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Abstract

Let Ω denote the domain exterior to the unit sphere S. The (simplified) Backus
problem consists in finding a function u ∈ C1(Ω̄), harmonic on Ω, such that u tends
to zero at infinity and the norm of the gradient of u takes prescribed values on S.
Apart from a change of sign, the solution is not unique in general. However, the
solution is unique in the class of functions with the additional property that the
radial component of the gradient of u on S is nonpositive, such as it is relevant in
Geodesy. If this solution exists, then ±u are the maximal and the minimal solutions
of the problem. In this paper we continue our previous research on this problem, but
this time our purpose is to further a method of successive approximations studied
by F. Sacerdote and F. Sansò (1989) that makes possible to construct the maximal
solution of the Backus problem.
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1 Introduction

Let Ω denote the domain exterior to the unit sphere S. Let H(Ω) be the real space of
functions which are harmonic in Ω and regular at infinity. We use the notation H k(Ω̄) =
H(Ω)∩C k(Ω̄) where k ∈ {0, 1}. For x ∈ Ω̄ we write r = |x| and s = x/|x|. Each function
u ∈ H 0(Ω̄) can be expanded in spherical harmonics

u =
∞∑

n=0

un ,

where
un(x) = r−(n+1)Yn(s) ,

and, with 〈 , 〉 denoting the scalar product,

Yn(s) =
2n + 1

4π

∫

S

u(s′)Pn(〈s,s′〉) ds′ .

Here Pn is the Legendre polynomial of degree n. Since P0 = 1, then

Y0 = (4π)−1

∫

S

u(s) ds .

Let C+(S) be the set of nonnegative continuous functions on S. We define the map
G : H 1(Ω̄) → C+(S) by

G(u)(x) = |∇u(x)| , x ∈ S,

where ∇u is the gradient of u. For a given g ∈ C+(S), the Backus problem consists in
solving the equation G(u) = g (see [1]):





∆u = 0 in Ω,

|∇u| = g on S,

u(x) → 0 as x →∞.

(1.1)

Apart from a change of sign (G(−u) = G(u)), the solution of this boundary problem is
not unique in general [2]. However, the solution is unique if u is subject to the condition
u′ ≤ 0, where u′ is the radial component of ∇u on the unit sphere. Let K = {u ∈ H 1(Ω̄) :
u′ ≤ 0} and let u ∈ K satisfy G(u) = g. Then, | u∗| < u for any other solution u∗ 6= −u
of the equation G(u∗) = g. In other words, −u and u are the minimal and the maximal
solutions of the Backus problem. For g = 1 the maximal solution is u = 1/r. We note
that if u ∈ K \ {0}, then u is a non-constant positive function (u > 0) in Ω̄. For these
results we refer to [5].

The Backus problem has application in geodesy and geomagnetism. Many geodesists
have contributed to the study of the Backus problem: e.g. Koch and Pope [9], Bjerhammar
and Svensson [3], Grafarend [6], Heck [7] , Sacerdote and Sansò [11], Holota [8], Čunderĺık
et al. [4] ... The major achievements are local solvability results and a deep knowledge of
the linearized problem. In geodesy g is the length of the gravity vector. Since the earth’s
gravity points toward the interior, the restriction u ∈ K is natural. The solution must
be of the form

u =
c

r
+

∞∑
n=1

un ,
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where c = (4π)−1
∫

S
u(s) ds > 0 is a positive constant. Instead, in geomagnetism the

solution must satisfy c = 0: ∫

S

u(s) ds = 0 .

Hence u′ changes its sign on S. As an example, Fig. 1 displays the field of a magnetic
dipole. It is observed that:

1. ∇u is tangential to the unit sphere along the equator E.

2. ∇u|E is orthogonal to E.

3. u′ changes its sign on S through E from plus to minus in the direction of the vector
field ∇u|E.

Fig. 2 shows the inclination of the Earth magnetic field. In geomagnetism, the magnetic
inclination is defined as the angle measured from the horizontal plane to the magnetic
field vector where downward is positive. It is clearly seen that ∇u is tangential to the
earth’s surface along a closed curve called the dip equator.
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Magnetic Dipole Field

Figure 1. Magnetic dipole field using the matlab function lforce2d by A. Abokhodair:
http://www.mathworks.com/matlabcentral/fileexchange.

In this paper we propose an algorithm to construct the maximal solution of the Backus
problem and hence the kind of solution of geodetic interest. This construction is motivated
by [11]. No attempt has been made here to study the convergence of this algorithm.
However we illustrate our approach with a numerical example. Specifically, we find the
maximal solution of the Backus problem (1.1) where g is the norm of the gradient of
u∗ = z/r3. This can be considered as an explicit example of the non-uniqueness of
solutions of the Backus problem complementing the results in [2].
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Figure 2. Inclination of the Earth magnetic field (epoch 2005) from the USA National
Geophysical Data Center (NGDC): http://www.ngdc.noaa.gov/geomag/data.shtml

2 Algorithm for constructing the maximal solution

Here G denotes the map G : H 1(Ω̄) → C+(S) defined by

G(u)(x) = |∇u(x)|2 , x ∈ S.

Let u ∈ K satisfy G(u) = f , where f = g2. Since u > 0, there exists an unknown positive
constant µ such that

µ1/2 u =
1

r
+ v , (2.1)

where v ∈ H 1(Ω̄) has not spherical harmonic of degree zero,

v =
∞∑

n=1

(1

r

)n+1

vn .

This is equivalent to the property
∫

S

v ds = 0 . (2.2)

In addition, u′ ≤ 0 if and only if v′ ≤ 1.
Since G(µ1/2 u) = µf , by (2.1) it is easily seen that the function v in (2.1) satisfies

the boundary condition
2v′ = 1 + G(v)− µf . (2.3)

By Green’s second identity we have
∫

S

(v′ + v) ds = 0 .

Consequently, v satisfies (2.2) if and only if
∫

S

v′ ds = 0 .
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From (2.3) we obtain

µ = f−1
0

[
1 +

1

4π

∫

S

G(v) ds
]
, (2.4)

where

f0 =
1

4π

∫

S

f ds > 0

is the spherical harmonic of degree zero of the function f .
According to (2.3) and (2.4), to solve the equation GK(u) = f , where GK denotes the

restriction of G to K, we define the following sequence {vn, µn} ∈ H 1(Ω̄)× R+:

First approximation:

µ1 = f−1
0 (2.5)

v1 ∈ H 1(Ω̄) : 2v′1 = 1− µ1f on S.

Successive approximations (n ≥ 1):

µn+1 = µ1

[
1 +

1

4π

∫

S

G(vn) ds
]

(2.6)

vn+1 ∈ H 1(Ω̄) : 2v′n+1 = 1 + G(vn)− µn+1f on S.

Observe that each vn satisfies ∫

S

vn ds = 0 .

Let w1 ∈ H 1(Ω̄) be the solution of the exterior Neumann problem

∆w1 = 0 in Ω, w1(x) → 0 as x →∞, w′
1 = f/2 on S, (2.7)

and let wn+1 ∈ H 1(Ω̄) (n ≥ 1) be the solution of the exterior Neumann problem

∆wn+1 = 0 in Ω, wn+1(x) → 0 as x →∞, w′
n+1 = G(vn)/2 on S. (2.8)

Then, we have

v1 = − 1

2r
− µ1w1, (2.9)

vn+1 = − 1

2r
+ wn+1 − µn+1w1 (2.10)

= v1 − αnw1 + wn+1 ,

where

αn = f−1
0 [G(vn)]0 , [G(vn)]0 =

1

4π

∫

S

G(vn) ds .

Finally, by (2.1), the successive approximations to construct the maximal solution of the
Backus problem are

u1 = µ
−1/2
1 (r−1 + v1) ,

un+1 = µ
−1/2
n+1 (r−1 + vn+1) (n ≥ 1) .
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Remark. Fix µ > 0. In [11] the successive approximations {vn}n≥0 ⊂ H 1(Ω̄) satisfy the
boundary conditions

2v′n+1 = G(vn) + (1− µf) , (2.11)

where, for example, v0 = 0. It is clear that vn = vn(µ) (n ≥ 1). Here, the constant µ is
to be chosen later to guarantee the convergence of this sequence.

Let us assume the following estimate for functions u ∈ H 1(Ω̄) with the property that
u′ ∈ Cα(S) for some α ∈ (0, 1):

‖ |∇tu| ‖α,S ≤ C‖u′‖α,S (2.12)

where C > 0 is a constant and ∇tu the tangential component of ∇u on the unit sphere
S. If f ∈ Cα(S), from (2.11) and (2.12) we have

2‖v′n+1‖α ≤ (1 + C2)‖v′n‖2
α + ‖1− µf‖α .

From this inequality, Sacerdote and Sansò [11] prove the following.

Theorem 1. Let k(µ) =
(
1+C2

)‖1−µf‖α. If there exists µ0 such that k(µ0) ≤ 1, then

‖v′n(µ0)‖α ≤ (1 + C2)−1
[
1−

√
1− k(µ0)

]
< 1

for all n ≥ 0. If k(µ0) < 1, then the sequence {v′n(µ0)} ⊂ Cα(S) is convergent. 2

Unfortunately, the convergence condition

∃µ : ϕ(µ) := ‖1− µf‖α < (1 + C2)−1 ?

is somewhat restrictive. To see this, we can assume that ‖f‖α = 1, for if not, we

replace the equation GK(u) = f by GK(‖f‖−1/2
α u) = f/‖f‖α. Let M = maxS f ≤ 1,

m = minS f and a = M + m ∈ (0, 2]. Since the α-Hölder quotient [f ]α,S is equal to
1−M , a computation shows that

ϕ(µ) =

{
1 + (1− a)µ if µ ≤ 2/a,

µ− 1 if µ ≥ 2/a.

We distinguish two cases.

(a) If a ≤ 1, then ϕ(µ) is increasing and its minimum value is equal to 1. Therefore

k(µ) =
(
1 + C2

)
ϕ(µ) ≥ 1 + C2 > 1 ,

for all µ, and the convergence condition fails.

(b) If a > 1, then

min
µ>0

ϕ(µ) = ϕ(2/a) =
2

a
− 1 < 1 .

Hence

k(µ) < 1 ⇔ ϕ(µ) <
1

1 + C2

⇒ 2

a
− 1 <

1

1 + C2

⇔ M + m > 1 +
C2

2 + C2
:= b .

6



Conversely, if
M + m > b , (2.13)

then k(µ) < 1 if and only if

µ ∈ [
2(a− 1)−1(1− b−1), 2b−1

]
.

Since m ≤ M ≤ 1, from (2.13) we have M ∈ (
b/2, 1

]
. For each of these admissible values

of M , m must be in the interval
(
b−M,M

]
. Therefore, given M ∈ (

b/2, 1
]

the maximum
value of the oscillation M −m of the function f is equal to δ(M) := 2M − b.

Example. If C = 2 in (2.12), then the convergence condition is satisfied if and only if
M + m > 5/3 ≈ 1.67. Thus 1 ≥ M > 5/6 ≈ 0.83. Figure 3 displays the maximum
values of the oscillation δ(M) of the function f for this case. For example, if M = 0.9
the oscillation of the function f can be at most equal to 0.13 approximately.

M
0,85 0,90 0,95 1,00

0,0

0,1

0,2

0,3

Maximum oscillation: C=2

Figure 3. Function δ(M) = 2M − b(2).

The value of the constant C in the basic inequality (2.12) is not yet completely known.
In [11] the authors estimate the α-Hölder quotient of the gradient in terms of the α-norm
of its radial component on S. To estimate the maximum norm of the modulus of the
tangential gradient we refer to [10]. 2
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3 Numerical example

We now construct the maximal solution of the Backus problem

∆u = 0 in Ω, u(x) → 0 as x →∞, |∇u|2 = 1 + 3 cos2 θ on S, (3.1)

where θ ∈ [0, π] is the colatitude. A solution of this problem is the dipole potential
u∗ = z/r3 where z = r cos θ. This function is not the maximal solution of (3.1) because
∂u∗/∂r |r=1= −2 cos θ changes its sign on S vanishing on the equator θ = π/2.

The successive approximations to the maximal solution of (3.1) are given by

u1 = µ
−1/2
1 (r−1 + v1) , un+1 = µ

−1/2
n+1 (r−1 + vn+1) (n ≥ 1) ,

where (µ1, v1) and (µn+1, vn+1) are defined by (2.5)-(2.9) and (2.6)-(2.10), respectively.
We get

µ1 =
1

2
, v1 =

1

6

P2(cos θ)

r3
.

For n ≥ 2 we have:

1. Sequence µn (n = 2, . . . ,8):

0.541667, 0.540808, 0.542183, 0.541950, 0.542064, 0.542030, 0.542043 .

2. The functions vn (n = 2, . . . , 8) are of the form:

vn =
m∑

k=1

a
(n)
2k

P2k(cos θ)

r2k+1
(m = 2n−1) .

For example, the coefficients of v2 and v3 are




0.1646825397

−0.007142857143




and 


0.1675212043

−0.005902780609

0.0005170141650

−0.000009712509712




,

respectively.

In Figure 4 we show the successive differences u6 − u5, u7 − u6 and u8 − u7 evaluated
on S. It is seen that the maximum norm of u8 − u7 is equal to 5× 10−5 approximately.
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Figure 4. Numerical convergence.

Let fn = |∇un|2. Figure 5 displays the functions |f − f6|, |f − f7| and |f − f8| where
f = 1 + 3 cos2 θ. We have ‖f − f8‖∞ ≈ 2.5× 10−4. In Figure 6 are plotted the functions
u∗ = z/r3, the minimal (−u8) and the maximal (u8) solutions of the problem (3.1) on
the unit sphere. Finally, we draw in Figure 7 the radial components of the gradients of
these three functions on S. It is interesting to observe that (u∗)′ = u′8 < 0 at θ = 0
and (u∗)′ = −u′8 > 0 at θ = π. This is to illustrate a general property of the maximal
solution of the Backus problem, namely (see [5, Theorem 2.4]): let g ∈ C+(S) and let
u ∈ K satisfy G(u) = g. If u∗ 6= −u is other solution of the Backus problem then the
radial component of ∇u∗ changes its sign on S. In particular, there are points x ∈ S and
y ∈ S such that

〈∇u∗(x) ,x〉 = 〈∇u(x) ,x〉 ≤ 0 and 〈∇u∗(y) , y〉 = −〈∇u(y) , y〉 ≥ 0 .
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Figure 5. Absolute error.
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Figure 6. Plot of the functions u8 (-), u∗ = cos θ and −u8 (..).
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Figure 7. Radial derivatives on S of the functions −u8, u∗ and u8.
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