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Abstract: Oncogenic mutations in the small GTPase Ras contribute to ~30% of human cancers. How-
ever, tissue growth induced by oncogenic Ras is restrained by the induction of cellular senescence, and
additional mutations are required to induce tumor progression. Therefore, identifying cooperating
cancer genes is of paramount importance. Recently, the tensin family of focal adhesion proteins,
TNS1-4, have emerged as regulators of carcinogenesis, yet their role in cancer appears somewhat
controversial. Around 90% of human cancers are of epithelial origin. We have used the Drosophila
wing imaginal disc epithelium as a model system to gain insight into the roles of two orthologs of
human TNS2 and 4, blistery (by) and PVRAP, in epithelial cancer progression. We have generated null
mutations in PVRAP and found that, as is the case for by and mammalian tensins, PVRAP mutants
are viable. We have also found that elimination of either PVRAP or by potentiates RasV12-mediated
wing disc hyperplasia. Furthermore, our results have unraveled a mechanism by which tensins may
limit Ras oncogenic capacity, the regulation of cell shape and growth. These results demonstrate that
Drosophila tensins behave as suppressors of Ras-driven tissue hyperplasia, suggesting that the roles
of tensins as modulators of cancer progression might be evolutionarily conserved.

Keywords: oncogenic Ras; overgrowth; tensins; Drosophila

1. Introduction

Cancer is the second leading cause of death worldwide [1]. Cancer is characterized
by the uncontrolled growth and spread of cells leading to invasion of normal tissues.
Extensive research over the last few years has revealed that cancer is a genetically complex
and heterogenous disease with each tumor carrying mutations not in a single gene but in
several genes [2,3]. Thus, the isolation of factors collaborating with tumor progression is
crucial to understand tumor development and malignancy.

The Drosophila genome is 60% homologous to that of humans, and about 75% of
genes responsible for human diseases have homologs in flies [4]. This, combined with
a short generation time, low maintenance costs and powerful genetic tools, makes the
fly an ideal model system to study cancer. About 90% of human cancers are of epithelial
origin [5]. Epithelial tissues are composed of cells with an apico-basal polarity held together
in sheets by specialized junctions. The apical face of the epithelial tissue is exposed to
either the external environment or the body fluid, while the basal face is attached to
a specialized extracellular matrix (ECM), called the basement membrane (BM). In this
context, the primordium of the Drosophila wing, the larval wing imaginal disc epithelia, has
been successfully used to study epithelial tumor progression and oncogenic cooperation
(reviewed in [6]). The wing imaginal disc (henceforth, wing disc) is a monolayer epithelium
that is limited apically by a squamous epithelium, the peripodial epithelium (PE), and
basally by a BM. The formation of the wing starts during early embryonic development
when about 30 cells are allocated to form the wing disc primordium. During larval life, the
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number of cells in the disc increases to about 50,000 [7]. The wing disc epithelium is often
divided into four broad domains, the pouch, the hinge, the notum and the PE. The pouch
and the hinge give rise to the wing and wing hinge, while the notum gives rise to the dorsal
half of the body wall in the second thoracic segment, which includes the notum, the back of
the thorax and the pleura (reviewed in [8]). The induction of groups of cells overexpressing
mutated forms of Ras (RasV12), present in 30% of human cancers [9], in the wing disc gives
rise to hyperplastic growth [10]. This has been exploited, by several labs including ours, in
screens to isolate new genes affecting the growth of cells overexpressing RasV12 [11].

To isolate new modulators of oncogenic Ras activity, we performed an RNAi screen
and searched for genes that enhanced the wing disc RasV12 overgrowth phenotype when
knocked down. One of the genes identified has been proposed to be the fly ortholog
of human tensins 2 and 4 (TNS2, TNS4, FlyBase), which we have named EGFRAP [12].
Likewise, our preliminary results showed that downregulation of another fly ortholog
of human TNS2 and 4 (FlyBase), PVRAP, a gene that lies adjacent to EGFRAP, increased
the RasV12 overgrowth and folding wing disc phenotype similarly to EGFRAP. Tensins
are a family of focal adhesion proteins. The mammalian tensin family comprises four
members (tensin 1-4, TNS1-4), which link the actin cytoskeleton to the cell membrane
and are lost in many cancer cell lines [13,14]. Knockdown of human TNS2 and TNS4
increases tumorigenicity in several cancer lines [15]. Interestingly, the role of tensins as
tumor suppressors has been linked to their ability to bind and regulate the main cell-ECM
receptors, the integrins (reviewed in [14]), which are themselves involved in almost every
step of cancer progression (reviewed in [16]). In this context, it is worth mentioning here
that we have recently found that downregulation of integrins also enhanced the RasV12

overgrowth and folding wing disc phenotype [17]. However, even though blistery (by) is
the clearest Drosophila ortholog of vertebrate TNS4 [18] and has been proposed to provide a
final strengthening of the integrin adhesion complex [19], it has not yet been implicated in
tumorigenesis [18].

In this work, we used the wing disc to analyze the role of PVRAP and by in the progres-
sion of RasV12 epithelial tumor cells. We generated mutants in PVRAP and found that, as is
the case for mutations in by, PVRAP mutants are viable, strongly suggesting that PVRAP
function is not required for development. In addition, we found that downregulation of
either PVRAP or by enhances RasV12-mediated tissue hyperplasia. Our results also unravel
a new mechanism by which tensins could modulate the oncogenic capacity of RasV12,
the regulation of cell shape and growth. These results demonstrate that in Drosophila, as
is the case in some human cancer cell lines, tensins modulate the metastatic capacity of
RasV12-dependent epithelial tumor cells, suggesting that the role of the tensin family of
proteins as a suppressor of tumor metastasis might be evolutionarily conserved.

2. Materials and Methods
2.1. Fly Strains

The following fly strains were used: UAS-byRNAi, UAS-PVRAPRNAi (Vienna Stock
Center, Vienna, Austria); UAS-RasV12 [20]; apGal4-UASGFP (Bloomington Drosophila Stock
Center, Bloomington, IN, USA). The two PVRAP mutants PVRAP1 and PVRAP2 were
isolated using CRISPR in this study (see below). Flies were raised at 25 ◦C.

2.2. Isolation of PVRAP Mutants Using CRISPR/Cas9

To generate null alleles, we designed two sgRNAs against sequences located in the
first exon, close to the ATG. The following sequences were used:

sgRNA1: GTCGCCAGCAGCACAATAATAGC;
sgRNA2: AAACGCTATTATTGTGCTGCTGG;
sgRNA3: GTCGGAATTGGAATTGTCCGCCG;
sgRNA4: AAACCGGCGGACAATTCCAATTC.
The sgRNAs were cloned into the PCFD3 vector [21]. Transgenic gRNA flies were

created by the Best Gene Company (Chino Hills, USA) using y sc v P{nos-phiC31\int.NLS}X;
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P{CaryP}attP2 (BDSC 25710) flies. Transgenic lines were confirmed by sequencing (Biomedal,
Armilla, Spain). Males carrying the sgRNA were crossed to nos-Cas9 females, and the
progeny was scored for the v + ch- eye marker. To identify CRISPR/Cas9-induced muta-
tions, genomic DNA was isolated from flies and sequenced with the following primers
(5′-3′):

PVRAP primer Forward: GTCCTGGTGGTGACTGGAAC;
PVRAP primer Reverse: AATCGCATAGCTGCCAACTT.
Two PVRAP null mutant alleles were generated, PVRAP1 and PVRAP2. PVRAP1

was a deletion of 2 base pairs in exon 1, which resulted in a frame-shift generating a stop
codon after amino acid 29. PVRAP2 carried an insertion of 8 base pairs, which resulted in a
frame-shift generating a stop codon after amino acid 80.

2.3. Immunocytochemistry, In Situ Hybridization, Adult Wing Mounting and Imaging

Wing imaginal discs were stained using normal procedures and mounted in Vec-
tashield (Vector Laboratories, Burlingame, CA, USA). We used the following primary
antibodies: goat anti-GFPFICT (Abcam, 1:500), rabbit anti-aPKC (Santa Cruz Biotechnology,
1:300), mouse anti-RFP (Proteintech, 1:500), rabbit anti-PH3 (EMD Millipore Corporation;
1:250), rabbit anti-caspase Dcp1 (Cell Signaling; 1:100) and rabbit anti-pJNK (Promega,
1:200). The secondary antibodies used were as follows: goat anti-mouse Alexa-488, Cy3 and
Cy5 (Life Technologies, 1:200) goat anti-rabbit Cy3 and Cy5 (Life Technologies, 1:200) and
goat anti-rat Cy3 (Life Technologies, 1:200). F-actin was visualized by means of Rhodamine
Phalloidin (Molecular Probes, 1:50). DNA was marked with Hoechst (Molecular Probes,
1:1000).

Confocal images were acquired with a Leica SP5-MP-AOBS or a Zeiss LSM 880 micro-
scope, equipped with a Plan-Apochromat 20× oil objective (NA 0.7), 40× oil objective (NA
1.4) and 63× oil objective (NA 1.4).

In situ hybridization was performed using standard procedures. A digoxygenin-UTP
(Boerhringer-Mannheim, Mannheim, Germany)-labeled PVRAP anti-sense RNA probe was
generated using the plasmid cDNA EST RE08107 (DGRC).

2.4. Quantification of Fluorescence Intensity

To quantify fluorescence intensity, fluorescent signaling was measured using the
square tool in FIJI-Image J. Several confocal images per genotype were measured.

To calculate cell areas, the Huang threshold algorithm was applied to maximum
projections of confocal sections. Cell volumes were estimated considering wing disc cells
as truncated prisms and using the formula Volume = Height/3 (Basal Area + Apical
Area +

√
Basal Area × Apical Area).

To measure cell height, a vertical line was drawn from the apical to the basal surface
in a region of interest of a wing disc stained for F-actin to visualize cell limits. The total
length of the resulting line was measured using FIJI-ImageJ software.

Cell proliferation was quantified using the Trainable Weka 2D Segmentation plug-in,
which transforms 8-bit images into a binary system. Dots of fluorescence intensity of
wing discs stained with an anti-PH3 antibody were analyzed using the FIJI-Image J tool
analyze particles.

Statistical comparisons were performed using the Welch test and chi-square tests.

3. Results

3.1. The Knockdown of PVRAP or by Enhances RasV12 Hyperplastic Phenotype

Ectopic expression of activated Ras (RasV12) in Drosophila wing discs leads to hyperpla-
sia as a consequence of an increase in cell growth, accelerated G1-S transition and changes
in cell shape [10,12] (Figure 1A,A’,B,B’). To test the role of PVRAP and by in RasV12-mediated
transformation, we reduced their levels in RasV12 wing disc tumor cells by expressing spe-
cific RNAis against these two genes. Ectopic expression of RasV12 in the dorsal compartment
of wing discs, using the apterous-Gal4 (ap > GFP; RasV12, n = 50), leads to overgrowth of
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the tissue and formation of ectopic folds [10,12] (Figure 1A–B’,G). We found that although
PVRAP or by RNAis had no obvious effect in control wing discs (ap > GFP; PVRAPRNAi,
Figure 1C,C’,G, n = 40, and ap > GFP; byRNAi, Figure 1E, E’,G, n = 40), it enhanced the over-
growth and ectopic fold phenotype of RasV12 wing discs (ap > GFP; RasV12; PVRAPRNAi,
Figure 1D,D’,G, n = 38, and ap > GFP; RasV12; byRNAi, Figure 1F,F’,G, n = 36).
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Figure 1. by and PVRAP knockdown enhances RasV12 hyperplasia in Drosophila wing discs. (A–F’)
Maximal projection of confocal views of 3rd-instar larvae wing discs, expressing GFP (green) and the
indicated UAS transgenes under the control of apterous Gal4 (apGal4) driver, stained with anti-GFP
(green in (A–F)) and Rhodamine Phalloidin (RhPh) to detect F-actin (red in (A–F) and white in (A’–F’)).
Scale bars 50 µm.

3.2. Generation of PVRAP Mutant Alleles Using the CRISPR/Cas9 Technique

The by mRNA is expressed in wing discs and is highly enriched in the wing pouch [22].
To analyze PVRAP expression, we performed in situ hybridization in wing discs (see
Materials and Methods). We found that the PVRAP transcript was abundantly expressed
in the wing pouch of wild-type flies (Figure 2A).
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Figure 2. Generation of PVRAP mutant alleles by CRISPR-Cas9. (A,A’) In situ hybridization of
3rd-instar wild-type (A) and PVRAP mutant (A’) wing discs, using a probe for the PVRAP mRNA.
(B) Schematic representation of the PVRAP locus, PVRAP mutants generated and sgRNAs used for
the generation of the mutants (green and purple). (C,D) Maximal projections of confocal images of
third-instar wing discs of the indicated genotypes stained with RhPh to detect F-actin (grey). Scale
bars 50 µm.

While there are available null mutations for by, mutations in PVRAP have not yet been
isolated. Thus, to better illustrate the role of PVRAP as a modulator of RasV12-mediated
hyperplasia, we used CRISPR/Cas9 to generate specific PVRAP alleles (Materials and
Methods). The PVRAP gene encodes for only one transcript (PVRAP-RA, Flybase), whose
transcription start site maps to the beginning of exon 1 (Figure 2B). We generated two
PVRAP mutant alleles, PVRAP1 and PVRAP2, which truncate 97% and 96% of the PVRAP
protein, respectively, and can be considered therefore as null mutations by molecular
criteria (Figure 2C). In addition, no PVRAP mRNA expression was detected in wing discs
from these mutants (Figure 2B). As is the case for by [19,22], PVRAP mutant alleles were
homozygous-viable. However, while by mutant flies show a fully penetrant wing blister
phenotype [19,22], PVRAP mutant flies did not display any detectable morphological
aberrations, implying that PVRAP is unessential for development in Drosophila.

To confirm the role of PVRAP and by as modulators of RasV12-mediated tumorigenesis,
we tested for synergetic interactions between PVRAP or by mutations and RasV12 in wing
discs (Figure 3). We found that expression of RasV12 in the posterior compartment of PVRAP
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(ap > RasV12; PVRAP1, n = 20), or by (ap > RasV12; by33c, n = 16) mutant discs resulted in an
enhancement of the folding phenotype, similar to that found in RasV12; PVRAPRNAi and
RasV12; byRNAi wing discs (Figures 1 and 3).
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the indicated UAS transgenes driven by apGal4, in wild-type (A) and mutant genotypes (B–F”),
stained with anti-GFP (green in A,A’, B,B’, C,C’, D,D’ E,E’ F,F’ and white in A”,A”’, B”,B”’, C”,C”’,
D”,D”’, E”,E”’, F”,F”’), RhPh to detect F-actin (red) (A”–F”’) and Hoechst (DNA, blue). (A’, A”’,F’,F”)
Confocal sections of wing discs of the specified genotypes along the white dotted lines shown in
(A–F), respectively. (G) Violin plot of the percentage of GFP area per disc of the indicated genotypes.
The statistical significance of differences was assessed with a Welch test, ****, *** p value < 0.0001 and
<0.001, respectively. Scale bars 50 µm (A–F,A’–F”) and 20 µm (A’–F’,A’”–F’”).

3.3. PVRAP and by Restrain RasV12 Hyperplastic Phenotype by Regulating Cell Shape Changes
and Growth

The formation of additional folds could be due to changes in cell polarity, proliferation,
shape or a combination of some or all of these cellular properties. The role of human tensins
in cell proliferation in normal and cancer cells is complex and tensin-type-specific. Thus,
while knockdown of TNS1, 3 and 4 reduces proliferation in several normal and cancer cell
lines, overexpression of TNS2 reduces the proliferation of several cancer cell lines (reviewed
in [13]). Thus, we next decided to test whether the removal of PVRAP or by would affect
the proliferative state of RasV12 cells. Previous results have shown that overexpression of
RasV12 results in a reduction in the number of wing disc cells in mitosis, as revealed with
an antibody against phosphorylated histone H3 (PH3) (Figure S1A,A’,B,B’,G) [10,12,23].
Here, we found that while removal of PVRAP did not affect the proliferation of wing
imaginal disc cells (Figure S1A,A’,C,C’,G, n = 25), elimination of by led to an increase in
cell proliferation (Figure S1A,A’,E,E’,G, n = 20). In addition, elimination of either PVRAP
(ap > RasV12; PVRAP1, Figure S1D,D’,G, n = 13) or by (ap > RasV12; by33c, Figure S1F,F’,G,
n = 20) enhanced the proliferative capacity of RasV12 wing imaginal discs.

Although ectopic RasV12 expression in wing disc cells alone does not affect cell polar-
ity ([24] Figure S2A,A’,B,B’), the elimination of polarity genes increases the RasV12-mediated
hyperplasia [25]. Thus, we analyzed if cell polarity was affected in RasV12; PVRAP1 or
RasV12; by33c disc cells. In order to do this, we analyzed the localization of the apical polar-
ity marker atypical protein kinase C (aPKC) [26] in control and experimental conditions
(Figure S2). We found that elimination of either PVRAP or by did not alter the localization of
aPKC in normal (Figure S2A,A’,C,C’,E,E’) and RasV12 cells (Figure S2D,D’,F, F’), suggesting
that polarity was not affected.

To analyze possible cell shape changes, we visualized cell limits using Rhodamine-
Phalloidin (Rh-Ph) that labels F-actin and therefore the cell cortex (Figure 4). The wing
pouch cells in late third-instar control discs are columnar, with a mean height of 25 µm,
an apical area of 8.93 µm2 and a basal area of 9.41 µm2 (Figure 4A–A”’,G,H,I). In con-
trast, RasV12-expressing cells have been found to be shorter and more cuboidal, with
a mean height of 19 µm, an apical area of 10.72 µm2 and a basal area of 15.86 µm2

(Figure 4D–D”’,G,H,I [12]. Considering disc cells as truncated prisms, this has been shown
to result in an increase in cell volume [12]. This is in agreement with previous observations
showing that RasV12 cells display increased cellular growth [10,23]. Here, we found that
the elimination of either PVRAP or by in normal cells (n = 109 and 105, respectively) did
not have any effect on cell size (Figure 4B–B”’,C–C”’,G,H,I). In contrast, the knockdown
of PVRAP or by in RasV12 cells enhanced the expansion of the apical area around 30% and
27%, respectively (Figure 4E–E’,F–F’,G) but did not cause any effect on either the basal area
(Figure 4E”,F”,H) or the height (Figure 4E”’,F”’,I). This, besides causing a change in cell
shape, if we consider disc cells as truncated prisms, resulted in a further increase in cell
volume of 15% and 13% upon removal of PVRAP or by, respectively.
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Besides an increase in hyperplastic growth, the expression of RasV12 in wing disc cells 
has also been shown to promote the transition from G1 to the S phase [10]. Furthermore, 
the use of Fly-Fucci, which relies on fluorochrome-tagged degrons from cyclin B, de-
graded during mitosis, and E2F1, degraded at the onset of the S phase (Figure 5A), has 
confirmed the role of RasV12 in driving the transition from G1 to the S phase [27], showing 
that RasV12-expressing wing discs exhibited an increase in the G2 population, 68.39% ver-
sus 42.05% in control wing discs, and a reduction in the G1 population, 22.64% vs. 33.61% 

Figure 4. RasV12-dependent cell shape changes and growth of Drosophila wing discs are increased in
by and PVRAP mutant backgrounds. (A–F) Maximal projections of confocal images of wing imaginal
discs from third-instar larvae of the indicated genotypes expressing GFP (green) and the designated
UAS transgenes under the control of apGal4, stained with anti-GFP (green) and RhPh to detect
F-actin (red in A–F, white in A’–F”’). (A’–F’) Apical and (A”–F”) basal surface views of the indicated
genotypes. (A”’–F”’) Confocal xz sections along the white dotted lines of wing discs shown in (A–F).
The apical side of wing discs is at the top. The red dotted lines indicate cell height. (G–I) Violin plots
of the apical (G) and basal (H) cell areas and cell height (I) of the indicated genotypes. The statistical
significance of differences was assessed with a Welch test; ****, *** and ** indicate p values < 0.0001,
<0.001 and <0.01, respectively. Scale bars 50 µm (A–F), 5 µm (A’–F’, A”–F”) and 10 µm (A’”–F’”).

Besides an increase in hyperplastic growth, the expression of RasV12 in wing disc
cells has also been shown to promote the transition from G1 to the S phase [10]. Further-
more, the use of Fly-Fucci, which relies on fluorochrome-tagged degrons from cyclin B,
degraded during mitosis, and E2F1, degraded at the onset of the S phase (Figure 5A),
has confirmed the role of RasV12 in driving the transition from G1 to the S phase [27],
showing that RasV12-expressing wing discs exhibited an increase in the G2 population,
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68.39% versus 42.05% in control wing discs, and a reduction in the G1 population, 22.64%
vs. 33.61% in controls (Figure 5B,B’,C,C’, number of RasV12 cells = 10,965 cells, number of
control cells = 35,768 cells). Using Fly-Fucci, we found that expression of an RNAi against
either PVRAP or by did not affect progression through the cell cycle (Figure 5D,D’,F,F’).
In addition, reducing the levels of PVRAP did not seem to substantially change the be-
havior of RasV12 cells, with populations of G2 and G1 of 64.75% and 26.92%, respectively
(Figure 5E,E’, n = 27,211 cells). Unfortunately, for unknown reasons, flies carrying the Fly-
Fucci transgenes and co-expressing RasV12 and an RNAi against by under the control of the
apGal4 driver were not viable. Thus, we could not assess the effect of the removal of by in
the progression of the cell cycle of RasV12 cells.
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overexpression in wing discs. (A) Scheme showing the expression of CycB-GFP and E2F1-RFP during
the cell cycle. (B–F) Maximal projection of confocal images of 3rd-instar wing imaginal discs of the
designated genotypes expressing the indicated UAS transgenes under the control of apGal4-flyfucci,
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stained for anti-GFP (green) and anti-RFP (red). (B’,C’,D’,E’,F’) Scatter plots representing the fluores-
cence intensity of both proteins in each cell. Scale bars 50 µm (B–F).

Altogether, these results suggest that PVRAP and by modulate RasV12-mediated tissue
hyperplasia by enhancing cell shape changes and cellular growth. In view of the constraints
imposed by the peripodial membrane, we suggest that the formation of extra folds could
be explained by the cell shape changes and the increase in cell size.

3.4. Consequences of PVRAP or by Elimination in the Non-Autonomous Effects of RasV12

Tumor Cells

Preceding observations have shown that JNK activity was elevated in wild-type cells
surrounding RasV12-expressing cells (Figure 6A,B,G; [12,28]). This has been shown to
non-autonomously activate the JAK-STAT pathway in the tumor cells promoting their
growth [28]. As we show here that elimination of either PVRAP or by enhanced the growth
of RasV12 tumor cells, we tested whether the activity of the JNK pathway was affected in
these tumor conditions.

Previous analysis has shown that by genetically interacts with the JNK pathway and
that the activity of this pathway, measured by examining the extent of JNK phosphorylation
using an anti-phosphospecific JNK antibody (pJNK), is dramatically increased or reduced
upon by overexpression or downregulation, respectively [22]. However, here we found that
pJNK levels did not change in either PVRAP1 (n= 17) or by33c (n = 17) mutant wing discs
compared to controls (n = 14) (Figure 6A,C,E,G). In addition, we found that the levels of
JNK activity in wild-type cells next to RasV12 tumor cells mutant for PVRAP (Figure 6D,G,
n = 12) or by (Figure 6F,G, n = 17) were not significantly different from those found in
wild-type cells adjacent to RasV12 (Figure 6B,G, n = 20) tumor cells. These results suggest
that proteins of the tensin family modulate the growth of tumor cells independently of the
JNK pathway.

Overexpression of activated Ras has also been shown to promote the death of nearby
wild-type tissue in Drosophila imaginal tissues [12,23]. Consistent with this, an enrich-
ment of apoptosis was noticed in wild-type (GFP-negative) ventral cells located at the
D/V boundary in ap > GFP; RasV12 discs (n = 24) compared to controls (n = 23) (Figure
S3A,A’,B,B’,G; [12]). Here, we found that while removal of by did not affect apoptosis in
wing imaginal discs (n = 19, Sup. Figure 3E,E’,G), elimination of PVRAP led to a general
increase in cell death in the wing disc, with no clear concentration at the D/V boundary
(n = 21, Figure S3A,A’,E,E’,G). In addition, we found that elimination of either PVRAP1

(ap > RasV12; PVRAP1, Figure S3D,D’,G, n = 20) or by33c (ap > RasV12; by33c, Figure S3F,F’,G,
n = 20) enhanced the cell death of wild-type cells at the D/V boundary in RasV12-expressing
wing discs.

Apoptosis of wild-type cells near RasV12 cells has also been attributed to an enhance-
ment in tissue compaction due to the overgrowth of mutant cells [29]. In fact, we have
previously found that the wild-type ventral region of ap > GFP; RasV12 discs (n = 40) was
more compressed than that of ap > GFP discs (n = 34) (Figure 3A”,B”, [12]. This RasV12

phenotype was further enhanced in PVRAP (n = 20) and by (n = 16) mutant backgrounds
(Figure 3D”,F”).

Effector caspases are active in tumors, and this has been associated with metastasis [30].
In fact, caspase activity has been shown to induce the migration of transformed cells in
wing imaginal discs [31]. In agreement with this, in a previous study, we reported the
presence of RasV12 cells positive for Dcp1 in the ventral domain of ap > GFP; RasV12 [12],
Figure S4). Tensins have been reported to play a role in cell migration and invasion.
However, experiments in cell culture analyzing the roles of the different tensins in cell
invasion have yielded contradictory results and appeared to be cell context-dependent
(reviewed in [13]). Thus, we tested whether the elimination of either PVRAP or by would
affect the migration of normal or RasV12 tumor cells. In order to do this, we analyzed the
presence of GFP+ cells outside of the dorsal domain in control and experimental wing
discs. We found that in either ap > GFP; PVRAP1 (n = 25) or ap > GFP; by mutant wing
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discs (n = 28), the cells did not invade the ventral compartment (Figure S4A,B,C,G,H). In
addition, we found that the removal of either PVRAP (n = 36) or by (n = 36) did not affect the
number or the migration distance of RasV12 GFP+ tumor cells in the ventral compartment
(Figure S4D,E,F,G,H).
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3.5. Genetic Interactions between Proteins of the Tensin Family

The absence of a loss-of-function phenotype for PVRAP could be explained by com-
pensation by other proteins of the tensin family performing similar functions, such as
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by. Thus, we examined whether PVRAP would genetically interact with by. As PVRAP
and by are both on the third chromosome, we analyzed the effects of reducing the lev-
els of both PVRAP and by by expressing a PVRAPRNAi in the posterior compartment of
by mutant wing discs. While flies homozygous for by33c are viable and show blisters in
the wing [19,22] (Figure 7B), flies heterozygous for by33c (by33c/+) or flies expressing an
RNAi against PVRAP in the posterior compartment of control wing discs did not show
any visible adult phenotype (ap > GFP; PVRAPRNAi, Figure 7C). In contrast, expression
of PVRAPRNAi using the apGal4 driver in a homozygous by33c genetic background (by33c;
ap > GFP; PVRAPRNAi) was lethal, with a very small fraction of flies (2%, n = 100) reaching
adulthood. These escapers showed strong defects in the wing and the notum and died soon
after hatching (Figure 7D). In addition, expression of a PVRAPRNAi in the posterior com-
partment of the wing imaginal disc of heterozygous by33c resulted in a smaller scutellum
and reduced number of bristles (by33c/+; ap > GFP; PVRAPRNAi; Figure 7E,F). Interestingly,
this phenotype was also observed when an RNAi against EGFRAP, the ortholog of human
TNS2 (Flybase), is expressed in the dorsal compartment in a heterozygous by33c/+ genetic
background (by33c/+; ap > GFP; EGFRAPRNAi; Figure 7G).
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Mammalian tensins are known to participate in integrin signaling [32]. Similarly, as
mutations in by genetically interact with viable integrin alleles, the Drosophila tensin has
also been proposed to functionally interact with integrins during wing development [22].
Here, we show that by also interacts with PVRAP. Thus, we next tested whether PVRAP
would also interact with integrins. As mentioned above, the total elimination of PVRAP
or its downregulation in the dorsal domain of wing imaginal discs (ap > PVRAPRNAi)
on its own did not cause any visible phenotype in the adult (Figure 7C). Integrins are
heterodimers composed of an α and a β subunit. Two integrins, which share the same
β subunit, are expressed in the Drosophila wing disc, the αPS1 βPS (PS1) on the dorsal
side and αPS2 βPS (PS2) in the ventral domain. Eliminating integrin activity in the wing
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imaginal disc results in blisters in the adult appendage (reviewed in [33,34]). Here, we
found that the co-expression of a mysRNAi and a PVRAPRNAi in the dorsal region of wing
discs (ap > PVRAPRNAi; mysRNAi) led to lethality. This result suggests that PVRAP also
interacts with integrins.

4. Discussion

Cancer is a devastating disease that threatens human health worldwide [35]. One
of the most frequently affected genes in cancer is the proto-oncogene Ras. In fact, muta-
tions leading to its overactivation are present in ~30% of human cancers [36]. However,
hyperactivation of Ras signaling alone is not sufficient to produce malignancy; additional
mutations in other genes are required to drive Ras-dependent tumorigenesis (reviewed
in [37]). Thus, identifying genes that modulate the oncogenic capacity of Ras is vital in
our fight against cancer. The tensin family of focal adhesion proteins has emerged as a
regulator of tumor progression in many cancer types [38]. However, the role of tensins
in cancer is not fully established, since they can serve either as cancer-promoting or as
cancer-inhibitory factors. Most experimental studies have mainly explored the positive
or negative effects of tensins in in vitro cell culture models of different cancer cell lines
(reviewed in [13]). Thus, a better understanding of the role of tensins in cancer develop-
ment in the context of a whole organism is still missing. Here, we have used the Drosophila
model to analyze the mechanism by which tensins modulate the progression of epithelial
tumors. We show that by, the clearest homolog of human TNS4, and PVRAP, an ortholog
of human TNS2 (FlyBase), act as tumor suppressors of Ras-mediated tumorigenesis, as
their elimination enhances the overgrowth due to the overexpression of oncogenic Ras in
wing disc epithelial cells. In addition, we find that tensins regulate tumor progression by
restraining cell proliferation, cell cycle progression and cellular growth. Our results suggest
that the role of tensins as cancer-inhibitory factors has been conserved across evolution and
unravel possible mechanisms of action.

Tensins belong to the family of adhesion proteins that form focal adhesions and serve
as a bridge between the extracellular matrix and the intracellular actin cytoskeleton. The
mammalian tensin family comprises four members, which are multidomain proteins; each
contains, on its N-terminal region, an actin-binding domain, which overlaps with a focal-
adhesion-binding site and PTEN-like protein tyrosine phosphatase and C2 domains, and,
on its C-terminal region, an Src homology 2 (SH2) domain and a phosphotyrosine binding
domain. These domains allow tensins to transduce several signaling pathways, such as
PI3/Akt and b-integrin/Fax pathways, regulating a variety of physiological processes,
including cell proliferation, survival, adhesion, migration and mechanical sensing. Analysis
of the role of mammalian tensins in mice has revealed that while individual tensins are
not essential for embryonic or tissue development, they are required to maintain the
structure and function of the kidney and heart and for regeneration processes (reviewed
in [13]). As for their role in tumorigenesis, this appears to be quite controversial, and
tensin- and cell-type-specific, as they act sometimes as tumor suppressors and other times
as tumor promoters (reviewed in [39]). Unlike mammals, Drosophila melanogaster and
Caenorhabditis elegans have been proposed to possess one tensin each. In addition, while the
worm tensin is more similar to TNS1, TNS2 and TNS3 and contains all domains present
in these tensins, the fly one (by) is more similar to TNS4 and contains only the SH2 and
PTB domains [19,22,40]. As is the case in mammals, tensin knockout in flies and worms
has no impact on development and survival, and the role of tensins in tumor progression
in these model systems had not been studied [19,22,40]. Besides by, two other genes,
EGFRAP and PVRAP, have SH2 domains that are similar to the ones present in mammalian
tensins and have been suggested to be orthologs of human TNS2 and TNS4, respectively
(FlyBase). Similar to by, the elimination of either EGFRAP [12] or PVRAP (this work) has
no consequences for development and survival. In addition, the elimination of any of these
three Drosophila tensins enhances the overgrowth due to the overexpression of oncogenic
Ras ([12] and this work). These results suggest that in Drosophila, all tensins seem to behave
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similarly with respect to their ability to suppress tumor progression, at least in epithelial
wing imaginal disc cells. In the future, it will be interesting to analyze their role in other
cancer cell types, such as those produced in the gut endoderm or the brain. Finally, our
results also suggest that, as could be the case in mammals, these Drosophila tensins may
have redundant functions, since the downregulation of any one of them enhances the
phenotype of eliminating each of them individually ([12] and this work). In the future, it
would be interesting to further support this idea by generating flies double mutants for
any two of the tensin genes.

As mentioned above, and similar to what we have found in Drosophila, mammalian
tensins are not cancer-driver molecules. Instead, they seem to act as modulators of tumor
progression, and they do so by regulating various cellular events, including cell polar-
ization, proliferation, apoptosis and migration (reviewed in [13]; Pryczynicz, 2020 #1758).
TNS1, TNS3 and TNS4 knockdown reduces the proliferation of several cancer cell lines,
such as colon cancer and acute myeloid leukemia cell lines [41–43]. In contrast, TNS2
overexpression reduces cell proliferation and survival of some cervical and lung cancer
cells [44]. In Drosophila, the overexpression of oncogenic RasV12 in the wing disc results in a
reduction in the number of cells in mitosis [10,12,23]. In contrast to our previous results
showing that EGFRAP does not affect the proliferation of RasV12 in wing discs [12], here we
find that elimination of either PVRAP or by slightly, but significantly, increases the number
of RasV12 cells undergoing mitosis, suggesting that as is the case for the mammalian tensins,
the different Drosophila tensins may regulate the behavior of tumor cells in a tensin-type-
specific manner. However, even though the number of cells in mitosis in tumorigenic
wing discs mutant for either PVRAP or by is higher than that found in tumorigenic wing
discs, it is still lower than that found in controls. Thus, this increase on its own cannot
account for the increase in tissue overgrowth found in RasV12 wing discs mutant for either
PVRAP or by, suggesting that these two tensins modulate RasV12-dependent tumorigenesis
by regulating additional cellular events rather than just cell proliferation. Previous analysis
has demonstrated that RasV12 cells show increased cellular growth [10,12,23]. Here, we
find that the elimination of either PVRAP or by in RasV12 cells results in a cell shape change,
which leads to an increase in cell volume. This result unravels a new mechanism by which
tensins could modulate tumor progression, the regulation of cell shape and growth.

Analysis of the roles of tensins in cell migration and invasion has shown that de-
pending on the cellular context, tensins can either promote or inhibit cell migration. Thus,
while the knockdown of TNS1 reduces the migration of mouse fibroblasts and endothelial
cells, the overexpression of TNS1 or TNS2 promotes the migration of human embryonic
kidney cells [45,46]. In addition, downregulation of TNS1, TNS2 or TNS3 reduces the
invasiveness of ovarian and breast cancer cell lines by impairing integrin internalization
and focal adhesion turnover [47–49]. However, here we show that the elimination of either
PVRAP or by does not affect the migration of normal or RasV12 tumor epithelial wing disc
cells. One possible explanation for this result is that the function of tensins in Drosophila
might be different from that in mammals. In fact, while tensins have been shown to affect
integrin internalization in mammalian cells (see above), integrin localization is not affected
in by mutant wing discs [19]. Furthermore, Drosophila by only affects a subset of integrin-
mediated adhesion [19]. An alternative explanation is redundancy among the Drosophila
tensin family of proteins. In the future, it will be interesting to analyze the consequences
of simultaneously reducing PVRAP and by in normal and RasV12 tumor wing disc cells in
cell migration. In addition, and in order to better understand the contribution of tensins to
RasV12-induced tumorigenesis, it will be interesting to analyze the effects of overexpressing
PVRAP and by on the RasV12 phenotype.

Finally, our results also show that fly tensins do not seem to regulate the polarization
or survival of tumor cells. However, they seem to influence the ability of tumor cells to
induce the apoptosis of nearby wild-type tissue. As the removal of either PVRAP or by
enhances the formation of extra folds due to the overexpression of RasV12, we propose that
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the increase in cell death in nearby wild-type tissue could be a direct consequence of greater
compaction due to the higher growth of RasV12 cells in PVRAP or by mutant backgrounds.

Through their different domains, mammalian tensins can bind pathway signaling
molecules, including b1-integrin, PI3K/Akt/mTOR, FAK, Rho GAP, p130Cas, TGF-b and
the Ras/Raf pathways, thus regulating a myriad of different cellular responses in normal
cells (reviewed in [13]; Pryczynicz, 2020 #1758; Mouneimne, 2007 #1464). Even though most
studies analyzing the role of mammalian tensins in cancer have been dedicated to assessing
the expression of tensins in different cancer types, there have been studies attempting to
identify the role of tensins in carcinogenesis. Thus, TNS1 has been proposed to regulate tu-
mor cell proliferation affecting Rho GAP through regulation of the hippo signaling pathway
(reviewed in [38]). Other studies indicated that TNS4 could promote cancer progression
by regulating the Akt/GSK-3b and TGF-b1 signaling pathways [50,51]. In addition, a
reciprocal TNS3-TNS4 switch regulates the invasive capacity of breast tumors downstream
of the EGFR via direct interaction with b1 integrins [52]. In Drosophila, by interacts with
integrins and the JNK pathways [19,22], while PVRAP physically interacts with PVR [53]
and EGFRAP interacts and regulates the EGFR pathway [12], interactions that regulate
adhesion and fate in normal cells. In Drosophila wing disc tumor cells, we have recently
shown that EGFRAP restrain the oncogenic capacity of EGFR/Ras hyperactivation [12].
Here, we show that by also acts as a tumor suppressor in Ras-mediated oncogenesis. As
by has been shown to interact with integrins [19,22] and we have recently shown that b1
integrins also behave as suppressors of RasV12-dependent tumorigenesis in Drosophila wing
discs [17], we propose that by may act as a tumor suppressor via its ability to bind and regu-
late integrins. This suggests that the function of tensins as tumor modulators via regulating
integrin function might have been conserved throughout evolution. Finally, overactivation
of PVR has also been shown to produce overgrowth of the Drosophila wing disc [54]. As
PVRAP interacts with PVR [53], we propose that PVRAP could act as a tumor suppressor by
regulating PVR activity, similar to the relationship between EGFRAP and EGFR. Altogether,
these results suggest that, similar to what happens with mammalian tensins, the Drosophila
tensin orthologs could modulate tumorigenesis by regulating different signaling pathways
(Figure 8). Finally, our results showing that downregulation of PVRAP and EGFRAP led to
defects consistent with downregulation of integrin function [12] suggest the existence of
cross-talks between the different Dosophila tensins and the pathways they can modulate.
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Figure 8. Model of PVRAP and by function as a modulator of RasV12-dependent tissue hyperplasia.
(A) Schematic drawing depicting the mechanisms by which PVRAP, by and EGFRAP could restrain
Ras activity in RasV12-dependent oncogenic cells. (B) Downregulation of any of these three tensin
genes releases the restraint, leading to a further enhancement of Ras activation and tissue hyperplasia.

Even though tensins have been widely implicated in different types of cancers, to
date, there is no clinical trial targeting them, as their impact on carcinogenesis is not fully
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established. Our results demonstrate that Drosophila tensins act as suppressors of RasV12

tumor progression in wing disc epithelial cells. We can now use the advantages of the
Drosophila system to increase our understanding of the mechanisms by which tensins
modulate carcinogenesis and to identify new therapeutic drugs targeting malignancy, a top
priority in cancer research.
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