3]. How-
ever, the responsive genes of nearly 20% of the patients with clinical suspicion of NBIA
are unknown.

Despite the intense efforts in research on these diseases and the proposals of new
therapeutic approaches, there are still no effective treatments to halt the progression of
neurodegeneration in NBIAs. Therefore, new therapeutic strategies are necessary.
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Pathological variants in the pantothenate kinase 2 (PANK2) gene, which encodes for
an essential enzyme involved in the coenzyme A (CoA) biosynthesis pathway, are one of
the most prevalent NBIA subtypes; it represents nearly 50% of cases [4]. PKAN includes a
continuous phenotypic spectrum with two major clinical forms: classic PKAN and atypical
PKAN. Classic PKAN has an early onset in childhood (usually in the first decade of life) and
a rapid neurodegenerative progression. On the other hand, atypical PKAN is characterized
by a later onset (commonly in the second or third decade of life), and a slower course of the
disease [5,6]. Despite this clinical classification, there are patients with early disease debut
but insidious progression or late start with fast progression.

The PANK gene family comprises PANK1a, PANK1b, PANK2, PANK 3 and PKAN4
genes, but only pathological variants of PANK2 cause PKAN. PANK1, PANK2, and PANK3
isoenzymes are active as dimeric complexes with different localizations in the cell. PANK2
is the only isoform to be expressed in mitochondria in humans and primates [7], whereas
PANK1 and PANK3 are commonly localized in the cytosol and nucleus [8]. On the other
hand, PANK4 is a pseudo-pantothenate kinase that lacks kinase activity; however, it
shows phosphatase activity catalyzing the dephosphorylation of phosphopantothenate,
4′-phosphopantetheine and its derivatives [9,10].

The PANK2 enzyme catalyzes the key regulatory reaction in CoA biosynthesis in which
pantothenate is converted into 4′-phosphopantothenate using ATP. The main mechanism
for controlling PANK2 activity is through allosteric inhibition by acetyl-CoA and CoA
thioesters [11]. Recently, Cavestro et al. have reviewed CoA biosynthesis and degradation
pathways [12].

2. Etiopathogenesis of PKAN
2.1. CoA Deficiency in PKAN

Deficient PANK2 enzyme activity due to PANK2 mutations is hypothesized to impair
the biosynthesis of CoA, leading to multiple metabolic alterations including deficient
tricarboxylic acid cycle (TCA) and cell bioenergetics, amino acids and lipid metabolism,
and ketone body production [13,14] (Figure 1a). In addition, CoA also participates in protein
regulation by posttranslational modifications (Acetylation, CoAlation, Acylation and 4-
phosphopantetheinylation) [15]. However, the connection between CoA levels and PKAN
pathomechanisms is not clear because CoA levels in PKAN patient-derived fibroblasts are
similar to control cells [16,17]. Furthermore, no experimental data are available showing
reduced CoA levels in PANK2-deficient human tissues. Furthermore, CoA levels were
not decreased in any tissue in adult Pank2-KO mice [18]. These findings suggest that the
increased expression levels of other PANK isoforms may compensate for the loss of PANK2
activity. Thus, expression levels of PANK1, but not PANK3, were remarkably increased in
PKAN fibroblast cell lines [19]. However, a significant reduction in CoA levels was detected
in mitochondrial fractions of PKAN fibroblasts [19] suggesting that a critical mitochondrial
pool of CoA might be reduced in PKAN [20], and thus CoA levels in cells and tissues are
unaffected as the result of the compensatory increase in the other PANK isoform activities.

The CoA compartmentalization hypothesis in PKAN is supported by the hypothesis
that mitochondrial CoA supplies the 4’-phosphopantetheine cofactor for the posttransla-
tional modification required to activate specific and essential mitochondrial proteins [20]
(Figure 1b). Enzymes that catalyse sequential reactions often operate as complexes and are
dependent on the covalent binding of a 4′-phosphopantetheine cofactor to specific subunits.
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Figure 1. CoA deficiency in PKAN. (a) Etiopathogenesis of PKAN based on cellular CoA deficiency; 
(b) Etiopathogenesis of PKAN based on the deficiency of mitochondrial phosphopantetheinyl-pro-
teins. AASDHPPT, L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transfer-
ase; AASS, α-aminoadipate semialdehyde synthase; ALDH1L2, Aldehyde Dehydrogenase 1 Family 
Member L2 (mitochondrial 10-formyltetrahydrofolate dehydrogenase, 10-FTHFDH); DPCK, 
dephosphocoenzyme A kinase; mt ACP, mitochondrial acyl carrier protein; PKAN, pantothenateki-
nase–associated neurodegeneration; PPAT, phosphopantetheine adenylyl transferase; PPCDC, 
phosphopanthenoylcysteine decarboxylase; PPCS, phosphopantothenoylcysteine synthetase; TCA, 
tricarboxylic acid cycle. 

These 4′-phosphopantetheinyl proteins carry metabolic intermediates during se-
quential enzymatic reactions. The transfer of the 4′-phosphopantetheinyl cofactor from 

Figure 1. CoA deficiency in PKAN. (a) Etiopathogenesis of PKAN based on cellular CoA defi-
ciency; (b) Etiopathogenesis of PKAN based on the deficiency of mitochondrial phosphopantetheinyl-
proteins. AASDHPPT, L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl trans-
ferase; AASS, α-aminoadipate semialdehyde synthase; ALDH1L2, Aldehyde Dehydrogenase 1 Family
Member L2 (mitochondrial 10-formyltetrahydrofolate dehydrogenase, 10-FTHFDH); DPCK, dephos-
phocoenzyme A kinase; mt ACP, mitochondrial acyl carrier protein; PKAN, pantothenatekinase–
associated neurodegeneration; PPAT, phosphopantetheine adenylyl transferase; PPCDC, phosphopan-
thenoylcysteine decarboxylase; PPCS, phosphopantothenoylcysteine synthetase; TCA, tricarboxylic
acid cycle.

These 4′-phosphopantetheinyl proteins carry metabolic intermediates during sequen-
tial enzymatic reactions. The transfer of the 4′-phosphopantetheinyl cofactor from CoA
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is a post-translational modification [21] necessary for the transformation of apo-proteins
into their full-active holo forms [21]. Thus, 4′-phosphopantetheinylation is crucial for the
activity of a number of essential proteins including acyl carrier protein (ACP) which is
involved in type I fatty acid synthesis (FAS) and mitochondrial ACP (mtACP) participating
in type II mitochondrial FAS, α-aminoadipate semialdehyde synthase (AASS) which is im-
plicated in lysine metabolism and 10-formyltetrahydrofolate dehydrogenase (10-FTHFDH)
that presents two isoforms: cytosolic 10-FTHFDH or ALDH1L1 (Aldehyde Dehydrogenase
1 Family Member L1) and mitochondrial 10-FTHFDH or ALDH1L2 (Aldehyde Dehydroge-
nase 1 Family Member L2) participating in folate metabolism [21] (Figure 1b). Interestingly,
mammal’s genome only encodes one unique phosphopantetheinyl transferase (PPTase),
termed L-aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl transferase
(AASDHPPT) [22]. This enzyme hydrolyses coenzyme A to 4′-phosphopantetheine and
3′,5′-adenosine diphosphate, and transfers the 4′-phosphopantetheinyl cofactor to a serine
amino acid at the catalytic center of the apo-proteins. Crystallization studies on human
PPTase have allowed a better knowledge of its substrate binding and catalytic process [23].

The fatty acid synthase (FAS) is a cytosolic multi-enzyme protein that catalyzes fatty
acid synthesis from acetyl-CoA and malonyl-CoA to the corresponding acyl carrier pro-
tein (ACP) derivatives [24]. FAS consists of seven catalytic domains: acyl carrier protein
(ACP), malonyl/acetyltransferase, ketoacyl synthase, ketoacyl reductase, dehydrase, enoyl
reductase, and thioesterase [24,25]. As an acyl carrier, ACP depends on its phosphopan-
tetheine cofactor which acts as a long sidearm allowing the translocation of the growing
fatty acyl chain intermediate from one catalytic site to another in the FAS complex [24,25].
Cytosolic ACP forming part of the FAS complex has been described as the main acyl-carrier
protein participating in fatty acid biosynthesis. However, it has been identified a mtACP
protein different from cytosolic ACP, which also carries a 4′-phosphopantetheine pros-
thetic group [26,27]. The presence of an independent pathway for mitochondrial fatty
acid synthesis suggests that it may be essential for the specific mitochondrial phospho-
lipid metabolism [28,29]. Furthermore, type II mitochondrial FAS is the sole source of the
octanoic acid precursor required to produce the lipoic acid cofactor essential for several
mitochondrial proteins [30]. The localization of PANK2 in mitochondria and the modula-
tion of PANK2 activity by acyl-CoA derivatives may also have biological significance for
the development of a separate fatty acid biosynthesis pathway in type II mitochondrial
FAS [31].

In agreement with the CoA compartmentalization hypothesis, decreased PANK2 ex-
pression levels and reduced mitochondrial CoA levels [19], were associated with the down
regulation of mitochondrial 4′-phosphopantetheinyl proteins such as mtACP, mitochondrial10-
FTHFDH (ALDH1L2) and AASS in mutant PANK2 fibroblasts [32]. Interestingly, the ex-
pression levels of AASDHPPT, the enzyme that transfers 4′-phosphopantetheine from CoA
to specific proteins were up-regulated, likely as a compensatory mechanism to cope with
low CoA levels in mitochondria and the consequent 4′-phosphopantetheinylation defect.
Furthermore, low levels of phosphopantetheinyl-proteins in PKAN fibroblasts were limited
to the mitochondrial compartment since cytosolic 4′-phosphopantetheinyl proteins such as
FAS and cytosolic 10-FTHFDH (ALDH1L1) showed normal expression levels [32].

Consistent with mtACP deficiency which also hinders lipoic acid biosynthesis by type
II mitochondrial FAS [30], lipoylated protein levels are also predicted to be downregulated.
Thus, it has been reported that pyruvate dehydrogenase (PDH) lipoylation and activity were
markedly decreased in PKAN patients-derived cells [32]. Similarly, in the CoA-deficient
Drosophila model, decreased mtACP levels were accompanied by reduced mitochondrial
protein lipoylation and PDH activity [20]. Likewise, the activity of other lipoylated enzyme
complexes such as α-ketoglutarate dehydrogenase (αKGDH) [33] are predicted to be
affected since expression levels of lipoylated αKGDH were notably down-regulated in
PKAN fibroblasts [32]. Lipoic acid deficiency is also predicted to affect the lipoylation
and activity of three additional enzymes from the amino acid metabolism: branched-chain
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ketoacid dehydrogenase, 2-oxoadipate dehydrogenase, and the glycine cleavage system
(GCS) [34]. However, to date there are no studies on the activity of these enzymes in PKAN.

In addition, deficiency of mt-ACP may also alter several mitochondrial processes
because mtACP is implicated in essential mitochondrial functions. Indeed, mtACP, also
known as NDUFAB1 (NADH:ubiquinone oxidoreductase (NDU)-FAB1), forms part of
mitochondrial respiratory complex I and is required for its assembly [35,36]. Furthermore,
mtACP participates in the iron-sulfur cluster (ISC) biosynthetic pathway and stability, indi-
cating that the 4′-phosphopantetheinyl modification of mitochondrial proteins is crucial
for mitochondrial iron metabolism [37–39]. Thus, the hypothesis proposes that mtACP
deficiency leads to reduced complex I activity and ISC formation. This prediction is consis-
tent with the observations of Jeong et al. in a PKAN mouse model [38] and Lambrechts
et al. in Drosophila models of CoA deficiency [20]. Furthermore, the loss of mtACP in
Saccharomyces cerevisiae leads to reduced ISC formation, accompanied by the inactivation of
Fe-S cluster-dependent enzymes such as aconitases (which contain a Fe-S cluster cofactor),
and activation of iron-responsive factors Aft1 and Aft2 [39]. Interestingly, decreased Fe-S
cluster levels lead to mitochondrial iron overload [40]. In agreement with these findings,
abnormal iron metabolism and downregulation of aconitase activity have been reported in
patient-derived fibroblasts as well as iPSC-derived neurons [41,42].

All these predictions and observations have been also confirmed by other researchers
in PKAN patients-derived cellular models [32]. Thus, mitochondrial complex I activity,
expression levels of proteins involved in ISC formation as well as mitochondrial and
cytosolic aconitase activities were notably decreased in mutant PANK2 fibroblasts [32].

2.2. Iron/Lipofuscin Accumulation in PKAN

Iron is an essential element for cell homeostasis due to its role as a versatile cofactor
in many iron-containing proteins involved in cell metabolism and signalling homeosta-
sis [43]. However, redox-active iron can participate in reactions that generate damaging
ROS and consequently may promote oxidative stress, lipid/protein oxidation, nucleic acid
damage [44,45], and finally cell death by ferroptosis [46]. Iron detection of PKAN brain
tissues by Prussian blue staining showed extensive deposition of iron in the globus pallidus,
substantia nigra and other brain areas [47].

Iron overload in PKAN has been explained by several hypotheses. One explana-
tion is that iron overload is caused by the process of neuronal apoptosis [48]. Thus, it
has been shown to increase iron uptake in ceramide-induced apoptosis [49]. However,
there are no further experimental data to support this assumption. Another hypothe-
sis connects iron metabolism dysregulation to cysteine accumulation caused by a defi-
cient PANK2 activity [50]. After pantothenic acid phosphorylation, cysteine is conju-
gated to 4′-phosphopantothenate forming 4′-phosphopantothenoylcysteine, a reaction
catalysed by phosphopantothenoylcysteine synthetase (PPCS). Thus, PANK2 activity de-
ficiency could lead to the accumulation of L-cysteine and L-cysteine derivatives such as
N-pantothenoylcysteine. Excess L-cysteine levels result in iron deposits due to its iron-
chelating activity. Moreover, L-cysteine oxidation by iron could generate ROS resulting
in increased oxidative stress [13]. In addition, L-cysteine accumulation may enhance iron-
dependent lipid peroxidation, a possible secondary pathological mechanism in PKAN,
leading to cell membrane damage and cell death [13]. Therefore, the toxic effects of cysteine
accumulation could be a contributing factor to iron homeostasis dysregulation, increased
oxidative stress and neurodegeneration in PKAN.

In dopaminergic neurons, the combination of dopamine, iron overload and high levels
of cysteine can be very damaging in PKAN disease. Dopamine is a very reactive molecule,
which remains stable in the acidic environment of synaptic vesicles. Nevertheless, free
dopamine in the cytosol may undergo auto-oxidation reactions, generating ROS such
as OH., O.−2 and H2O2 and neurotoxic quinones [51]. The generation of neurotoxic
intermediates by the interplay between dopamine and iron has been extensively examined
elsewhere [52]. In brief, the two main mechanisms involved in iron-dependent dopamine
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neurotoxicity are the production of o-quinones by a non-enzymatic mechanism [53,54],
and forming part of an intermediary iron-dopamine complex [55]. In addition, dopamine
oxidation derivatives may react with L-cysteine and be converted to dihydrobenzothiazines
(DHBTs) which are potent mitochondrial complex I inhibitors [56] and provoke a sustained
increase in oxidative stress and apoptosis [57,58].

An alternative hypothesis states that iron can be accumulated in lipofuscin granules
which are markedly increased in PKAN cells [19]. Lipofuscin (the age pigment) is a
brown-yellow, electron-dense, autofluorescent aggregate that accumulates progressively in
senescent cells including cardiomyocytes, hepatocytes and neurons [59]. Lipofuscin is a
heterogenous mixture of oxidized proteins and lipids, metal cations, and sugar residues [59].
Approximately 2% of lipofuscin components are metals, including Fe, Cu, Zn, Al, Mn, and
Ca [60]. Lipofuscin granules cannot be degraded in lysosomes or the proteasomal system
which is a protease complex that recognises and degrades damaged proteins [61].

One explanation predicts that mitochondria participate in the formation of lipofus-
cin [62]. Supporting this hypothesis, it has been demonstrated that isolated mitochondria
can degenerate to lipofuscin granules without any additional factors such as oxygen satura-
tion or prooxidants [63]. Electron microscopy image analysis of PKAN fibroblasts showed
that lipofuscin granule formation presumably takes place in degenerated mitochondria
(Figure 2).
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Lipofuscin overload is one of the best-recognised biomarkers of aging [64] and it has
been demonstrated that its accumulation in PKAN cells is associated with the typical senes-
cent morphology [19]. Several works have demonstrated that lipofuscin plays an active
role in the physiopathological changes of senescent cells (Figure 3) [65,66]. Thus, it has
been demonstrated that lipofuscin inhibits the proteasome [67], the main cellular protease
complex for degrading damaged proteins tagged by polyubiquitin chains. Proteasomal
inhibition is explained by its binding to exposed hydrophobic amino acid residues on the
lipofuscin surface [68]. Moreover, lipofuscin is also able to reduce lysosomal activity by
increasing lysosomal permeabilization [69,70]. Interestingly, both proteasome and lysosome
inhibition strongly facilitate lipofuscinogenesis [61].
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granules lead to a senescent phenotype, and eventually to cell death by ferroptosis.

One critical factor of lipofuscin granules' cytotoxicity is due to the recruitment of
transition metals such as iron [60]. Lipofuscin-trapping iron results in a redox-active surface
on the granules which can catalyse the Fenton reaction (Figure 3). This quality of lipofuscin
granules may increase ROS formation and oxidation of lipids and other cellular components,
and eventually lead to cell death [71]. Increased oxidative stress that was further enhanced
by the addition of iron has been previously reported in PKAN fibroblasts [72]. Consistent
with these observations, increased levels of carbonylated proteins and mitochondrial lipid
peroxidation in PKAN fibroblasts have been demonstrated [19]. Lipofuscin granules in
NBIA disorders have been previously reported in conjunctival fibroblasts, retinal vessel
pericytes, and macrophages [73].

Iron metabolism dysregulation in PKAN fibroblasts has been attributed to alterations
of mitochondrial ISC and heme biosynthesis pathways [19,41,42,72]. ISCs are prosthetic
groups bound to many subunits of mitochondrial respiratory complexes as well as cytosolic
and mitochondrial aconitases [74]. For this reason, deficiency of proteins involved in
ISC biogenesis may affect many mitochondrial proteins and lead to severe mitochondrial
dysfunction. Another effect of this deficiency is the altered management of iron that
may eventually provoke mitochondrial iron overload. In turn, high iron levels in the
oxidative environment of mitochondria may trigger increased ROS production that expands
and aggravates the damage [75]. In addition, ineffective mitochondrial iron utilization
associated with low cytosolic free iron (cytosolic labile iron pool, CLIP) may account for the
increased iron transport into the cells which progressively leads to iron overload [41]. Thus,
PANK2 silencing by siRNA in several human cell lines leads to a reduced proliferation rate
accompanied by a paradoxical iron deficiency and increased Transferrin receptor protein
1 (TfR1) expression levels [76]. Considering these observations, it has been proposed the
hypothesis that dysregulation of iron metabolism in mitochondria induces mitochondrial
iron overload and cytosolic iron deficiency. The result is a vicious cycle characterized by
increased iron uptake due to increased expression of Fe2+ transporters and subsequent
accumulation in mitochondria and, finally, in lipofuscin granules [19,77]. This paradoxical
free iron deficiency in PKAN cells may be also an important factor when considering the
implementation of chelating therapies in PKAN patients.
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Overall, understanding the pathomechanisms of iron overload in PKAN cells is im-
portant both for determining the etiology of PKAN and for its implications in other neu-
rodegenerative diseases such as Parkinson’s disease (PD) and Alzheimer’s disease (AD).
Thus, further studies in PKAN disease models could help to identify specific mechanisms
that lead to iron metabolism dysregulation.

3. PKAN Disease Modeling
3.1. Modeling PKAN Disease in Biological Models

Although many attempts have been made to model PKAN disease in several organ-
isms [38,78–87], they have not faithfully reproduced the main phenotypic alterations found
in the disease such as brain iron overload and movement disorder symptoms, possibly
because PANK2 localization in the intermembrane space of mitochondria has only been
demonstrated in primates and humans. Thus, the mouse PANK2 homolog protein has been
detected in the cytosol [7]. However, other researchers have described a mitochondrial
localization although a mitochondrial targeting sequence has not been identified in the
mouse PANK2 enzyme [88,89]; In a PANK2 knockout mouse model, researchers found
decreased weigh, retinal degeneration and azoospermia, but no movement disorders or
signs of iron accumulation in the brain [82]. Nevertheless, a deficient diet in pantothenic
acid provoked movement alterations in the knockout mice but iron deposition in basal
ganglia was not detected [90]. For a detailed updated of PKAN murine models see [91].

Several works have been performed with the aim of generating PKAN models in
Drosophila with varying degrees of success. Drosophila, has only a single PANK isoform
(fumble, fbl) [92] and its suppression caused developmental abnormalities of the CNS [78]
that were rescued by pantethine treatment [83]. However, iron deposits were not detected
in neurons.

In the Zebrafish model, PANK2 silencing by morpholinos caused malformations of
the CNS, particularly in the telencephalon, and vascular structures [87]. In another study,
overexpression of mutant human PANK2 and mutant zebrafish PANK2 mRNA in zebrafish
embryos caused vascular and neurological defects and reduced locomotor activity [81].
Although neurological defects were expected, vascular defects had not been reported in
any other model of PKAN. This finding might suggest an unknown role of PANK2 activity
in vascular development.

Modeling PKAN in S. cerevisiae could be particularly of interest since the CoA biosyn-
thesis pathway is highly conserved between yeast and humans. Another advantage is
that yeast cultures are easy to handle and allow genetic and cellular assays to examine
the consequences of CoA deficiency and evaluate therapeutic strategies. The yeast PANK
homolog, Cab1, codifies a unique PANK enzyme which is essential for cell viability [80,93].
A recent study showed that the Cab1G315S mutant reproduces the cellular defects found
in cells isolated from PKAN patients [94]. Furthermore, iron content assays revealed in-
creased levels of intracellular iron associated with decreased expression levels of key iron
uptake genes [94]. Studying the mechanisms that cause this iron dysregulation in yeasts
could be of interest to understanding the role of iron overload in PKAN. Moreover, yeast
models of PKAN also showed mitochondrial dysfunction characterized by low oxygen
consumption rate as well as cytochrome c oxidase and NADH cytochrome c reductase
activities [94]. Similarly, mitochondrial dysfunction has been proposed to be involved in
PKAN etiopathogenesis in patient-derived fibroblasts [20]. For all these reasons, studies in
yeast might be of help to better understand PKAN disease.

3.2. Patient-Derived Cellular Models

The absence of suitable animal models for the investigation of PKAN has led to the
development of patient-derived cell models that can serve as an alternative and comple-
mentary approach for the investigation of the molecular mechanisms of the disease and
the evaluation of possible therapies. The argument for the use of patient-derived dermal
fibroblast cultures is that they can be easily obtained from skin biopsies and can be am-



Pharmaceuticals 2023, 16, 1359 9 of 25

plified using standardized cell culture protocols and shared with other investigators for
further studies. In addition, numerous patient-derived fibroblast cell lines are available
from various cell banks.

All these features and properties make it possible to perform a wide variety of ex-
periments using patient-derived fibroblast cell lines. Cellular and biochemical studies
of patient-derived dermal fibroblasts have provided much useful information on the
pathogenic mechanisms of genetic neurodegenerative diseases [95]. The rationale for this
approach assumes that, although these disorders primarily affect the CNS, cultured fi-
broblasts harbor the specific pathological variant (even after multiple subcultures) and
can mimic the pathological alterations found in the CNS. Patient-derived fibroblast mod-
els allow controlled studies of individual strain variations and may provide essential
information for understanding disease pathomechanisms and for evaluating potential
therapies. Thus, cell models allow us to identify what compound and at what concentration
the phenotypic alterations are corrected. In addition, this strategy considers the specific
characteristics of each mutation and allows the implementation of personalized medicine
strategies. However, fibroblasts are not the most appropriated model for investigating
neuronal dysfunction given the morphological and functional features of these cells. Ac-
cordingly, new methodological tools have been developed for the generation of neuronal
models from patients with genetic neurodegenerative disorders.

3.3. Induced Neurons

The generation of Induced Pluripotent Stem Cells (iPSCs) in 2006 [96] has led to
numerous possibilities in the field of disease modeling, drug screening and regenerative
medicine. The generation of iPSC from somatic cells of patients with neurological genetic
diseases and its neuronal differentiation allows disease modeling and the examination of
the underlying molecular mechanisms in the most affected cells in these disorders [97]. In
this respect, iPSC generation and neuronal differentiation give the possibility to establish
in vitro models of NBIA disorders including PKAN. Apart from two-dimensional iPSC
cultures, it is possible to obtain three-dimensional organized tissues, known as organoids.
This model recapitulates features of human organs (cellular organization and architec-
tures) [98]. Human iPSC reprogramming, combined with 3D brain organoid techniques,
may serve as a preclinical stage to reduce the translational delay between animal model
studies and human clinical trials. However, iPSC generation has several drawbacks such as
the protocols being time-consuming, expensive and complex [99]. Furthermore, genetic
instability, the risk of generating tumors and mitochondrial DNA alterations are additional
obstacles on iPSC development [100].

Recently, the combination of lineage-specific transcription factors has made it possible
to transdifferentiate somatic cells directly into another. For example, dermal fibroblasts
can be converted into neuronal cells without bypassing an induced pluripotent state [101].
Direct transdifferentation of murine embryonic and postnatal fibroblasts into induced
neurons (iNs) was first performed by Wernig and colleagues in 2010 by combining three
proneural factors (Ascl1, Brn2 and Myt1l) [102]. Later, the addition of the basic helix-loop-
helix transcription factor NeuroD1 allowed the conversion of fetal and postnatal human
fibroblasts into iNs [103].

After these pioneer works, new tools and approaches have been developed with the
aim of improving the efficiency of neuronal conversion. For instance, the addition of micro
RNAs (miRNAs) such as miR-9/9* or miR-124 to the proneural genes combination resulted
in the transdifferentation of human fibroblasts to functional neurons [104]. Later, it was
shown that conversion efficiency, one of the main challenges of direct reprogramming, in-
creased significantly by the combination of small molecules, proneural growth factors, and
the silencing of barriers that inhibit reprogramming such as the RE-1 silencing transcription
factor (REST) complex [105–107].

Direct reprogramming has several benefits with respect to the generation of iPSCs-
derived neurons (indirect reprogramming), such as the short-time requirements and the
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relative simplicity of the protocols [101]. Furthermore, iNs unlike iPSCs, maintain the
ageing [108] and epigenetic marks of the donor [109,110], making them attractive models
for the investigation of neuronal pathophysiology in age-associated disorders. Moreover, it
has been demonstrated that iNs obtained through in vivo direct reprogramming, unlike
human iPSCs, do not form tumours [111], suggesting that they could be suitable for cellular
regenerative therapies [112]. Thus, iNs obtained by direct reprogramming can be used
in cell replacement therapy, both by in vivo reprogramming or transplantation following
direct conversion in vitro. The conversion of local non-neuronal cells towards a neuronal
phenotype is a promising approach for neurodegenerative disease treatment. Thus, it has
been shown that endogenous mouse astrocytes can be directly converted into neurons
in situ [112]. In a PD mouse model, direct conversion of dopaminergic neurons from
striatal astrocytes has been performed in vivo [113]. Although this therapeutic strategy
is in its initial stages, it represents the most promising approach to translating neuronal
reprogramming to clinical interventions [114].

Direct reprogramming of human adult fibroblasts into iNs has been used to study
several neurodegenerative diseases such as NBIA disorders [19,32,42,115–117], Parkinson's
disease (PD) [118], Huntington disease (HD) [119], myoclonic epilepsy with ragged red
fibers (MERRF) syndrome [120], as well as mitochondrial encephalomyopathy, lactic aci-
dosis and stroke-like episodes (MELAS) syndrome [121]. However, iNs generated using
direct transdifferentation have also several disadvantages. For instance, maintaining iNs
in culture is difficult, since cell death can be observed from 30 DPI (days post-infection).
This limitation may hamper electrophysiological characterization of iNs since action po-
tentials have been only detected at 80–100 DPI [105]. Furthermore, cultured iNs form
clusters during the transdifferentation process making difficult the isolation of single cells
for specific assays.

In summary, the generation of iNs by indirect or direct reprogramming from patient-
derived fibroblasts represents a very useful tool for both understanding the pathogenesis
of these disorders and finding new therapeutic approaches. Interestingly, reprogramming
of fibroblasts into dopamine or GABAergic o neurons will provide more information
about the complex pathological connections among neurotransmitters, iron and other
metabolic intermediates.

3.4. Alterations in Cellular Models of PKAN

Dysregulation of iron metabolism and increased oxidative stress in PKAN-patients-
derived fibroblasts were previously reported [72]. Furthermore, iNs differentiated from
PKAN-derived iPSC displayed mitochondrial alterations with aberrant cristae morphol-
ogy and reduced mitochondrial membrane potential [41]. Interestingly, patient-derived
neurons also manifest mitochondrial bioenergetics deficiency and altered electrophysio-
logical patterns, along with dysregulation of cytosolic iron homeostasis, mitochondrial
iron-dependent pathways and increased oxidative stress. Furthermore, iPSC-derived astro-
cytes and neurons derived from PKAN patients also showed iron overload, thus mimicking
the human pathological phenotype [42,115,116].

Supporting these findings and the suitability of cell models, it has recently been
described that patient-derived fibroblasts harboring several PANK2 mutations display
many of the pathological features of the disease such as intracellular iron/lipofuscin
accumulation, increased oxidative stress and mitochondrial dysfunction [19,32,122,123].

4. Therapeutic Strategies for PKAN

At present no efficient therapy is available for PKAN. Thus, current treatments are
aimed at controlling patient symptoms [1]. Although clinical trials with several compounds
are in progress, PKAN treatments primarily aim to control the main disease symptoms:
spasticity, seizures, dystonia, or psychiatric disorders [124]. Nevertheless, several promis-
ing therapeutic approaches are currently in progress [12,91]. These treatments can be
summarized in four categories: (1) iron chelation to eliminate iron accumulation in the
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brain; (2) metabolite supplementation to correct metabolic deficits in the CoA pathway; (3)
PANK isoforms activation to restore CoA biosynthesis; and (4) gene therapy by introducing
the wild-type PANK2 gene. However, some of these therapies have not been successful,
whereas others are under evaluation. For a detailed updated of current PKAN treatment
approaches see [12,91,124,125].

It is noteworthy that despite the importance of autophagy in neuronal homeostasis
and pathological processes such as neurodegeneration [126], there are few studies ad-
dressing autophagy modulation in PKAN disease models. Recently, Huang et al. have
shown that fumble (fbl), the human PANK2 homolog in Drosophila, interacts genetically
with PINK1 (PTEN-induced putative protein kinase 1), a key protein involved in the se-
lective autophagy of mitochondria (mitophagy) [127]. In addition, mitochondrial fumble
overexpression rescued PINK1 loss-of-function defects such as mitochondrial dysfunction.
Interestingly, vitamin B5 derivatives restored CoA/acetyl-CoA levels and mitochondrial
function, reversing the PINK1 deficiency phenotype [127].

4.1. Strategy for Finding Alternative Treatments for PKAN Using Patient-Derived Cellular Models

A key finding to support the utility of cellular models in PKAN research was that the
supplementation with pantothenate, the substrate for the PANK2 enzyme, was able to in-
crease PANK2 expression levels in patient-derived fibroblasts carrying pathologic variants
with residual enzyme levels [19]. Moreover, the pantothenate-mediated up regulation of
PANK2 levels was accompanied by the correction of all pathological alterations associated
with PKAN such as iron/lipofuscin overload, increased lipid peroxidation and impaired mi-
tochondrial bioenergetics. Furthermore, the positive effect of pantothenate was confirmed
in iNs generated by direct reprogramming of PKAN fibroblasts [19]. These observations
suggest that cell models may be a useful tool to identify patients with PANK2 mutations
that respond in vitro to pantothenate supplementation. More importantly, these observa-
tions support the possibility of their treatment with high doses of pantothenate. In addition,
these results suggest that personalized screening strategies in PKAN may facilitate the
detection of more pharmacological chaperones (PCs) capable of increasing and stabilizing
the expression levels and activity of the mutant PANK2 enzyme in specific mutations.

Many mutations in human diseases provoke the destabilization of the mutant proteins.
Curiously, compounds that work as PC can rescue the activity of unstable proteins [128–130].
However, individual patients will be only suitable for therapy with PC depending on their
specific genotype [131]. Supporting this assumption, it has been shown that several PANK2
pathological variants, but not all, can be rescued by pantothenate [19]. Therefore, a strategy
for selecting more positive PCs in PKAN cellular models can lead to the identification of
potential therapeutic alternatives in patients harboring specific mutations. Following this
approach, several rare diseases can be already treated with PCs [132]: For Gaucher disease,
Diltiazem, an antihypertensive drug [133]; for cystic fibrosis, Doxorubicin, an anti-cancer
anthracycline, for cystic fibrosis [134]; for Pompe disease, Acetylcysteine, a mucolytic
agent [135]; for Fabry and Gaucher disease, Ambroxol, another mucolytic agent [136];
for hyperinsulinemic hypoglycemia, Carbamazepine and dibenzazepine, [137]; for GM2
gangliosidosis, Pyrimethamine, an anti-parasitic drug [138]; and for Pendred syndrome,
Salicylate, a well-known anti-inflammatory agent [139]. For PKAN disease, an allosteric
brain-permeable PANK activator (PZ-2891) has been found [84]. Interestingly, a knockout
mouse model of brain CoA deficiency under PZ-2891 therapy showed weight gain, im-
proved locomotor activity and extended life span [84]. The aim of this therapeutic approach
is to compensate for the loss of PANK2 by the activating of the other PANK isoforms [84].

4.2. Precision Medicine in PKAN

Precision medicine is an emerging approach that considers the adaptation of clinical
management to the genetic characteristics of each patient. Clinical precision medicine for
the management of genetic neurodegenerative disorders seems a more rational strategy
in contrast to the traditional “one drug fits all patients” approach [140]. In fact, genetic
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neurodegenerative diseases can present heterogeneous clinical characteristics even in pa-
tients carrying the same disease or pathological variant. Furthermore, as several metabolic
or signaling pathways can be secondarily affected it is highly unlikely that patients can
benefit from a single drug. Genetic neurological diseases are promising models for pre-
cision medicine due to the increasing knowledge of the genetic basis of the disease and
clinical classification, the increased number of biomarkers, and the existence of possible
disease-modifying treatments [141].

In this context, precision medicine strategies using patient-derived fibroblasts and iNs
could help optimize therapeutic approaches in PKAN.

Strategies based on precision medicine are currently applied in different health disci-
plines such as cardiology, nutrition, and oncology, as well as in rare diseases [142,143]. In
neurodegenerative diseases, the first approaches based on precision medicine have been
more relevant in Alzheimer’s disease (AD). Thus, anti-amyloid-β monoclonal antibody
therapy is now being tested in patients with mutations known to cause AD with the aim of
preventing neurodegeneration in patients with similar genetic alterations (ClinicalTrials.gov
number NCT01760005, accessed on 5 May 2023). In addition, APOE (apolipoprotein E)
variants can identify individuals at higher risk for AD [144], making them interesting
biomarkers for earlier diagnosis, and the implementation of treatment and/or prevention
strategies. Today, Parkinson's Disease (PD) is treated as one clinical entity, but many re-
searchers emphasise that PD encompasses different sub-groups that can benefit from the
approaches of precision medicine [145]. However, the complex nature of PD and AD, to-
gether with clinical phenotypic heterogeneity, present significant challenges to successfully
implementing personalized medicine in these diseases.

The main phases of a personalized medicine approach applied to PKAN are illustrated
in Figure 4. First, a skin biopsy is performed to generate fibroblast cultures. Subsequently,
fibroblasts are characterized by examining the main alterations of PKAN disease such
as iron/lipofuscin accumulation, lipid peroxidation, senescent morphology, and mutant
protein expression levels. In addition to verifying PANK2 function, the expression levels of
downstream proteins such as mtACP are also evaluated. Next, pharmacological screening
is carried out to identify the compounds capable of correcting the alterations detected. In
parallel, induced neurons are generated by indirect or direct reprogramming, verifying
that they express the neuronal markers. Finally, the positive compounds identified in the
fibroblast screening are evaluated in the induced neurons.

Using this strategy, 7 positive commercial supplements (pantothenate, pantethine,
vitamin E, omega 3, α-Lipoic acid, L-carnitine, and thiamine) have been recently identi-
fied [122,123]. All of them were able to eliminate iron/lipofuscin accumulation, increase
PANK2 and mtACP protein levels, and correct the altered phenotype in responsive mu-
tant cells.

The rationale of pantothenate supplementation assumes that mutant enzymes may
function better with higher substrate concentrations. The ability of high-dose pantothenate
supplementation to improve the activity of a functionally deficient PANK enzyme is sup-
ported by in vitro studies where the affinity of the enzyme for pantothenate can be low but
the reaction is still functional [146]. These observations are interesting because they indicate
that pantothenate supplementation at high doses may be clinically useful for patients carry-
ing pathological variants with residual PANK2 expression levels and/or activity. However,
this therapeutic strategy is not effective in patients carrying frameshift mutations causing
termination codons in both alleles that encode the expression of an incomplete/truncated
protein. For this reason, in vitro evaluation of the effect of pantothenate supplementation
on patient-derived cells may provide valuable information on the response of specific
pathological variant subgroups. Furthermore, it is necessary to check whether pantothenate
treatment can reach the proper concentration to achieve the desired functional effects in
the human brain in vivo. A strategy to solve this difficulty would be to perform combined
treatments with pantothenate and other pantothenate derivatives such as pantethine with
the aim of increasing pantothenate concentrations in the blood and in the brain.

ClinicalTrials.gov
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Pantethine is a physiological compound synthesized from pantothenic acid and cys-
teamine, participating as a metabolic intermediate in the biosynthesis of CoA. Pantethine
treatment can increase pantothenate levels in the blood because it is highly unstable, and it
is rapidly transformed into pantothenate and cysteamine [147,148]. Pantethine supplemen-
tation has been shown to rescue PKAN phenotypes in several biological models such as
bacteria [149], Drosophila [83], zebrafish [87] and mice [79]. The therapeutic potentiality of
pantethine in PKAN has been mainly evaluated in animal models, although the compound
has been used as a lipid-lowering agent in clinical studies [150]. Recently, the safety and
efficacy of pantethine (60 mg/day during 6 months) in fifteen children with PKAN have
been evaluated [151]. The conclusions of this study were that pantethine supplementation
did not alter serum CoA levels or improve clinical symptoms. The poor therapeutic efficacy
of pantethine in PKAN patients in this study may be due to (1) the low number of patients
under treatment; (2) the treatment duration was short; (3) a low dose concentration or low
bioavailability of pantethine. However, as pantethine supplementation can increase blood
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pantothenate concentrations, the combination of both pantothenate and pantethine can be
more efficient in specific patients.

Signs of oxidative and increased ROS production after iron exposure have been pre-
viously reported in PKAN cellular models [72]. Consistent with these findings, Alvarez-
Cordoba et al., found increased content of carbonylated proteins and mitochondrial lipid
peroxidation in PKAN fibroblasts [19]. Lipid peroxidation is generally described as a chain
reaction caused by the oxidative damage of polyunsaturated fatty acids (PUFA) resulting
in the generation of lipid peroxyl radicals, hydroperoxides and aldehyde derivatives [31].
Three stages are described during the process of lipid peroxidation: initiation, propagation,
and termination [152]. The chemical reactions associated with each of these steps can be
found elsewhere [153]. Peroxidation of lipids can disturb the assembly of the membrane,
causing alterations in fluidity, permeability and ion transport [154]. Furthermore, many
breakdown metabolites, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE)
are generated in this process [155]. MDA and 4-HNE protein and DNA adducts modify
multiple cellular processes and participate in secondary crosslinking reactions which may
worsen the pathophysiology of the disease. In addition, lipid aldehydes may affect protein
kinases and phosphatase activities leading to the abnormal activity of various transcription
factors involved in cellular homeostasis [156].

Lipid peroxidation in organelles with high iron content, such as mitochondria, and
alteration in membrane-dependent cellular processes such as vesicle trafficking and/or
autophagy/mitophagy, can cause iron accumulation in lipofuscin granules, which in turn
increases lipid peroxidation of membranes [156]. This vicious cycle of events that augment
each other may aggravate and precipitate the progression of neurodegenerative diseases
such as PKAN. Membrane antioxidants, such as vitamin E, can block this vicious cycle in
neurodegenerative diseases by stopping lipid peroxidation propagation [157].

In addition, vitamin E is a necessary nutrient for neural development and neurological
function [158]. This fact, together with much evidence demonstrating that neurodegen-
erative diseases are associated with oxidative stress and lipid peroxidation, leads to the
hypothesis that the progression of neurodegeneration may be mitigated by membrane an-
tioxidants such as vitamin E [159]. Several works in human and animal models of vitamin
E deficiency assessed its participation in protecting the brain, and more specifically the
cerebellum, from oxidative damage [160].

Lipid peroxidation has been related to the initiation and progression of many neurode-
generative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and
amyotrophic lateral sclerosis (ALS) [161]. Likewise, PKAN’s pathomechanisms are directly
related to the overproduction of ROS and mitochondrial redox imbalance [162]. Particu-
larly, lipid peroxidation and increased ROS production have been detected in fibroblast
and iNs derived from PKAN’s patients, [41,72]. Thus, the inhibition of lipid peroxidation
propagation might slow the course and ameliorate the severity of PKAN disease.

The positive effects of omega-3 fatty acids treatment in many disorders are now
well known by many studies assessing their implication in multiple biochemical func-
tions, including the improvement of antioxidant defenses [163], the synthesis of anti-
inflammatory factors, increased cellular membranes fluidity, and the modulation of gene
expression [164–166]. Interestingly, it has been reported that omega-3 fatty acids supple-
mentation also has antioxidant effects by suppressing lipid peroxidation [167]. In addition,
they have been implicated in synaptic plasticity, contributing to the enhancement of cogni-
tive activity [164]. Scientific evidence is accumulating on the potential efficacy of omega-3
fatty acids treatment in neurodegenerative diseases in general [168,169], and in AD and PD
in particular [170].

α-Lipoic acid is a pleiotropic organosulfur compound necessary for mitochondrial
activity and energy generation, as well as for regulating gene expression [171–173]. α-
Lipoic acid is produced from plants, animals, and humans and is synthesized de novo
in mitochondria using mtFAS II, S-adenosylmethionine, and iron-sulfur group intermedi-
ates [173]. α-Lipoic acid has a determinant role in oxidative metabolism characterized by its
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antioxidant properties; this is the reason why it has neuroprotective and anti-inflammatory
properties [174]. In this respect, α-lipoic acid can decrease the levels of proinflammatory
molecules and eliminate ROS and reactive nitrogen species (RNS) [175]. In addition, α-
lipoic acid supplementation has been shown to reduce lipid peroxidation and increase
cellular antioxidant activity [176].

From an energetic point of view, α-lipoic acid acts as a cofactor for pyruvate dehydro-
genase (PDH), α-ketoglutarate dehydrogenase (KDH), protein H of the glycine cleavage
system (GCS) and branched-chain ketoacid dehydrogenase [177–179]. Furthermore, several
studies have demonstrated that α-lipoic acid also has chelating properties on metals such
as iron or copper and a positive impact on oxidative stress and lipid peroxidation [180].
These findings suggest that α-lipoic acid is an interesting compound for the treatment of
neurodegenerative diseases such as PKAN. Corroborating this hypothesis, α-lipoic acid
supplementation decreased significantly iron accumulation in responsive PKAN fibroblasts
and iNs [123]. These results are also consistent with the positive effect of α-lipoic acid sup-
plementation on reducing the age-dependent iron overload in the rat cerebral cortex [181].
Moreover, α-lipoic acid also avoided iron overload caused by ferric ammonium citrate
supplementation in a zebrafish model [182].

In summary, antioxidants such as vitamin E, omega 3 and α-lipoic acid can protect cell
membranes from oxidative stress and lipid peroxidation, a principal pathological feature
present in PKAN [19,32] and other NBIA disorders [117].

On the other hand, L-carnitine, a quaternary amine (3-hydroxy-4-N-trimethylaminobutyrate)
that is synthesized from the amino acids lysine and methionine, is necessary for the
translocation of fatty acids to the mitochondrial compartment for β-oxidation. In addi-
tion, L-carnitine has a role in carbohydrate metabolism, stimulates mitochondrial bio-
genesis by increasing gene expression of mitochondrial components, and prevents the
accumulation of toxic products or reactive radicals [183,184]. Mitochondrial dysfunction in
PKAN may impair fatty acid β-oxidation which can preferentially affect brain metabolism.
Furthermore, dysfunction of the mitochondrial respiratory chain provokes an increase
in the NADH/NAD (+) ratio that inhibits β-oxidation and secondarily L-carnitine defi-
ciency [185]. Therefore, L-carnitine as a natural compound that can increase cellular energy
production may have therapeutic potential in PKAN. Recently, many works have shown
the positive effects of L-carnitine supplementation on mitochondrial function in several
pathologies [184,186].

Furthermore, as PDH deficiency is a major pathologic feature of PKAN, PDH-enhancing
agents such as thiamine [187] may act as an interesting adjuvant therapy. Thiamine has
many functions in cell metabolism since it functions as a cofactor of several multimeric en-
zymes such as PDH and α-KGDH complexes that participate in the Krebs cycle. In addition,
it has been described that thiamine treatment has positive effects in several patients with
PDH deficiency due to pyruvate dehydrogenase alpha subunit (E1) mutations [188–192].

Interestingly, all positive compounds identified after personalized drug screens (pan-
tothenate, pantethine, vitamin E, omega 3, α-lipoic acid, L-carnitine, and thiamine) in-
creased PANK2 transcripts and protein expression levels and up-regulated key transcrip-
tion factors such as NF-Y, FOXN4, and hnRNPA/B [122,123] which are involved in PANK2
gene expression [193]. Furthermore, it is known that these positive supplements also
activate mitochondrial biogenesis through the expression of essential regulators such as
peroxisome proliferator-activated receptor coactivator-1α (PGC1α) and mitochondrial tran-
scription factor A TFAM [194–196]. Taken together, these data provide useful information
on the molecular mechanisms involved in the positive effect of pantothenate, pantethine,
vitamin E, α-lipoic acid, omega 3, L-carnitine, and thiamine.

It is hypothesized that partial correction of PANK2 expression levels by these com-
pounds may increase CoA biosynthesis in the mitochondrial compartment, allowing 4′-
phosphopantethenylation of essential mitochondrial proteins such as mtACP, mitochondrial10-
FTHFDH (ALDH1L2) and AASS [20]. In agreement with this hypothesis, the results showed
that the expression levels of several 4′-phosphopantetheine carrier proteins in PKAN cells



Pharmaceuticals 2023, 16, 1359 16 of 25

were increased in responsive pathogenic variants after pantothenate, pantethine, vitamin E,
omega 3, α-lipoic acid, L-carnitine or thiamine supplementation [122,123].

5. Polytarget Therapy in PKAN

Since several compounds have a positive effect on PKAN cell models, an interesting
approach would be to examine their therapeutic efficacy both individually or in combina-
tion in controlled clinical trials. In fact, the strategy of combining several compounds that
simultaneously affect different cellular pathways or processes are standard procedure in
many important therapeutic areas such as cancer, Alzheimer’s disease (AD), Parkinson’s
disease (PD), inflammation, epilepsy, depression, and other psychiatric disorders and may
be more effective in controlling complex diseases such as PKAN [197–199]. Disadvantages
of monotherapies can thus be overcome by designing drug combinations that modulate
multiple targets [200].

Cellular models derived from patients with genetic neurodegenerative diseases allow
for the systematic identification of drugs and their potential synergistic combinations that
can rapidly move into preclinical development and clinical practice [201,202].

The progression of neurodegenerative diseases contributes to various factors such as
mitochondrial dysfunction, iron accumulation, oxidative stress, inflammation, as well as ge-
netic and environmental factors [203]. Therefore, multitargeted therapies with antioxidant
and mitochondrial-stimulating compounds may address the multifactorial and complex
nature of these diseases more effectively [204,205]. Multitarget therapeutic approaches
have recently become a useful strategy in the development of potential treatments for
neurological disorders [206].

However, since the crossing of substances to the brain depends on transport mecha-
nisms present in the blood-brain barrier and the diffusion of these compounds also depends
on the physicochemical characteristics of the molecule, further studies are warranted on the
clinical effects of the positive compounds considering its bioavailability, pharmacokinetics
and, in particular, its transport through the blood-brain barrier [207].

6. Conclusions

Cellular models derived from PKAN patients are useful tools both for understanding
the underlying pathological mechanisms of the disease and for carrying out polytarget phar-
macological screenings that make it possible to identify compounds and their combinations
capable of correcting the mutant phenotype.

Genomics, transcriptomics, proteomics, and metabolomics complemented by the
analysis of the response of patient-derived cells to different treatments will provide key
information for a more rational therapeutic approach in complex diseases such as PKAN.
In this way, treatments for PKAN disease could be optimized considering the specific
pathological variants and the response of patient-derived cells to available therapies.
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