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Salvio Suárez-García a, Isabella Nicotera b, Daniel Ruiz-Molina a,*, Cataldo Simari b,* 

a Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain 
b Dept. of Chemistry and Chemical Technology, University of Calabria, 87036 Rende, (CS), Italy   

A R T I C L E  I N F O   

Keywords: 
Bioinspired coating 
CO2 capture 
reversible trap-release CO2 

Regenerable sorbent 

A B S T R A C T   

Nowadays, finding innovative technologies to efficiently adsorb/desorb CO2 over several cycles with low energy 
consumption is a pressing environmental concern. In this work, a new bioionspired coating based on the 
copolymerization of benzene-1,2-diol and hexamethylenediamine, with a CO2 uptake of 7.28 mmol/g under 
humidified conditions with an outstanding chemical stability and regenerability process is reported. Further 
functionalization with glycidyltrimethylammonium chloride increases the uptake capacity up to 9.96 mmol/g 
while lowering the desorption temperature down to 50 ◦C for 20 min. Moreover, the coating shows strong 
adhesion on cotton and paper, without modifying their intrinsic permeability and mechanical properties, 
allowing for the recycling of fully available and environmentally friendly biomass. These results demonstrate the 
competitive advantages of this bioinspired coating compared with current technologies to capture CO2 while 
accomplishing the resource efficiency of bioeconomy policies.   

1. Introduction 

Rapid and immediate removal of anthropogenic CO2 is of vital 
importance to achieve 1.5–2.0 ◦C global warming objectives [1]. In this 
regard, complementing reforestation and energy efficient processes, 
decisive actions toward emissions reduction have become critical [2]. 
Renewable technologies have recently seen a huge speed of maturity 
[3]. Despite this, most of the future energy scenarios converge in spec-
ulating that 65% of the global energy demand will still rely on fossil- 
based fuel (coal, natural gas and oil) by 2050 [4]. For the reason 
above, cutting carbon emissions from fuel-based power plants by 
developing carbon capture process has rocketed to the top of the agenda 
in the scientific and technology policies of the major economies in the 
world [5]. De facto, while waiting complete maturation of renewable 
energy technologies and definitive replacement of fossil-based fuel, 
carbon capture is crucial to achieve global net-zero emissions by 2025 
and seriously tackle climate change [6]. Nowadays, reducing energy and 
financial cost associated with the carbon capture process still represents 
the major challenge in the ultimate implementation of CO2 capture [7]. 
Even in the case of aqueous alkali hydroxides, which apparently offered 
the potential for near-term commercialization [8,9], their implementa-
tion is compromised by equipment corrosion and high energy 

requirement for sorbent regeneration [10,11]. Therefore, the develop-
ment of efficient CO2 capture materials with low regeneration energy 
consumption and enhanced working capacity, i.e., systems with high 
adsorbate loading able to desorb CO2 at lower energy, has become a 
major challenge in nowadays environmental technologies. 

Materials containing amino groups can play an important role with 
this aim [12]. Decades of lab-scale development provided a plethora of 
solid amine-based sorbents with low energy consumption, good sorbent 
development and process optimization sorbents [13–16]. Still, only very 
few of them found successful implementation in pilot-scale tests and 
commercial deployments [17,18], due to their rapid oxidative degra-
dation and high cost of production [19–22]. Another challenge to push 
their industrial application is their incorporation into solid substrates of 
a very diverse nature, always following universal approaches, easy to 
scale up and with remarkable thermal stability [12,23,24]. 

We hypothesize that these limitations can be solved with bioinspired 
mussel adhesive coatings using catechol and phenolic-based systems, 
which in addition to exhibit high thermal and chemical stability, 
strongly attach onto virtually any kind of surface [25–28]. On top of 
that, these coatings can be chemically functionalized to modify surface 
properties, without significantly affecting bulk features. So far, only a 
few examples of these materials have been reported on membranes with 
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high CO2 permeability combining dopamine with epoxy functional poly 
(ethylene oxide) [29], coatings for metal–organic frameworks (MOFs) 
that favour a local environment for CO2 reduction [30,31], the use of 
photo-triggered CO2 release [32] and the coordination with iron form-
ing film composites with high gas separation selectivity [33]. However, 
in spite of this pioneering studies, research on the area is still at early 
development stages, suffering from high CO2 desorption energy, fabri-
cation costs and implementation limitations. Due to its potential, further 
research in the area must be devoted to the development of universal 
coatings over different substrates incorporating amino groups that effi-
ciently capture CO2. 

Our group recently reported effective coatings on a wide range of 
materials using a new cost-effective and easy to scale one-pot copoly-
merization of catechols with different nitrogen-based cross-linkers, 
under very mild basic conditions in water [34]. Interestingly, we real-
ized that the number of exposed and reactive amino groups increased 
with time along the reaction procedure (Fig. 1b), as demonstrated upon 
functionalization with hydrophobic alkyl chains. 

Herein we demonstrate that these coatings can be now successfully 
used as energy-efficient, chemically stable, scalable and cost-effective 
solid amine-based CO2 sorbents with fully reversible desorption at 
100 ◦C (Fig. 1c). Further functionalization with glycidyl-
trimethylammonium chloride (GTMAC) increases the capture capacity 
while decreasing the temperature desorption down to 50 ◦C and, 
therefore, the required energy. As proof-of-concept, to demonstrate the 
viability of our approach, we have selected two highly abundant and 
easily accessible materials such as cotton and paper. The selection was 
mainly based on the fact that paper and cotton: i) are accessible and low 
cost, ii) they can be part of composite-type structures to form simple or 
multilayer filters, iii) are easily recyclable once their cycle of life is over 
and iv) allows for its coating in large quantities, optimizing the synthesis 
process. These low-cost bioinspired materials, in addition to exhibit low 
toxicity and adsorption heats, address nowadays concerns of life cycle 
and waste management. The possibility to use recycled materials, 
showing competitive working capacity compared to existing technolo-
gies, keep waste down and has a minimal impact on the environment. 

2. Results and discussion 

2.1. Synthesis and coating characterization 

The coating (from now on pyroHMDA) was obtained following the 

procedure reported elsewhere (see Supporting Information, Experi-
mental Section) [34,35]. Briefly, benzene-1,2-diol (pyrocatechol) and 
hexamethylenediamine (HMDA) were dissolved in MilliQ® water with a 
HMDA/pyro ratio of 1.5. Thereafter, the substrate (cotton or paper) was 
placed in the primer solution and the reaction flask was covered with 
pierced Parafilm® in order to allow the entrance of oxygen into the 
reaction mixture. The coating time ranged between 8 and 96 h. The 
resulting coated samples were washed several times with Milli-Q® 
water, dried under vacuum and characterized. 

Compositional changes were first analyzed by FT-IR (see Supporting 
Information, Fig. S1). The broad band around 3240 cm− 1 was attributed 
to the presence of NH2 while the shoulder at higher wavenumbers 
(around 3400 cm− 1) may be assigned O–H vibrations from catechol. The 
bands observed in all the spectra at 3050 cm− 1, and between 1540 and 
1585 cm− 1 can be respectively assigned to C = C–H and C = C vibrations 
from the catecholic/quinonic rings. The presence of HMDA is also 
confirmed by observing the methylene C–H bonds from the alkyl chain 
of the HMDA at around 2849 and 2932 cm− 1. The intense bands present 
in all the spectra around 1575 cm− 1, and between 1620 and 1710 cm− 1 

could be assigned to C = O quinonic groups. Finally, the peak observed 
in all the spectra at around 1260 cm− 1 could be assigned to a secondary 
amine bridging an alkyl and an aromatic ring. Time-dependence FT-IR 
experiments also showed that the peaks corresponding to the reduced 
state (catechol) decrease with time, whereas those assigned to oxidized 
state (quinone) species increase, indicating an over-oxidation of cate-
chol moieties for longer reaction times for both substrates (cotton and 
paper). In parallel, –NH2 signals increased for longer reaction times, 
indicating that pyroHMDA coating has a high content in amino terminal 
groups. High-resolution XPS curve-fitting was used to study the surface 
exposed functional groups and the environment bonding of the coating 
after 8 h and 24 h (see Supporting Information, Fig. S2). Briefly, the N1s 
spectra indicated an increase of both aliphatic and aromatic amine- 
related species for longer reaction times. Additionally, C–N aromatic 
contributions could be assigned to two amino group types: i) directly 
bonded to the catechol rings and ii) C–NH aliphatic, confirming the 
presence of unreacted amine tail ends. The fitted C1s spectra confirm the 
coexistence of catechol with its oxidized quinone state as can be noted 
by the C–OH signals at around 286 eV and the C = O signals at around 
288 eV. The analysis of the O1s spectra confirmed the coexistence of 
these two species. 

Coating weight adaptation along the reaction time, which represents 
a crucial feature for CO2 capture (vide infra), was also studied and 

Fig. 1. (a) Schematic synthetic protocol for the bioinspired coating formation on substrates. Both pyrocatechol and hexamethylenediamine are polymerised under 
mild conditions, presence of oxygen and using water as a solvent. In this study, fibber-based substrates were selected (cotton and paper). (b) The composition of the 
coating can be controlled with the reaction time. For shorter times, the amount of hydroxyl (–OH) groups is higher than for longer reaction times (>12 h), where the 
presence of quinones (=O) and amino (–NH2) groups is increased. (c) The bioinspired coating with the higher amount of exposed amino groups is employed for CO2 
capture by forming covalent bonds. Additionally, the CO2 molecules can be easily desorbed by increasing the temperature. 
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adjusted. As can be seen in Fig. 2a, there is a marked tendency of the 
coating to increase with reaction time, slightly higher for cotton than for 
paper. To analyze the influence of the coating on the mechanical 
properties of the substrate, a representative cotton-based sample was 
further analysed by Dynamic Mechanical Analysis (DMA) to study the 
stress–strain behaviour (tensile strength (TS) and the elongation at yield 
(EY)). Pristine cotton behaves as a soft and tough material (TS = 26.42 
MPa and EY = 1.66%), but the coating with the pyroHMDA acts as 
mechanical reinforcement (Fig. 2b). De facto, the sample obtained after 
24 h of coating (from now one cC-24) exhibits superior mechanical 
resistance, higher tensile stress (ca. 58 MPa) and elongation at yield 
(more than 2%), which typically relates to a hard and strong behaviour. 
This suggests that the coating promotes favourable interactions between 
the cotton fibres, enabling a more efficient stress dissipation, and 
therefore a higher mechanical stress resistance. The same outcome was 
also observed for the paper substrate (see Supporting Information, 
Fig. S3). Finally, scanning electron microscopy (SEM) images reveal that 
the coating is strictly formed around the fibbers (see Supporting Infor-
mation, Fig. S4) with no relevant differences before and after coating 
(Fig. 2c,d). 

2.2. CO2 adsorption performance 

The maximum CO2 adsorption capacity of the coated substrates 
under 1 atm of 4% dry CO2 (equilibrated with N2) at 25 ◦C was measured 
and the results normalized to the percentage of the pyroHMDA coating. 
As shown in Fig. 3a, the capture ability of both cotton- and paper-based 
samples sharply increases, and almost superimpose for both substrates, 
reaching a maximum uptake of 3.73 mmol/g after 24 h for the cotton 
substrate. Such value is close to the track record found for solid sorbents 
operating under the same experimental conditions [36,37]. After 24 h 
the capture ability decreases, most likely due the progressive increase of 

the coating thickness, i.e. the volume to surface ratio, and its detrimental 
effect on the capture capacity effectiveness. The cC-24 CO2 adsorption 
kinetics are represented in Fig. 3b. The pyroHMDA exhibits a two-stage 
adsorption, with a sharp linear weight gain just after exposition to the 
CO2 stream followed by a much slower adsorption process, which is a 
typical behavior of amine-based sorbents [38–40], and can be ascribed 
to the progressive increase in CO2 diffusion resistance during adsorption 
[38,41]. 

Cotton samples coated for 24 h (from now on cC-24) were further 
investigated under simulated flue gas conditions (pre-humidified 4% of 
CO2, 18% RH) at 25 ◦C and ambient pressure [42]. Due to the hydro-
philic character of the pyroHMDA coating and its likeliness to rapidly 
absorb moisture from humid gases, coating performance under typical 
operating conditions for amine-based sorbents may be disrupted. For 
this, the sorbent was first equilibrated at 25 ◦C in pre-humidified N2 
(same moisture level of the CO2) until a constant weight is achieved. 
This already resulted in a weight gain of about 6.7 wt% and 7.2 wt% for 
pure cotton and cC-24, respectively (see Supporting Information, 
Fig. S5). The feeding gas was then switched to the humid CO2 at 25 ◦C 
and the weight gain used to calculate the adsorption capacity. As can be 
seen in Fig. 3b, the presence of water molecules favors CO2 diffusion 
within the sorbent, enhancing the reaction between the amino func-
tionalities and the gas molecules. This results in a higher carbon capture 
capacity, showing that the normalized adsorption capacity under humid 
conditions reached the impressive value of 7.28 mmol/g, among the 
highest reported for amine sorbents [43,44] and almost 6-fold higher 
than current benchmark found for amine-scrubbing solutions (~1.25 
mmol g− 1 for 30% monoethanolamine solution, MEA) [45]. 

Finally, the CO2 capture ability of the pristine substrates was 
measured and found to be practically zero even in the presence of 
moisture (see Supporting Information, Fig. S6), confirming that the CO2 
adsorbtion mostly arises from the pyroHMDA coating. 

Fig. 2. (a) Percentage of coating (weight) vs. the reaction time for cotton and paper. (b) Stress − strain curves conducted at 30 ◦C for cotton-based sorbents. Scanning 
electron microscopy (SEM) micrographs for (c) cotton and (d) paper. Scale bar: 40 µm. 
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2.3. Cycling stability and sorbent regeneration 

To assess the chemical stability and regeneration energy of this novel 
effective coating, repetitive adsorption/desorption CO2 cycles of cC-24 
were carried out under simulated flux gas conditions. For each cycle, 
the coated sample was first exposed to a humid flow of 4% CO2 (18% 
RH) at 25 ◦C for 60 min, followed by desorption in dry N2 RH at 110 ◦C 
for 20 min. 

As can be seen in Fig. 3c, the cC-24 sorbent can be thermally re-
generated by N2 flow and heating at 110 ◦C for only 20 min (see Sup-
porting Information, Fig. S7). Moreover, the maximum adsorption 
capacity was regenerated for at least 50 cycles, demonstrating the full 
reversibility of the process. 

Differential scanning calorimetry (DSC) was used to monitor heat 
evolution along the CO2 adsorption/desorption process [42]. The DSC 
thermogram exhibits a sharp positive heat-flow peak followed by a quite 
broad shoulder after CO2 exposure, which could be attributed to the 
rapid exothermic reaction of the amino groups with the CO2 (see Sup-
porting Information, Fig. S8). Peak integration gave an adsorption heat 
value of ΔH = 83.4 kJ/mol, comparable to those found for other amine 
sorbents (45–95 kJ mol− 1) [12,20,37,46,47]. Moreover, a broad endo-
thermic peak (130.8 kJ mol− 1) was obtained upon switching the purge 
gas from humid CO2 at 25 ◦C to dry N2 at 110 ◦C. Such value, associated 
to sorbent regeneration, is lower than the energy for stripping a 30% 
MEA solution (209 kJ mol− 1) [48]. 

2.4. Gtmac-functionalized sorbents 

To improve the adsorption/desorption efficiency, the exposed amino 
groups were transformed into quaternary ammoniums by reaction with 
Glycidyltrimethylammonium chloride (GTMAC) (see Fig. 4a and 
Experimental Section in Supporting Information). Previous de-
velopments with anion exchange membranes demonstrated that qua-
ternary ammonium groups can rapidly and reversibly trap CO2 upon a 
nucleophilic attack of the carbon and interconversion of the hydroxides 
into bicarbonate ions [49,50]. Moreover, the equimolar stoichiometry 
between CO2 and the quaternary ammonium group (see Supporting 
Information, Scheme 1), ensures higher CO2 uptakes and lower regen-
eration temperatures than aqueous MEA.46. 

The successful quaternization of a coated cotton sample (from now 
on cCQ-24) was confirmed by FT-IR, showing the characteristic peak of 
H3C–N+– at around 2980 cm− 1 (for more information see Supporting 
Information, Fig. S9). On top of that, SEM and DMA characterization 
revealed that the post-functionalization does not alter the morphology 
nor its mechanical performance (see Supporting Information, Figs. S10 
and S11, respectively). The new CO2 adsorption kinetics of cCQ-24, 
together with those of pristine cotton and cC-24, are represented in 
Fig. 4b. Interestingly, the adsorption rate is remarkably higher for the 
quaternized cCQ-24 system, confirming the faster reaction between 
quaternary ammonium groups and CO2. Moreover, the peak adsorption 
capacity of CO2 uptake reaches a normalized CO2 adsorption of 4.46 
mmol/g, which represents a 20% improvement with respect that found 

Fig. 3. (a) Normalized CO2 uptake for coated samples as a function of the coating time. (b) CO2 adsorption kinetics of cC-24 under dry and humidified (18% RH) 4% 
CO2. (c) Cyclic performance for cC-24 sorbent over multiple adsorption/desorption cycles. Sorption conditions = 40 mL/min humid CO2 at RT for 60 min, and 
desorption conditions = 40 mL/min humid N2 at 110 ◦C for 20 min. 
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for cC-24 (3.73 mmol/g). Even a higher increase of 37% was obtained 
under pre-humidified 4% CO2 (18% RH) at 25 ◦C conditions. In this case, 
the quaternized cCQ-24 sorbent achieves a normalized CO2 uptake of 
9.96 mmol/g, in comparison to the 7.28 mmol/g capacity previously 
found for cC-24. Additionally, such value equals capacity records re-
ported to date for amine sorbents operating under similar conditions 
[51]. To point out the astonishing potential of the mussel-inspired 
coating, a performance comparison of cC-24 and cCQ-24 with several 
earlier published solid-supported amine sorbents has provided in 
Table 1. Higher CO2 capture, namely 12 mmol/g, were reported by Qi 
et al. in the case of silica-based sponges with covalently tethered amines 
[37]. However, their production required a complex, time-consuming 
and costly multi-step synthetic approach which also involved the use 

of toxic concentrated acid solution (i.e., 5 M HCl). On the other side, E- 
VER-TEPA-2% is an inexpensive sorbent prepared by supporting 
tetraethylenepent-amine (TEPA) onto natural abundant vermiculite (E- 
VER) nanosheets [52]. Such amino-based sorbent was able to achieve 
and impressive adsorbing capability under high pressure conditions, i.e., 
29.5 mmol/g at 45 bar, whilst the capture performance under diluted 
partial pressure of CO2, were very poor. De facto, only the mussel- 
inspired coating combines true cost-effective and scalable features 
with high performance into diluted conditions. 

Finally, regeneration of cCQ-24 was almost completed by heating at 
50 ◦C, sixty degrees lower than the temperature required for cC-24 
(110 ◦C). This implies less energy consumption, as corroborated by 
analysis of the heat evolution during CO2 adsorption/desorption (see 

Fig. 4. (a) Schematic representation of the sample functionalization with GTMAC and subsequent CO2 capture (b) CO2 capture performance of cC-24 and cCQ-24 
sorbents under dry and humid 4% CO2 and (c) regenerability test for CO2 adsorption on cCQ-24 sample under sorption conditions = 40 mL/min humid CO2 at RT for 
60 min, and desorption conditions = 20 mL/min humid N2 at 50 ◦C for 20 min. 

Table 1 
Performance comparison of cC-24 and cCQ-24 sorbents with state-of-the-art materials for CO2 Capture.  

Materials Atmosphere Condition Temperature (◦C) CO2 adsorption (mmol CO2/g sample) Method Stability Ref 

cC-24 4% CO2 in N2 18% RH 25 7.28 TGA(a) No efficiency loss in 50 cycles This work 
cCQ-24 9.96 No efficiency loss in 50 cycles 
LeZIF8-PhIm 120 kPa CO2 0 4.05 VOL(b)  [55] 
Functionalized Silica sponges 8% CO2 in N2 18% RH 25 12 TGA Robust after 50 cycles [37] 
CNF-x-a-CNC 10% CO2/N2 30 2.11 IR(c) – [56] 
CNF-Ph(1:1.5) 500 ppm CO2 25 5.2 VOL – [57] 
MgSepP-50 60% CO2/N2 75 2.48 TGA Robust over 10 cycles [58] 
MWCNT-20 %PEI 0.15 %CO2/N2 25 2.28 TGA Loss 10% in 10 cycles [59] 
SiO2CNT-20 %PEI 15 %CO2/N2 30 1.92 TGA – [60] 
50 %PEI/SBA-15 400 ppm CO2/N2 25 1.3 TGA Robust over 10 cycles [51] 
PEI@BN 2% CO2/He 75 3.12 TGA Loss 6.3% after 10 cycles [61] 
54.9 wt% PEIPNC-1 101 kPa CO2 25 2.5 VOL Robust over 10 cycles [62] 
SH800 40% CO2/H2 25 6.77 PB(d) Robust over 5 cycles [63] 
(FBNNs)/ZnO 100 kPa CO2 0 2.83 PRE Loss 7.63% in 10 cycles [64] 
polyHIPE/nano-TiO2/PEI-50 CO2/H2O/N2 

(1:1:8) 
75 5.6 TGA Loss 9% in 50 cycles [65] 

20 wt% MgO-RHA 10% CO2/N2 – 4.56 IR Loss 7.68% in 10 cycles [66] 
0.52 wt% PEI@AOMC 100% CO2 30 2.58 TGA Robust after 11 cycles [67] 
MgO/C-550 15% CO2/N2 27 4.77 TGA – [68] 
Solid-supported amines sorbents operating in the high-pressure range 
NOHM-c-5 25 bar CO2 25 4.08 TGA No efficiency loss in 10 cycles [69] 
E-VER-TEPA-2% 45 bar CO2 25 29.5 VOL Loss 3.3% after 6 cycles [52] 
MWCNT/SiO2 NOHM 50 bar CO2 25 6.1 PRE(e) Robust over 10 cycles [70]  

(a) TGA, thermogravimetric analysis; (b) VOL, volumetric method; (c) IR, infrared analyser; (d) PB, packed bed; (e) PRE, pressure method. 
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Supporting Information, Fig. S12). Indeed, both adsorption (ΔHa = 51.7 
kJ/mol) and desorption (ΔHd = 89.6 kJ/mol) heats are remarkably 
lower than the ones of cC-24 (ΔHa = 83.4 kJ/mol and ΔHd = 130.8 kJ 
mol− 1) and one of the lowest regeneration energy penalties among 
previously reported supported-amines sorbents [15,37]. On top of that, 
repetitive adsorption/desorption cycles under simulated flue gas con-
ditions confirmed that the post-functionalization of cC-24 does not 
impact on the remarkable cycling stability of the sorbent, as the 
maximum adsorption capacity is maintained even after 50 adsorption/ 
desorption cycles (Fig. 4c and Supporting Information, Fig. S13). 

3. Conclusions 

We have demonstrated how a bioinspired thin coating, synthesized 
through the reaction of pyrocatechol and HMDA, can transform cotton 
and paper substrates into efficient CO2 sorbents. The selection of paper 
and cotton as scaffold materials is because they are: i) fully accessible in 
tons-scale with low cost, ii) they can be part of composite-type structures 
to form simple or multilayer devices that can be easily implemented in 
buildings and common air filtering systems, iii) they are easily recy-
clable once their life cycle is over, iv) allows its coating in large quan-
tities, optimizing the synthesis process and v) last but not least, fulfil 
resource efficiency of nowadays bioeconomy policies. 

The coating thickness can be adjusted to optimize CO2 adsorption 
within 24 h or even less, considering that any commercialization would 
require further optimization of the upscaling process, all of this without 
compromising the intrinsic properties (stress, porosity and perme-
ability) of the substrate. 

Under these adjusted conditions, an optimized CO2 uptake of 7.28 
mmol/g (normalized to the coating percentage) was achieved under 4% 
humidified CO2 at 25 ◦C, which raises up to 9.96 mmol/g upon qua-
ternization with GTMAC. What is even more relevant, the functionali-
zation also decreases the regeneration temperature down to 50 ◦C for 
less than 20 min with an energy penalty of only 89.6 kJ/mol. Consid-
ering the cost of energy consumed during CO2 release mostly determines 
the capital expenditure of the CO2 capture process [53], the imple-
mentation of our bioinspired functionalized coating holds promise for 
massive reduction of the capture cost with respect to processes based on 
MEA (62 $/ton) [54], mesoporous silica (75–105 $/ton) [54] and MOF 
(80–150 $/ton) [53] sorbent materials. Moreover, in both cases, with or 
without GTMAC, no adsorption/desorption capacity loss is detected for 
at least 50 cycles. Once the end of the life cycle is reached, the coated 
materials can be easily recycled without causing added contamination 
thanks to the biodegradable nature of both the polymeric compound and 
the chosen substrates. This ensures its integration into a circular econ-
omy with lowering costs and low energy or pollution impact. 

For commercial purposes, the synthesis process is carried out using 
cost-effective and fully scalable technologies in water, with the presence 
of oxygen and soft chemical mixing (can be mechanical). This ensures a 
process that does not require large amounts of energy or the use of 
organic solvents or any other difficult-to-obtain compounds that can 
hinder its large-scale production at an industrial level. On top of that, 
large amounts of material can be coated within a single batch, or even 
more, the polymeric coating can be synthesized, stored, and later 
applied to the target substrate. 

Finally, and thanks to the versatility and robustness of the described 
polymeric coating, its application can also be extended to other specific 
substrates depending on the final application, ensuring its adhesion 
thanks to the bioinspired chemical nature of catechol molecules. All in 
all, our coating holds promise in amino-based sorbents for highly per-
forming low-energy consuming carbon sequestration technology and 
therefore in the circular economy of carbon. 

CRediT authorship contribution statement 
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