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Simple Summary: Single-cell data has enabled the study of cell dynamics at an unprecedented
resolution. Cell type and functional annotation are crucial to address during any analysis involving
transcriptomic data at the cell level since both annotations provide the basis to understand the complex
biological processes behind the communication machinery. We propose SigPrimedNet, a data-driven
solution to identify cells while learning a functional summarization of signaling measurements by
incorporating the knowledge stored in pathway databases. To do so, we decompose each signaling
pathway into canonical effector circuits, which act as a minimal functional unit. These circuits
inform the design of a cell-type classification neural network model, which allows us to extract
meaningful features that act as a proxy of the signaling activity of any given cell. Furthermore,
we train an unsupervised anomaly detection algorithm on the inferred activities, which enables
the model to identify unknown cells when working with previously unseen cells. To illustrate the
performance of the proposed model we conduct a series of experiments over publicly available data
with promising results across every task: cell-type annotation, unknown cell-type identification, and
clustering. Finally, we showcase the biological richness of the signaling activity learned by the model.

Abstract: Single-cell RNA sequencing is increasing our understanding of the behavior of complex
tissues or organs, by providing unprecedented details on the complex cell type landscape at the level
of individual cells. Cell type definition and functional annotation are key steps to understanding
the molecular processes behind the underlying cellular communication machinery. However, the
exponential growth of scRNA-seq data has made the task of manually annotating cells unfeasible, due
not only to an unparalleled resolution of the technology but to an ever-increasing heterogeneity of the
data. Many supervised and unsupervised methods have been proposed to automatically annotate
cells. Supervised approaches for cell-type annotation outperform unsupervised methods except when
new (unknown) cell types are present. Here, we introduce SigPrimedNet an artificial neural network
approach that leverages (i) efficient training by means of a sparsity-inducing signaling circuits-
informed layer, (ii) feature representation learning through supervised training, and (iii) unknown
cell-type identification by fitting an anomaly detection method on the learned representation. We
show that SigPrimedNet can efficiently annotate known cell types while keeping a low false-positive
rate for unseen cells across a set of publicly available datasets. In addition, the learned representation
acts as a proxy for signaling circuit activity measurements, which provide useful estimations of the
cell functionalities.
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1. Introduction

Recent high-throughput technology developments are transforming our view of com-
plex biological systems by providing a detailed picture of their individual components.
Single-cell RNA sequencing (scRNA-seq) has enabled RNA activity to be profiled in individ-
ual single cells by obtaining profiles of thousands of cells in heterogeneous environments [1].
scRNA-seq increases our understanding of the cell as a functional unit revealing new popu-
lations of cells with gene expression profiles previously unnoticed in conventional analyses
of bulk cell populations [2].

Facing the huge amount of data provided by scRNA-seq technology, one of the ma-
jor challenges is cell-type identification within a diverse population of sequenced cells.
This challenge, also known as cell retrieval or cell-type annotation, consists of inferring
the type of a given cell by querying a reference database of annotated scRNA-seq data.
Unsupervised methods, such as clustering analysis, find the closest cell to a sample given
a population of cells. However, single-cell data contains high levels of noise from het-
erogeneous sources, and to mitigate such problems, dimensionality reduction is usually
performed before clustering. Scmap projection algorithm [3] explores different strate-
gies for feature selection as highly variable genes (HVGs) [4] and genes with a higher
number of dropouts (zero expression) than expected determined using M3Drop [5]. The
most popular methods for dimensionality reduction are based on Principal Component
Analysis (PCA) [6], dropout modeling (ZIFA) [7], t-distributed stochastic neighbor embed-
ding (TSNE) [8] or uniform manifold approximation and projection (UMAP) [9]. Single
reference mapping methods are growing in popularity as Seurat’s supervised principal
component analysis [10], single-cell architecture surgery (scArches) [11], or an extension of
Harmony [12] to map query datasets by minimal modification of the reference atlas [13].
However, the implicitly used latent dimensions for joint data representation are not directly
interpretable, and it is a major drawback of these methods [14]. Currently, the develop-
ment of interpretable models by the addition of statistical assumptions or prior biological
information is a trend, but the former approaches have not yielded sufficiently useful latent
spaces in the context of scRNA-seq analysis [14].

Supervised methods use a labeled reference to learn a function that maps transcrip-
tomic profiles to cell types. Thereafter, new cells are annotated using the learned mapping.
Model training (learning the map) is usually a time-consuming process due to the large
size of the reference databases [3], while inference (applying the learned function) is faster
and less laborious than the two-step process associated with unsupervised methods [15].
Furthermore, supervised training for cell-type annotation usually performs better than
unsupervised methods in most datasets, although this is not the case when unknown cell
types arise [16]. One of the more promising methods to overcome such limitations is SciBet,
which uses a combination of statistical learning to find informative genes, a multinomial
approximation for cell-type annotation, and building a synthetic reference cell to estimate
out-of-distribution transcriptomic profiles. Scibet outperforms other state-of-the-art meth-
ods like Seurat v3 and scMap across several experiments, achieving a high prediction
accuracy while keeping a low false-positive rate when annotating unseen cell types.

In this work, we present SigPrimedNet a domain-informed Artificial Neural Network
(ANN) that overcomes the limitations associated with supervised learning methods by
combining a signaling circuits-informed sparse architecture with an anomaly detection
procedure that uses the latent structure learned by the ANN to elucidate if any given
cell is of unknown origin. Sparse domain-informed neural networks are used to solve
complex biological problems by incorporating domain-specific constraints on the under-
lying architectures to develop more interpretable models that avoid overfitting through



Biology 2023, 12, 579 3 of 19

regularization [17]. For example, P-NET [18] incorporates different biological entities to
aid in decision-making when dealing with prostate cancer patients, whereas Dcell models
gene interactions on cell growth in yeast [19]. In the context of cell annotation [20] uses
algorithmically crafted clusters of protein-protein and protein-DNA interactions to provide
the sparse structure, but cannot classify unknown cells.

Our previous work on cell-type identification [21] used broader, all-encompassing,
pathways and lacked any form of out-of-distribution learning, which hampered its useful-
ness when the query dataset representation showed more heterogeneity in cell populations.
Contrarily, SigPrimedNet offers a more fine-grained functional characterization of the
cell populations due to the use of more specific effector-based signaling proxies based on
recent developments in mechanistic models of cell signaling, which ultimately triggers
cell functionality and dictates cell behavior and fate [22]. Our method outperforms Scibet,
Seurat v3, and ScMap when dealing with unknown cell types while providing a comparable
performance on tasks where no cells should be labeled as unknown (using the experiments
proposed in [15]). To the best of our knowledge, SigPrimedNet is the first supervised
Domain-informed Sparse Neural Network to incorporate unknown cell-type identification.

2. Materials and Methods
2.1. Datasets

In this manuscript, we use three publicly available datasets, which we have called PBMC,
Immune, and Melanoma dataset to facilitate their reference throughout the manuscript. All of
them are publicly available on two platforms, Gene Expression Omnibus (GEO [23]) and
10× Genomics [24], moreover, they are human sequencing data. The datasets used in this
work have been obtained from [15] (PBMC and Melanoma) and [25] (Immune). See Table 1
for cell type details.

Table 1. Cell type distribution for each dataset.

PBMC Immune Melanoma

Cell Type # of Samples Cell Type # of Samples Cell Type # of Samples

CD14+ 2500 B cells 1465 B.cell 818
CD19+ 2500 Erythrocytes 1747 Macrophage 420
CD34+ 2500 HSPCs 3742 NK 92
CD56+ 2500 Monocytes 954 T.CD4+ 856
CD8+ Cytotoxic 2500 Neutrophils 485 T.CD8+ 1759
CD4+/CD45RO+ Memory 2500 NK 546 Negative cells 2228
Treg 2500 T cells 517

2.1.1. PBMC Dataset

The full version of the fresh peripheral blood mononuclear cells (PBMCs) datasets
is publicly available in 10x Genomics [24]. In this work, we use the preprocessed ver-
sion proposed in [15], which consists of 2500 cells randomly sampled for each cell type:
CD14+, CD19+, CD34+, CD56+, CD8+ Cytotoxic, CD4+/CD45RO+ Memory, and Treg
cells. In addition, to test the reliability of the model with unbalanced datasets, we have
randomly undersampled each cell type (using a proportion of 0.2, 0.4, and 0.6 of the original
population) to produce a total of 21 synthetic datasets derived from the PBMC dataset.

2.1.2. Immune Dataset

This dataset profiles the transcriptomes of bone marrow and peripheral blood-derived
hematopoietic cells, which are publicly available from GEO database [23] with identifiers
GSE137864 and GSE149938. The dataset profiles 7 cell types for 9456 samples (see Table 1)
using a unique molecular identifier (UMI) counting [26]. To be more precise, CD34+ HSPCs,
B cells, NK cells, T cells, monocytes, neutrophils, and erythrocytes for bone marrow, and
together with regulatory B, naive B, memory B, cytotoxic NK, cytokine NK and T cells for
peripheral blood-derived differentiated cells.
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2.1.3. Melanoma Dataset

This human melanoma scRNA-seq dataset has malignant cells, CD8+ and CD4+
T cells, B cells, natural killer (NK) cells, macrophages, cancer-associated fibroblasts (CAFs),
and endothelial cell types. The cell types of CAF, malignant, and endothelial cells are
combined in one group called negative cell. In [15] they propose a filtered version of the
dataset, which profiles 6 cell types for 6173 samples (see Table 1). The dataset is split into
two subsets called reference and query with 70–30% sampling size, where the negative cells
only appear in the query set. Note that, contrary to Scibet, SigPrimedNet does not rely on
an external synthetic reference cell constructed from the aggregation of several single-cell
datasets, so we do not make use of the massive reference set described in [15].

2.2. Analysis Workflow

In this work, we propose an analysis workflow that tries to show how our proposed
model (SigPrimedNet) can correctly identify previously unseen cell types without losing
the advantages of supervised learning (fast and accurate known cell-type assignment) while
providing a biologically useful latent space. The workflow (Figure 1) can be summarized
in three steps: (A) data processing and architecture design, (B) knowledge extraction from
learned representations (interpretation), and (C) cell-type inference.

In broad terms, the model works as follows: (i) the weights of the first hidden layer of
a dense network are constrained by a binary matrix that encodes the biological information
extracted from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [27], (ii) any given
training dataset is decomposed into two sets (learning and validation) stratified by cell-type,
(iii) the model is fitted to the learning set while using the validation for early stopping the
training, (iv) computes the learned representation (encoding) of the learning and validation
sets by evaluating the activations of the last hidden layer, (v) fits an anomaly detection
algorithm using the encoding of the learning set as the features, and, (vi) establishes
a threshold for detecting anomalies (unknown cell types) using the validation encodings.
When a new cell is evaluated, the model computes the corresponding encoding, decides
if the cell is of an unknown cell type by applying the anomaly detection algorithm along
with the learned threshold, and, finally if the cell is not an anomaly the cell-type mapping
learned by the ANN is applied.

To check the performance of the model (when all cell types are known) we have
followed [15] using the resampled PBMC dataset to conduct a 50 times repeated cell-type
stratified cross-validation. Whereas, to test the capability to identify unknown cell types,
we have followed the negative cell melanoma experiment as proposed by [15]. Finally,
the functional interpretability of our model has been tested using the Immune dataset,
where we have also checked the performance by means of 30 times repeated 10-fold
cross-validation strategy (all cell types are known).

2.3. Model Design

The architecture of the SigPrimedNet is defined as a dense network (all nodes in
any given layer are connected to all the nodes of the adjacent layers), where the input
layer (one node for each gene) is connected to a signaling-informed layer (the first hidden
layer), which is wired to a new dense layer (the encoding layer). Finally, a softmax layer (2)
connects the network to the output (the cell types). The model uses Rectified Linear Units
(ReLU) [28] activation functions (1) except for the output layer. To train the network, we
use the categorical cross-entropy loss function (3), where each known cell type represents
a category.

relu(z) = max(0, z). (1)

softmax(zi) =
ezi

∑nc
j=1 ezj

. (2)

−
nc

∑
j=1

yi,j log(pi,j) (3)
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where z refers to real-valued data, nc to the number of cell types, yi,j is 1 if cell type j is the
correct classification for observation i, 0 otherwise. Finally, pi,j is the probability that the
observation i belongs to cell type j.

*

*

preprocessed data

Interpretation of the informed layer using the 
activations as proxies of signaling circuits activity

cell type classification

UNASSIGNED

For each new cell compute its encoding, compute its similarity score and 
decide if it is an anomaly. If not, predict the cell type

scRNA-seq gene expression

b.cell

nk

t.cd4
t.cd8

erythrocytes

neutrophils

macrophage

A. Data preprocessing, build prior knowledge and assign known cell types

Dataset analysis &
pre-processing steps Known cell types

Signaling pathways

Circuit decompositions

Prior biological knowledge - signaling circuit 
Decompose each pathway into  functional subunits (circuits))

hsa04916 - Melanogenesis Pathway

.

.

.

...

...

...

Each node represents one signaling gene

The signaling indicator matrix informs the NN

The output layer encodes the cell type

B. Interpretation

Divide training into learning and 
validation. Fit LOF on learning

C. Evaluation

.

.

.

hsa04916 - Melanogenesis Pathway

.

.

.

.

.

.

neutrophils

*

*

Label new data as unassigned if the similarity score is below the threshold, otherwise predict its cell type 
using the full model. Thus, when evaluating the prediction we have a new label (unassigned)

Compute a threshold score based on known 
cell types distribution over the validation

Figure 1. The first step (A) consists of preprocessing the data, building the signaling-informed layer
S, and designing the architecture of the network based on the constraints imposed by an indicator
matrix IS (see Methods). The second step (B) deals with the interpretation using the functional
characterization of each cell cluster by aggregating the activations of the informed layer with respect
to each observed or predicted cell type. The final step, (C) consists in making new predictions by
(i) dividing the training set into learning and validation, (ii) fitting an anomaly detection algorithm
to the encodings of the learning set, compute a threshold with validation, and (iii) label a new cell as
unassigned if the threshold is not met, otherwise use the cell type prediction of the full NN.
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2.4. Data Preprocessing

Count data is preprocessed using the Transcripts per Million (TPM) normalization
method [29]. To preprocess unique molecular identifier (UMI) data we use Seurat v37 with
default parameters (each cell UMI count is normalized using size-factor 10,000). In either
case, we end with a gene-wise rescaling to [−1, 1] after a logarithmic transformation of the
preprocessed data.

2.5. Signaling-Primed Sparsity-Inducing Layers

SigPrimedNet is an ANN informed by a set of signaling circuits extracted from KEGG.
Each pathway is decomposed into multiple effector circuits, so-called because they are
the subpathways that end in effector proteins, which are responsible for triggering the
associated function. Each effector node (a node with no descendants) defines an effector
circuit along with the nodes that lead to it. To parse KEGG and decompose the resulting
pathways into effector circuits we have used the HiPathia R package (v 2.11.4) [22]: the
resulting (human) pathway list has been curated to remove those related to specific diseases,
which totals 92 pathways that give rise to 1210 circuits (see Table A1). Note that our
implementation can be extended to other pathway databases as long as each signaling
pathway can be decomposed into functional subpathways.

Therefore, given a signaling pathway P , its associated directed graph, and {g0, . . . , gn}
the set of genes that belong to P , we build the indicator matrix for P as follows: (i) detect
the pathway effector (nodes with no descendants, {e0, . . . , em}, and receptor (nodes with no
ascendants) nodes, (ii) for each effector node e, define an effector circuit Ce as the subgraph
that contains all the receptor nodes,

{
re

0, . . . , re
k
}

, that is connected to e, (iii) construct
an indicator vector ~ce where ~ce(i) = 1 if gi ∈ Ce, and ~ce(i) = 0 otherwise. Then, the
indicator matrix for pathway P is defined as I(P) = [~cl ]

m
l=1. See Figure 2 for a simplified

visual representation of how to build an indicator matrix.
To compose the signaling-informed layer each pathway is decomposed into its corre-

sponding indicator matrix, which is used to build the indicator matrix IS that informs the
signaling layer S by performing the outer join of the previous matrices. Trivially, IS is an
indicator matrix with IS(i, j) = 1 if gene i belongs to circuit j, and IS(i, j) = 0 otherwise,
where i and j traverse the set of all the signaling genes and circuits, respectively. This matrix
informs the first hidden layer of the model: (i) the layer has as many nodes as effector
circuits, (ii) the layer is initialized using Glorot uniform [30], and (iii) a weight that connects
an input gene i to a node j is set to 0 if the corresponding entry in the indicator matrix is 0
(i.e. gene i does not belong to circuit j).

...
......

gene A

gene B gene C

gene Fgene E

gene D

circuit 2

circuit 1
circuit 1 circuit 2

gene A 1 1
gene B 1 0
gene C 1 0
gene D 1 0
gene E 0 1
gene F 0 1

Figure 2. Simplified version on how to decompose a pathway into effector circuits and build the
corresponding indicator matrix. On the left side, we see a simplified pathway that gives rise to
two effector sub-pathways (referenced as effector circuits in this work), which lead to the indicator
matrix depicted on the right side.

Therefore, the kernel WS of an informed layer S can be written as (Equation (4)):

WS = W� IS (4)
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where W is a
(
ngenes, ncircuits

)
real valued tensor, IS is the indicator matrix of dimension(

ngenes, ncircuits
)
, and � refers to element wise (Hadamard) product.

The integration of a signaling-informed layer into the ANN has two aims: on the
one hand, the sparsity induced by the informed layer has a regularization effect that pre-
vents overfitting [17,18,20], and on the other hand, the learned representation using effector
circuits provides a useful representation of the data through the associated functions, which
helps to mitigate the problems associated to uninformative latent spaces [14].

2.6. Network Training and Inference

To add another source of regularization as well as to provide the model with the ability
to identify unknown cell types, we split each training set into learning and validation
subsets. The model is fitted (using the ADAM optimizer [31]) in a fully supervised way
(the cell types are the response) to the learning set using the validation for early stopping
of the training phase. Thereafter, we encode both subsets using the resulting network.
A Local Outlier Factor (LOF) [32] model is fitted using the learning encodings as the features,
whereas the validation set is used for setting a threshold on the similarity score. With these
artificial splits, we avoid the overconfidence associated with ANN when evaluating the
data where it has been fitted [33], resulting in a more realistic threshold. The threshold
is set to the mean of the w measure of the similarity score distributions across the cell
types, where w represents the maximum allowed deviation from the distribution set as
(Equation (5)):

wc = qc
1 − 1.5(qc

3 − qc
1) (5)

where c represents a cell type, and qi its i-th quartile.
To predict the cell type of a new sample, the model first encodes its preprocessed

transcriptomic profile, then computes the similarity score associated, decides if it is of
an unknown cell type (labeling as unassigned) based on the learned threshold and, if this
is not the case the model annotates the cell using the mapping function learned during the
supervised training.

Therefore, we exploit the richness of the representations learned by SigPrimedNet
using an unsupervised anomaly detection algorithm (LOF), which locates unusual data
points by evaluating each point’s local deviation from its neighbors. The LOF algorithm is
based on the local density concept, in which locality is determined by K-nearest neighbors
(KNN), whose distances are used for density-based scores. Finally, a point is consid-
ered an outlier if and only if the LOF score is greater than one. However, we compute
a more realistic threshold by using the secondary (validation) set. See Figure 3 for a visual
representation of the SigPrimedNet’s prediction mechanism.

See Tables 2 and 3 for a summary of the design choices and the training and inference
times, respectively.

Table 2. Hyperparameter values.

Dataset Hyperparameter Hyperparameter Value

PBMC epochs 100
batch_size 10

Immune kernel_initializer glorot_uniform + sig-informed
bias_initializer zeros

Melanoma activation relu (hidden layers)/softmax (last layer)
optimizer Adam
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Table 3. Execution times.

DESIGN
Dataset Experiment 1-Layer 2-Layer

PBMC RepeatedStratifiedKFold
(10 k-fold with 50 iterations)

mean, 3.20 min
std, 0.77 min
total execution time is 13.28 h

mean, 3.26 min
std, 0.87 min
total execution time is 13.52 h

Immune

RepeatedStratifiedKFold
(10 k-fold with 30 iterations)

mean, 2.82 min
std, 0.69 min
total execution time is 14.07 h

mean, 4.31 min
std, 1.30 min
total execution time is 21.48 h

train_test_split
(50% test size with
100 iterations)

mean, 1.94 min
std, 0.92 min
total execution time is 3.2 h

mean, 1.79 min
std, 0.51 min
total execution time is 2.95 h

Melanoma training with reference dataset
(one iteration) total execution time is 1.96 min total execution time is 3.7 min

Model training 
as supervised 

approach 

a. Pretrained model

detach output layer

b. Getting encoding information from biological layer

learning

...

0.704

0.973

0.491

0.769

0.571

0.679

0.063

0.106

...

0.412

0.431

0.535

0.581

0.887

...

0.072

0.105

0.771

0.324

0.383

...

0.614

0.691

0.386

0.567

0.708

learning #2 learning #4learning #3learning #1 learning #l

. . .

validation

...

0.959

0.431

0.535

0.581

...

0.007

0.105

0.771

0.324

...

0.056

0.691

0.386

0.567

valid. #2 valid. #4valid. #3valid. #1 valid. #v

. . .

0.892

0.416

0.931

0.684

...

0.092

0.491

0.769

0.973

testing

0.642

0.973

0.491

0.769

0.399

0.787

0.481

0.146

0.986

0.431

0.535

0.581

0.138

0.105

0.771

0.324

0.949

0.691

0.386

0.567

testing #2 testing #4testing #3testing #1 testing #t

. . .

encoding

Labeling samples (pink) as unassigned 
according to similarity score

c. (LOF) Similarity score computation

...

...

...

Model training 
as supervised 

approach 

LOF fit LOF threshold

fitting LOF and 
calculating threshold 

d.   SigPrimedNet label prediction

Applying the learned cell-type mapping 
function for the remaining samples

??

c1 c2 d1 d2

Figure 3. SigPrimedNet’s prediction mechanism (in two dimensions to simplify). Given the fitted
NN (a), we detach the output layer and compute the encodings of the learning, validation and test
sets (b), Then, in (c1) we fit a LOF to model the training encodings, (c2) predict the similarity scores of
the learning and validation encodings to compute a more realistic threshold. Finally, (d1) a sample is
labeled as unassigned if its similarity score is bellow the threshold, if not (d2) we apply the cell-type
mapping learned by the NN.

2.7. Functional Proxies and Representation Learning

Once the model has been fitted to a collection of annotated cells, we extract the features
learned by the ANN, also known as representation learning [34], by detaching the last
layer and computing the activations of the encoding layer. As the model has learned to
map the gene profiles to the cell types, the encoding layer captures a lower-dimensional
representation of the data necessary for the mapping. Note that, if the activations are
computed for the signaling-informed layer we obtain a functional representation of the
data as the nodes act as a proxy for the effector circuits. For visualization purposes, we can
map the encodings to a 2D space by using TSNE (See Supplementary material).

3. Results and Discussion

We provide here a series of validation procedures to test the performance of Sig-
PrimeNet under different scenarios: a synthetically balanced data set based on PBMC
where all cell types are known, a synthetic collection of unbalanced data sets made by
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undersampling each of the cell types that appear in PBMC, a real-world unbalanced data set
(Immune) where the cell types are known and a data set (Melanoma) built for benchmark
unknown cell-type identification methods. In the Supplementary material, we also provide
results for a two-layer version of SigPrimedNet (adding a second dense hidden layer), and
a set of experiments designed to showcase the supervised performance of SigPrimedNet
with the aim of making it easier to compare it to other methods that lack the ability to
identify unknown cell types.

3.1. Model Performance When All Cell Types Are Known
3.1.1. Synthetically Balanced PBMC

We tested the performance of our method employing 50 times repeated stratified by
cell type 10-fold cross-validation schema using the balanced PBMC dataset (see Materi-
als). The confusion matrix aggregated across the test folds shows that SigPrimedNet has
a high ability to distinguish between cell types, as can be seen in Figure 4. In general,
SigPrimedNet exhibits excellent performance across all the cell types with a slight decrease
when dealing with those that are very closely related, such as Memory and Regulatory T
cells. It should be noted that these results are similar to those obtained by Scibet and better
than those obtained by Seurat and Scmap in a similar experiment shown in [15] since our
approach reduces the misclassification of cytotoxic T cells.

CD14 CD19 CD34 CD56 Cyt Memory Treg unassigned
PREDICTION

Treg

Memory

Cyt

CD56

CD34

CD19

CD14

GR
OU

ND
 T

RU
TH

0.001 0.001 0.000 0.000 0.009 0.048 0.935 0.005
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Figure 4. PBMC aggregated cross-validation confusion matrix. The unassigned label refers to cells
that the model could not assign a known cell type.

3.1.2. Synthetically Unbalanced PBMC

To check the model performance in unbalanced scenarios, while still holding some
control over the cell populations, we have randomly undersampled one cell type at a time
in the PBMC dataset for different undersampling ratios (0.2, 0.4, 0.6). Then, we evaluated
the performance of SigPrimedNet using a 10-fold cross-validation schema for each of the
simulated datasets.

Figure 5 shows the aggregated cross-validation matrix for each synthetic dataset. As
expected, underpopulated cell types lead to a decrease in the predictive power with respect
to the minority class for those cell types that were hard to classify originally (Treg, Memory),
while the performance of cytotoxic T cells is severely hampered when undersampling their
population, similar to the experiments conducted with the balanced PBMC dataset in [15].
However, the performance of the model over the other known types remains at levels
equivalent to those obtained when evaluating SigPrimedNet in the balanced scenario. In
addition, the rate of cells incorrectly labeled as unassigned remains in the same range as in
the balanced simulation.
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Figure 5. Summarized confusion matrices for the different unbalanced simulations using the PBMC
dataset. The rows represent the cell type being undersampled, while the columns are the fraction of
cells kept for each cell type.

3.1.3. Real-World Unbalanced Scenario

To check the performance of our model in a class-imbalanced scenario we performed
30 times cell-type stratified repeated 10-fold cross-validation using the Inmune dataset.
Despite the added difficulty due to the disproportion between the classes, a ratio of 7.72 be-
tween the highest (HSPCs) and lowest (T cells) populated cell types, our method could still
provide a high discriminating power as can be observed in the aggregated confusion matrix
depicted in Figure 6. Most misclassifications are cells incorrectly labeled as HSPCs, which
could be explained in machine learning terms, as a bias towards the majority class (HSPCs),
or in biological terms, since HSPCs are very heterogeneous with transcriptomic profiles
that match other cell types patterns [35,36]. Furthermore, the proportion of incorrectly
labeled cells remains low as shown in the PBMC experiments.
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Figure 6. The aggregated cross-validation confusion matrix of the Immune dataset. The cell types b,
e, mo, n, nk, sp, and t refer to B cells, erythrocytes, monocytes, neutrophils, NK cells, CD34+ HSPCs,
and T cells, respectively. The unassigned label refers to cells that the model that could not correctly
assign a known cell type.

3.1.4. Design Comparison

The expressive power of the informed layer is evident when comparing the results
of the two designs tested in this paper: the model’s performance is not noticeably im-
proved by adding more capacity to the network by including a dense layer. Thus, the
signaling-informed layer is capable of constructing, by itself, the necessary meta-features
to differentiate cell types from the point of view of cell signaling. This can be deducted by
inspecting Figure 7: the recall and the proportion of cells with an assigned label are higher
in the one-layer design, while the precision is similar for both designs. Note that we have
used the weighted version of precision and recall to account for the label imbalance. See
Supplementary Material for the complete set of results for the two-layer design.

1_layer 2_layer

0.93

0.94

0.95

0.96

0.97

0.98

0.99

sc
or

e

experiment name
u_CD14_0.2
u_CD14_0.4
u_CD14_0.6
u_CD19_0.2

u_CD19_0.4
u_CD19_0.6
u_CD34_0.2
u_CD34_0.4

u_CD34_0.6
u_CD56_0.2
u_CD56_0.4
u_CD56_0.6

u_Cyt_0.2
u_Cyt_0.4
u_Cyt_0.6
u_Memory_0.2

u_Memory_0.4
u_Memory_0.6
u_Treg_0.2
u_Treg_0.4

u_Treg_0.6
immune
pbmc

metric
assigned_ratio precision recall

Figure 7. The colors represent the datasets used for testing the performance. In the legend “immune”
refers to the Immune experiment, “pmbc” to the balanced PBMC experiment, and u_cell-type_ratio
refers to the undersampled version of the PBMC where the “ratio” indicates the proportion of cells of
sampled cells a given “cell-type”. Triangles and dots represent the mean across the test sets of the
weighted precision and recall scores, respectively, while the crosses resent the mean of the proportion
of cells assigned a cell type (since all cells are known, the higher the better).

3.2. Unknown Cell-Type Identification
Novelty Detection in the Melanoma Dataset

Due to the incomplete nature of the reference scRNA-seq data, cell types not present
in the reference dataset may be falsely predicted as those used during the model training.
To analyze our approach to this issue, we used the Melanoma dataset with immune
cells as positive cells and the other cells as negative cells. Figure 8 depicts the confusion
matrix for the case study of false-positive control, with normalization for each row (origin
label): the task consists in annotating the negative cells as unassigned while assigning
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the corresponding label to the other cells. Note that negative cells including malignant
cells, CAF cells, and endothelial cells were removed from the training set. Query cells
identified as anomalies by SigPrimedNet were labeled as unassigned. The results show
that our method consistently outperforms Scibet for all the known labels (except NK)
while maintaining a similar false-positive ratio. As mentioned in the Datasets section, this
experiment was designed for this specific task in [15], and we have been able to reproduce
it with both models: Scibet and SigPrimedNet. This NK deficit could be easily understood
as it is something shared across all the experiments conducted: very low-populated cell
types are harder to classify.
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Figure 8. The confusion matrix of the melanoma dataset for the unknown cell-type identification
task. SigPrimedNet (top) and Scibet (bottom).

The Melanoma dataset was used in our previous study with a limited pathway-driven
neural network (PDNN) [21], which only works for supervised tasks. The performance
is similar between PDNN and SigPrimedNet with balanced accuracy scores of 0.844 and
0.8837 for the test split, respectively (see Table 4 for a more comprehensive comparison).
Note that the results are not fully comparable since the dataset was filtered in [21] by
removing all the negative cells in order to be able to use the PDNN (which results in a more
favorable scenario for supervised models, like PDNN). Note that if the PDNN is used when
unknown cells are present, it would label all the unknown cells with one of the known
labels (a critical limitation), which can be assessed by looking at the PDNN (*) entry in
Table 4 where we have run the PDNN model on the full dataset. This is not the case for
SigPrimedNet, where unknown cell types are properly labeled as “unassigned”.

Figure 9 shows the distribution of similarity scores. The graph shows the similarity
scores computed by fitting the ANN to the learning set (70% of the reference), then we fit
a LOF model using their encodings as features, and finally, a threshold is learned to use the
similarity scores of the remaining 30% validation (blue colored). When assigning labels to
the test (query unseen cells), the first step is computing the ANN encodings followed by the
LOF scores (ocher colored): those scores below the threshold are labeled as unassigned, and
the remaining cells are assigned the cell type using the mapping learned by SigPrimedNet.
Supplementary material shows an analogous result for the two-layer architecture, although
the performance is worse than the one-layer interpretable design used here.
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Table 4. Comparison between SigPrimedNet (one-layer (1L) and two-layer (2L) designs) and the best
PDNN design on the Melanoma test split.

MACRO WEIGHTED
Design F1 Precision Recall F1 Precision Recall Accuracy Balanced Accuracy
SigPrimedNet (1L) 0.838 0.823 0.884 0.926 0.945 0.919 0.919 0.884
SigPrimedNet (2L) 0.743 0.785 0.796 0.878 0.927 0.846 0.846 0.796
PDNN 0.861 0.922 0.844 0.933 0.938 0.936 0.936 0.844
PDNN (*) 0.499 0.454 0.753 0.241 0.224 0.326 0.326 0.753
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Figure 9. Similarity score distribution for each cell type on the validation and test splits Melanoma
dataset). The horizontal line shows the threshold obtained using the reference set inner splits as
detailed in Section 2.6.

3.3. SigPrimedNet Provides Biologically Interpretable Results

To illustrate the potential of our approach in producing biologically interpretable
results, we have selected, for each cell type, the ten highest-weighted nodes (Table A2) from
the signaling-informed layer, each representing a circuit from KEGG (Table A1).

For example, circuit Hedgehog signaling pathway (hsa04340): GLI SUFU is known to
be involved in the control of hematopoietic differentiation [37], and it is present in the rank
for HSPCs, NKs, erythrocytes, and B cells. The GO annotations for this circuit include cell
differentiation and cell proliferation.

Another example is circuit Hippo signaling pathway (hsa04390): SERPINE1, which is
present in ranks for B cells, NKs and HSPCs. Ref. [38] describe the role of SERPINE1 in the
regulation of immune-related biological processes in glioma, relating high expression of
SERPINE1 to gene expression patterns enriched in immune-related signaling pathways
such as B cell receptor signaling pathway, Natural Killer cell mediated cytotoxicity, primary
immunodeficiency, and T cell receptor signaling pathway, among others. Additionally,
ref. [39] describe a mechanism by which PAI-1 (SERPINE1) regulates the localization
of HSPCs between the bone marrow or its migration to other tissues. HSPCs also list
circuits regulating cell survival and cell adhesion, relevant for their proliferative activity as
hematopoietic cell precursors.

We also find that the circuit Calcium signaling pathway (hsa04020): Sphingosine 1-
phosphate is active for monocytes and neutrophils. Ref. [40] provide evidence for the need
for SphK2 kinase in processes of intracellular catalytic lipid degradation, which should be
necessary for the phagocytic activity of monocytes and neutrophils.

Neutrophils also list circuits related to secretion and cellular mobility. Interestingly,
among the neutrophils rank we find a circuit from the Melanogenesis pathway (hsa04916):
DCT, that is implied in tyrosine metabolism. Neutrophils release several types of amino
acids upon adhesion and spreading onto fibronectin, a process especially relevant in tissues
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undergoing healing and regeneration processes [41]. This connects to the already described
link of neutrophilic activity to inflammation-related skin pigmentation [42].

The rank for Erythrocytes’ top 10 includes circuits related to the regulation of the loca-
tion of precursor cells during hematopoiesis, regulation of apoptosis, and transendothelial
migration. It also includes circuits that could regulate erythrocyte micromechanical proper-
ties and fluidity, which are necessary to adapt the size and viscosity enabling circulation
through thin terminal capillaries [43].

The top-ranked circuits for T cells include the circuit Cell cycle: TFDP1 E2F4, which
regulates a circuit regulating the entry of cells in the S-phase of the cell cycle. Although T cell
selection occurs in the thymus, there is evidence that they undergo further differentiation
in peripheral tissues [44].

4. Conclusions

SigPrimedNet is a highly efficient neural network for cell-type annotation in single-cell
transcriptomics, one of the main challenges arising from a field with exponential growth,
while providing useful biological features. The tool has been successfully tested on three
tasks, namely: supervised cell type classification, unknown cell type annotation, and
representation learning usefulness. To that effect, different publicly available benchmarks
on multiple datasets have been carried out, with an outstanding known cell-type annotation
performance while keeping a low false-positive rate for cell types unknown to the model.
The ability to successfully identify cells of unknown origin lies in the high expressiveness
of the features learned by the neural network, which are successfully used to train an
unsupervised secondary model that detects anomalous cell types. These features are proxies
for the signaling circuits used to inform the layers of the model, which have a regularization
benefit due to weight sparsification and present a meaningful set of biological functions.
The model has very low latency when annotating new cells and provides rich and useful
interpretable features.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
biology12040579/s1, Figure S1: 2D TSNE visualization of the features learned by SigPrimedNet for
a test split of the Immune dataset. The cell types b, e, mo, n, nk, sp, and t refer to B cells, erythrocytes,
monocytes, neutrophils, NK cells, CD34+ HSPCs, and T cells, respectively; Figure S2: SigPrimedNet
with two-layer design; Figure S3: The confusion matrix of the Melanoma dataset for the unknown
cell-type identification tas; Figure S4: Similarity score distribution for each cell type on the validation
and test splits using the two-layer architecture (Melanoma dataset). The horizontal line shows the
threshold obtained using the reference set inner splits as detailed in the Methods section of the main
manuscript; Figure S5: The confusion matrix of the Immune dataset using SigPrimedNet with 2 layers;
Figure S6: The confusion matrix of the PBMC balanced dataset using SigPrimedNet with 2 layers;
Figure S7: The confusion matrix of the PBMC unbalanced dataset using SigPrimedNet with 2 layers;
Figure S8: PBMC experiment aggregated cross-validation confusion matrix for SigPrimedNet (1-layer
design); Figure S9: PBMC experiment aggregated cross-validation confusion matrix for SigPrimedNet
(2-layer design); Figure S10: Performance of SigPrimedNet (1 and 2 layer designs) for the PBMC
experiment: F1, Precision and Recall score distribution across the test sets of 50 times repeated
10-fold cross-validation; Figure S11: Performance of SigPrimedNet (1 and 2 layer designs) for the
PBMC experiment: F1, Precision and Recall score distribution across each cell type of the test set
of 50 times repeated 10-fold cross-validation; Figure S12: The aggregated confusion matrix of the
Immune dataset (1-layer design for the reduced model); Figure S13: The aggregated confusion matrix
of the Immune dataset (2-layer design for the reduced model); Figure S14: SigPrimedNet overall
performance for Immune datase; Figure S15: SigPrimedNet performance desegregated for each cell
type for Immune dataset; Table S1: Cell type, number of samples detail, and percentage of samples
above or below the encoding-based threshold of Melanoma dataset during the testing phase. Note
that Neg. cells including malignant cells, CAF cells, and endothelial cells were removed from the
training set (see Materials).
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UMAP Uniform Manifold Approximation and Projection
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WEIGHTED Support-weighted average across cell types for any given classification metric

Appendix A

In this appendix, we provide several tables that are useful to understand the model’s
prior knowledge and the most biologically relevant results.
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Table A1. List of pathways used as the sources for the circuit decomposition to encode the prior
knowledge of SigPrimedNet.

KeggID Pathway Name KeggID Pathway Name KeggID Pathway Name

hsa03320 PPAR signaling pathway hsa04370 VEGF signaling pathway hsa04727 GABAergic synapse
hsa04010 MAPK signaling pathway hsa04380 Osteoclast differentiation hsa04728 Dopaminergic synapse
hsa04012 ErbB signaling pathway hsa04390 Hippo signaling pathway hsa04740 Olfactory transduction
hsa04014 Ras signaling pathway hsa04510 Focal adhesion hsa04742 Taste transduction

hsa04015 Rap1 signaling pathway hsa04520 Adherens junction hsa04750 Inflammatory mediator
regulation of TRP channels

hsa04020 Calcium signaling pathway hsa04530 Tight junction hsa04810 Regulation of actin cytoskeleton
hsa04022 cGMP-PKG signaling pathway hsa04540 Gap junction hsa04910 Insulin signaling pathway

hsa04024 cAMP signaling pathway hsa04550 Signaling pathways regulating
pluripotency of stem cells hsa04911 Insulin secretion

hsa04062 Chemokine signaling pathway hsa04610 Complement and coagulation
cascades hsa04912 GnRH signaling pathway

hsa04064 NF-kappa B signaling pathway hsa04611 Platelet activation hsa04913 Ovarian steroidogenesis

hsa04066 HIF-1 signaling pathway hsa04612 Antigen processing and
presentation hsa04914 Progesterone-mediated oocyte

maturation

hsa04068 FoxO signaling pathway hsa04620 Toll-like receptor signaling
pathway hsa04915 Estrogen signaling pathway

hsa04071 Sphingolipid signaling pathway hsa04621 NOD-like receptor signaling
pathway hsa04916 Melanogenesis

hsa04072 Phospholipase D signaling
pathway hsa04622 RIG-I-like receptor signaling

pathway hsa04917 Prolactin signaling pathway

hsa04110 Cell cycle hsa04623 Cytosolic DNA-sensing pathway hsa04918 Thyroid hormone synthesis

hsa04114 Oocyte meiosis hsa04630 Jak-STAT signaling pathway hsa04919 Thyroid hormone signaling
pathway

hsa04115 p53 signaling pathway hsa04650 Natural killer cell mediated
cytotoxicity hsa04920 Adipocytokine signaling pathway

hsa04150 mTOR signaling pathway hsa04660 T cell receptor signaling pathway hsa04921 Oxytocin signaling pathway
hsa04151 PI3K-Akt signaling pathway hsa04662 B cell receptor signaling pathway hsa04922 Glucagon signaling pathway

hsa04152 AMPK signaling pathway hsa04664 Fc epsilon RI signaling pathway hsa04923 Regulation of lipolysis in
adipocytes

hsa04210 Apoptosis hsa04666 Fc gamma R-mediated
phagocytosis hsa04924 Renin secretion

hsa04211 Longevity regulating pathway -
mammal hsa04668 TNF signaling pathway hsa04925 Aldosterone synthesis and

secretion

hsa04213 Longevity regulating pathway -
multiple species hsa04670 Leukocyte transendothelial

migration hsa04960 Aldosterone-regulated sodium
reabsorption

hsa04218 Cellular senescence hsa04710 Circadian rhythm hsa04961
Endocrine and other

factor-regulated calcium
reabsorption

hsa04261 Adrenergic signaling in
cardiomyocytes hsa04713 Circadian entrainment hsa04962 Vasopressin-regulated water

reabsorption

hsa04270 Vascular smooth muscle
contraction hsa04720 Long-term potentiation hsa04970 Salivary secretion

hsa04310 Wnt signaling pathway hsa04722 Neurotrophin signaling pathway hsa04971 Gastric acid secretion

hsa04330 Notch signaling pathway hsa04723 Retrograde endocannabinoid
signaling hsa04972 Pancreatic secretion

hsa04340 Hedgehog signaling pathway hsa04724 Glutamatergic synapse hsa04973 Carbohydrate digestion and
absorption

hsa04350 TGF-beta signaling pathway hsa04725 Cholinergic synapse hsa04976 Bile secretion

hsa04360 Axon guidance hsa04726 Serotonergic synapse hsa05100 Bacterial invasion of epithelial
cells
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Table A2. List of the most relevant signaling circuits (defined as pathway:effector protein) for each
cell type in the Immune dataset.

CT KeggID Circuit Name CT KeggID Circuit Name

B
ce

lls

hsa03320 PPAR signaling pathway: DBI

N
K

s

hsa04115 p53 signaling pathway: TP73
hsa04670 Leukocyte transendothelial migration: CDH5 hsa04151 PI3K-Akt signaling pathway: EIF4B
hsa04666 Fc gamma R-mediated phagocytosis: PLA2G4B hsa04390 Hippo signaling pathway: SERPINE1
hsa04115 p53 signaling pathway: CD82 hsa04152 AMPK signaling pathway: CCNA2
hsa04340 Hedgehog signaling pathway: GLI1 SUFU hsa04151 PI3K-Akt signaling pathway: CDKN1B
hsa04390 Hippo signaling pathway: SERPINE1 hsa04520 Adherens junction: LEF1 CTNNB1
hsa04064 NF-kappa B signaling pathway: PLCG2 hsa04210 Apoptosis: BID
hsa04724 Glutamatergic synapse: ADRBK1 hsa04064 NF-kappa B signaling pathway: PLCG2
hsa04115 p53 signaling pathway: TP73 hsa04340 Hedgehog signaling pathway: GLI1 SUFU
hsa04620 Toll-like receptor signaling pathway: CCL5 hsa04620 Toll-like receptor signaling pathway: CCL5

Er
yt

hr
oc

yt
es

hsa04724 Glutamatergic synapse: MAPK1

H
SP

C
s

hsa04340 Hedgehog signaling pathway: GLI1 SUFU
hsa05100 Bacterial invasion of epithelial cells: ACTB hsa04390 Hippo signaling pathway: SERPINE1
hsa04115 p53 signaling pathway: CD82 hsa04724 Glutamatergic synapse: ADRBK1
hsa04340 Hedgehog signaling pathway: GLI1 SUFU hsa04151 PI3K-Akt signaling pathway: EIF4B
hsa03320 PPAR signaling pathway: FADS2 hsa04919 Thyroid hormone signaling pathway: SLC9A1

hsa04110 Cell cycle: ORC3 ORC5 ORC4 ORC2 ORC1 ORC6
MCM7 MCM6 MCM5 MCM4 MCM3 MCM2 hsa04520 Adherens junction: LEF1 CTNNB1

hsa04670 Leukocyte transendothelial migration: ACTB CTNNA1
CTNNB1 hsa04210 Apoptosis: BID

hsa04810 Regulation of actin cytoskeleton: MYL12B MYH9
ACTB hsa04740 Olfactory transduction: PDE2A

hsa04014 Ras signaling pathway: PLCE1 hsa04064 NF-kappa B signaling pathway: TNFSF13B
hsa03320 PPAR signaling pathway: DBI hsa04014 Ras signaling pathway: PAK4

M
on

oc
yt

es

hsa04110 Cell cycle: CDC6 ORC3 ORC5 ORC4 ORC2 ORC1
ORC6

T
ce

lls

hsa04110 Cell cycle: CDC6 ORC3 ORC5 ORC4 ORC2 ORC1
ORC6

hsa04740 Olfactory transduction: PDE2A hsa04919 Thyroid hormone signaling pathway: THRA
Triiodothyronine

hsa04022 cGMP-PKG signaling pathway: ITPR1 hsa04724 Glutamatergic synapse: MAPK1
hsa04670 Leukocyte transendothelial migration: CDH5 hsa04713 Circadian entrainment: PRKCA
hsa04914 Progesterone-mediated oocyte maturation: CDK1 hsa04666 Fc gamma R-mediated phagocytosis: ARF6
hsa04210 Apoptosis: BCL2L1 hsa04014 Ras signaling pathway: PLCE1
hsa05100 Bacterial invasion of epithelial cells: ACTB hsa04650 Natural killer cell mediated cytotoxicity: TNFRSF10D
hsa04915 Estrogen signaling pathway: ESR1 Estradiol-17beta hsa04024 cAMP signaling pathway: LIPE
hsa04668 TNF signaling pathway: DNM1L hsa04110 Cell cycle: TFDP1 E2F4
hsa04020 Calcium signaling pathway: Sphingosine 1-phosphate hsa04919 Thyroid hormone signaling pathway: SLC9A1

N
eu

tr
op

hy
ls hsa04668 TNF signaling pathway: DNM1L hsa04919 Thyroid hormone signaling pathway: NOTCH1

hsa04915 Estrogen signaling pathway: ESR1 Estradiol-17beta hsa04020 Calcium signaling pathway: Sphingosine 1-phosphate
hsa04916 Melanogenesis: DCT hsa04660 T cell receptor signaling pathway: CD40LG
hsa04970 Salivary secretion: KCNN4 hsa04915 Estrogen signaling pathway: CREB3
hsa04014 Ras signaling pathway: RHOA hsa04340 Hedgehog signaling pathway: SMO

Appendix B

In this appendix, we provide the software used to carry out the proposed experiments.
Note that we show only major libraries, the full conda environment specification can
be obtained from the project’s repository (v.1.0.0 refers to the version described in this
work): https://github.com/babelomics/sigprimednet/releases/tag/v1.0.0 (accessed on
9 April 2023).

• Python 3.8
• scikit-learn (v 0.24.1) [45]
• numpy (v 1.19.2) [46]
• scipy (v 1.6.0) [47]
• tensorflow (v 2.2.0) [48]
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