(12) SOLICITUD INTERNACIONAL PUBLICADA EN VIRTUD DEL TRATADO DE COOPERACIÓN EN MATERIA DE PATENTES (PCT)

(19) Organización Mundial de la Propiedad Intelectual
Oficina internacional

(43) Fecha de publicación internacional
20 de Octubre de 2005 (20.10.2005)

(10) Número de Publicación Internacional
WO 2005/097679 A1

(51) Clasificación Internacional de Patentes*: C01B 33/46, C10G 11/02, B01J 21/06, 21/12

(21) Número de la solicitud internacional:
PCT/ES2005/070039

(22) Fecha de presentación internacional:
5 de Abril de 2005 (05.04.2005)

(25) Idioma de presentación: español

(26) Idioma de publicación: español

(30) Datos relativos a la prioridad:
P200400968 7 de Abril de 2004 (07.04.2004) ES

(72) Inventores:

(54) Title: MICROPOUROUS AMORPHOUS MATERIAL, PREPARATION METHOD THEREOF AND USE OF SAME IN THE CATALYTIC CONVERSION OF ORGANIC COMPOUNDS

(54) Título: UN MATERIAL AMORFO MICROPOROSO, PROCEDIMIENTO DE PREPARACIÓN Y SU USO EN LA CONVERSIÓN CATALÍSTICA DE COMPOSTOS ORGÁNICOS

(57) Abstract: The invention relates to a microporous amorphous material which is characterised in that it has a chemical composition in the calcined and anhydrous state which can be represented by empirical formula x (M₄ₓ₋₂/XO₂)ₖ and YOₓ; SiO₂, wherein: x has a value of less than 0.2 and can be equal to zero; y has a value of less than 0.2 and can be equal to zero; M is selected from among H⁺, one or more inorganic cations having a +n charge and a mixture of same; X is one or more chemical elements in oxidation state +3; and Y is one or more elements in oxidation state +4. The inventive material is also characterised in that it has a uniform pore distribution, a micropore volume of greater than or equal to 0.05 cm³·g⁻¹ and a specific surface area of greater than 100 m²·g⁻¹. The invention also relates to the preparation method thereof and use of same.

(57) Resumen: La presente invención se refiere a un material amorfo microporoso caracterizado porque tiene una composición química en el estado calcinado y anhídrido que puede ser representada por la fórmula empírica: x (M₄ₓ₋₂/XO₂)ₖ y YOₓ; SiO₂ donde: x tiene un valor inferior a 0.2; y puede ser igual a cero; y tiene un valor menor de 0.2; M está seleccionado entre H⁺, uno o varios cationes inorgánicos de carga +n; y una mezcla de los mismos, X es uno o varios elementos químicos de estado de oxidación +3, e Y es una o más elementos en estado de oxidación +4, que tiene una distribución uniforme de poro y un volumen de microporos mayor o igual de 0.05 cm³·g⁻¹ y que tiene una superficie específica superior a 100 m²·g⁻¹; a su procedimiento de preparación y a su uso.
Título
UN MATERIAL AMORFO MICROPOROSO, PROCEDIMIENTO DE PREPARACIÓN Y SU USO EN LA CONVERSIÓN CATALÍTICA DE COMPUESTOS ORGÁNICOS

5 Campo de la Técnica
Tamices moleculares microporosos.

Antecedentes
Las zeolitas son materiales cristalinos microporosos formados por una red cristalina de tetraedros T0₆ que comparten todos sus vértices dando lugar a una estructura tridimensional que contiene canales y/o cavidades de dimensiones moleculares. Son de composición variable, y T representa generalmente átomos con estado de oxidación formal +3 o +4, como por ejemplo Si, Ge, Ti, Al, B o Ga, entre otros.

15 La existencia de canales y cavidades de dimensiones regulares en el interior de las zeolitas origina una elevada área específica. El hecho de que el tamaño de poro sea uniforme y con una distribución estrecha, en estos materiales cristalinos, permite adsorber selectivamente moléculas de distinto tamaño en función de las dimensiones de los canales.

20 Por otro lado, la estructura cristalina de cada zeolita, con un sistema de canales y cavidades específico, da lugar a un patrón de difracción de rayos X característico. Por tanto, las zeolitas se diferencian entre sí por su rango de composición química y su patrón de difracción de rayos X. Ambas características (estructura cristalina y composición química) determinan además las propiedades fisicoquímicas de cada zeolita y su posible aplicación en diferentes procesos industriales.
Se han desarrollado materiales micro y mesoporosos amorfos tales como silicatos, silicoaluminatos y silicotitanatos, entre otros, intentando conseguir propiedades de tamiz molecular, es decir, distribuciones de poro muy estrechas. En el caso de los materiales microporosos, cuando existía una distribución estrecha de poros, se ha visto que los materiales no podían considerarse completamente amorfos. De hecho, aunque no poseían orden a larga distancia, de acuerdo con los difractogramas de rayos X, sí poseían orden a corta distancia, tal y como ponía de manifiesto la espectroscopía de infrarrojo (IR), por lo que los autores concluían que su material contenía ya núcleos de un material cristalino, como podía ser una zeolita (Kragten, D. D.; Fedeyko, J. M.; Sawant, K. R.; Rimer, J. D.; Vlachos, D. G.; Lobo, R. F.; Tsapatsis, M. Journal of Physical Chemistry B (2003), 107(37), 10006-10016).

En el caso de los materiales mesoporosos, la síntesis de los tamices moleculares mesoporosos no cristalinos desarrollada por Kresge y colaboradores utilizando surfactantes ha abierto un nuevo campo de aplicaciones en adsorción, catálisis y electrónica (Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature (1992), 359(6397), 710-12).

Cabría pues esperar que el desarrollo de nuevos tamices moleculares microporosos no cristalinos podría abrir nuevas aplicaciones en los campos antes citados cuando se requieran poros menores de 2 nm, e incluso menores de 1 nm.
Descripción de la invención

La presente invención se refiere a un material amorfo microporoso caracterizado porque tiene una composición química en el estado calcinado y anhidro que está representado por la siguiente fórmula empírica:

\[x \cdot (M_{1/n}XO_2) : y \cdot YO_2 : SiO_2 \]

en la que:
- \(x \) posee un valor inferior a 0.2; preferentemente inferior a 0.1, pudiendo ser igual a cero,
- \(y \) tiene un valor menor de 0.2; preferentemente menor de 0.1, pudiendo ser igual a cero,
- \(M \) está seleccionado entre \(H^+ \), uno o varios cationes inorgánicos de carga \(+n \); y una mezcla de los mismos,
- \(X \) es uno o varios elementos químicos de estado de oxidación +3, y
- \(Y \) es uno o más elementos en estado de oxidación +4, que tiene una distribución uniforme de poro y un volumen de microporo mayor o igual de 0.05 cm³.g⁻¹ y que tiene una superficie específica superior a 100 m².g⁻¹.

En el material amorfo microporoso, \(X \) está seleccionado preferentemente entre Al, Ga, B, Fe, Cr y una mezcla de ellos, e \(Y \) está seleccionado preferentemente entre Ti, Ge, Sn, V y una mezcla de ellos.

Según una realización preferida dicho material amorfo microporoso está caracterizado porque tiene una composición química en el estado calcinado y anhidro que puede representarse por la siguiente fórmula empírica:

\[x \cdot (M_{1/n}XO_2) : y \cdot YO_2 : SiO_2 \]

en la que:
- x posee un valor inferior a 0.1, pudiendo ser igual a cero;
- y tiene un valor menor de 0.1, pudiendo ser igual a cero;
- M está seleccionado entre \(H^+ \), uno o varios cationes inorgánicos de carga \(+n\); y una mezcla de los mismos,
- X es uno o varios elementos químicos de estado de oxidación +3, e
- Y es uno o varios elementos químicos con estado de oxidación +4.

El elemento, o elementos, trivalente X está seleccionado preferentemente entre Al, Ga, B, Fe, Cr y una mezcla de ellos, Y está seleccionado preferentemente entre Ti, Ge, Sn, V y una mezcla de ellos, y entre los cationes inorgánicos que puede representar M, se pueden citar, por ejemplo uno o más metales alcalinos, alcalino térrreos o mezclas de ellos.

Según una realización particular de la presente invención el material amorfo microporoso tiene una composición que corresponde a la fórmula:

\[
x (M_{1/n}XO_2) : SiO_2
\]

en la que:
- x posee un valor inferior a 0.2, pudiendo ser igual a cero,
- M está seleccionado entre \(H^+ \), uno o varios cationes inorgánicos de carga \(+n\); y una mezcla de los mismos, y
- X es uno o varios elementos químicos de estado de oxidación +3.

Según una realización particular de la presente invención el material amorfo microporoso tiene una composición en el estado calcinado y anhidro que corresponde a la fórmula:

\[
y \cdot YO_2 : SiO_2
\]

en la que:
- y tiene un valor menor de 0.2, preferentemente menor de 0.1, pudiendo ser igual a cero; e
- Y es uno o varios elementos químicos con estado de oxidación +4 preferentemente Ti, Ge, Sn, V o una mezcla de ellos.

Según una realización particular de la presente invención el material amorfo microporoso tiene una composición en el estado calcinado y anhidro que corresponde a la fórmula
\[x \ (HxO_2) : SiO_2 \]
en la que:
- x posee un valor inferior a 0.2, preferentemente inferior a 0.1, pudiendo ser igual a cero, y
- X es uno o varios elementos químicos de estado de oxidación +3, preferentemente Al, Ga, B, Fe, Cr o una mezcla de ellos.

Según una realización particular de la presente invención el material amorfo microporoso tiene una composición en el estado calcinado y anhidro que corresponde a la fórmula SiO₂.

El material no cristalino microporoso de la presente invención, que denominaremos genéricamente MAS, tiene una distribución de poro estrecha y uniforme en el rango del microporo.

Dicho material no cristalino microporoso se caracteriza porque su patrón de difracción de rayos X no presenta picos de difracción, y su espectro de IR no muestra bandas desarrolladas en la zona entre 400 y 600 cm⁻¹, bandas que son características de silicatos cristalinos, como por ejemplo las zeolitas.

La presente invención se refiere también a un método para sintetizar un material amorfo microporoso definido anteriormente, que comprende al menos:
6
- preparar una mezcla de reacción que comprende al menos:
 - una fuente de SiO₂,
 - uno o más compuestos orgánicos, y
 - agua,
- someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, preferentemente entre 100 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos:
 - ROH/SiO₂ = 0.01-3.0, preferiblemente 0.1-1.0,
 - H₂O/SiO₂ = 1-100, preferiblemente 1-50,
 donde R es una o más compuestos orgánicos.

Opcionalmente la mezcla de reacción puede contener una fuente de iones fluoruro, en cuyo caso como fuente de iones fluoruro se puede usar, por ejemplo, ácido fluorhídrico o fluoruro amónico.

Según una realización particular, el método para sintetizar el material amorfo microporoso comprende:
- preparar una mezcla de reacción que comprende al menos:
 - una fuente de SiO₂,
 - una fuente de uno o varios elementos tetravalentes y,
 - uno o más compuestos orgánicos,
 - agua,
- someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, preferentemente entre 100 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una
composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos:
- ROH/SiO₂ = 0.01-3.0, preferiblemente 0.1-1.0
- H₂O/SiO₂ = 1-100, preferiblemente 1-50, y
- YO₂/SiO₂ = 0.001-0.2

donde Y es uno o más elementos en estado de oxidación +4, preferentemente Ti, Ge, Sn, V o una mezcla de ellos, y R es uno o más compuestos orgánicos. La adición de este, o estos elementos Y, puede realizarse anteriormente al calentamiento de la mezcla de reacción o en un tiempo intermedio durante dicho calentamiento. Opcionalmente la mezcla de reacción puede contener una fuente de iones fluoruro.

Según una realización particular adicional el método para sintetizar el material amorfo microporoso comprende:
- preparar una mezcla de reacción que comprende al menos:
 - una fuente de SiO₂,
 - una fuente de uno o varios elementos trivalentes X
 - uno o más compuestos orgánicos, y
 - agua,
- someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, preferentemente entre 100 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos:
- ROH/SiO₂ = 0.01-3.0, preferiblemente 0.1-1.0
- H₂O/SiO₂ = 1-100, preferiblemente 1-50 y
- X₂O₃/SiO₂ = 0.001-0.1,

donde X es uno o más elementos en estado de oxidación +3, preferentemente seleccionados entre Al, Ga, B, Fe, Cr y una
mezcla de ellos, y R es uno o más compuestos orgánicos. La adición de este o estos elementos trivalentes puede realizarse anteriormente al calentamiento de la mezcla de reacción o en un tiempo intermedio durante dicho calentamiento.

Opcionalmente la mezcla de reacción puede contener una fuente de iones fluoruro. En este caso, de manera preferida la proporción de iones fluoruro en la mezcla es HF/SiO₂ = 0.05-3.0.

Según una realización particular adicional el método para sintetizar dicho material amorfo microporoso comprende:
- preparar una mezcla de reacción que comprende al menos:
 - una fuente de SiO₂,
 - una fuente de uno o varios elementos trivalentes X,
 - uno o más elementos M de carga +n,
 - uno o más compuestos orgánicos, y
 - agua,
- someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, preferentemente entre 100 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos
 - ROH/SiO₂ = 0.01-3.0, preferiblemente 0.1-1.0,
 - H₂O/SiO₂ = 1-100,
 - X₂O₃/SiO₂ = 0.001-0.1,

donde X es uno o más elementos en estado de oxidación +3, M está seleccionado entre H⁺, uno o varios cationes inorgánicos de carga +n y mezclas de ellos; y R es uno o más compuestos orgánicos. La adición de este o estos elementos trivalentes X, puede realizarse anteriormente al calentamiento de la mezcla.
de reacción o en un tiempo intermedio durante dicho calentamiento.
Opcionalmente la mezcla de reacción puede contener una fuente de iones fluoruro. En este caso, de manera preferida la proporción de iones fluoruro en la mezcla es $M_{1/n}F/SiO_2 = 0.05-3.0$.

Según una realización particular adicional el método para sintetizar dicho material amorfo microporoso comprende:

- preparar una mezcla de reacción que comprende al menos:
 - una fuente de SiO$_2$,
 - una fuente de uno o varios elementos trivalentes X,
 - una fuente de uno o varios elementos tetravalentes Y,
 - uno o más elementos M de carga $+n$,
 - uno o más compuestos orgánicos, y
 - agua,

- someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, preferentemente entre 100 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos:
 - ROH/SiO$_2 = 0.01-3.0$, preferiblemente 0.1-1,
 - H$_2$O/SiO$_2 = 1-100$, preferiblemente 1-50,
 - X$_2$O$_3$/SiO$_2 = 0.001-0.1$, e
 - YO$_2$/SiO$_2 = 0.001-0.2$,

donde X es uno o más elementos en estado de oxidación +3, Y es uno o más elementos en estado de oxidación +4, M está seleccionado entre H$^+$, uno o varios cationes inorgánicos de carga $+n$, y una mezcla de los mismos, y R es uno o más compuestos orgánicos. La adición de este o estos elementos
tri- y/o tetravalentes, X e Y, puede realizarse anteriormente al calentamiento de la mezcla de reacción o en un tiempo intermedio durante dicho calentamiento. Opcionalmente la mezcla de reacción puede contener una fuente de iones fluoruro. En este caso, de manera preferida la proporción de iones fluoruro en la mezcla es $M_{1/n}F/SiO_2 = 0.05-3.0$.

Según una realización particular preferida, la mezcla de reacción tiene una composición, en términos de relaciones moleares de óxidos, comprendida entre los intervalos:

$ROH/SiO_2 = 0.1-1.0$

$M_{1/n}F/SiO_2 = 0-1.0$

$X_2O_3/SiO_2 = 0.001-0.05$

$YO_2/SiO_2 = 0.001-0.1,$

$H_2O/SiO_2 = 1-50,$

donde X es uno o varios elementos trivalentes seleccionado entre Al, B, Ga, Fe y Cr, e Y es uno o varios elementos tetravalentes seleccionado entre Ti, Ge, Sn y V.

En el método de la presente invención, entre las fuentes de SiO$_2$ se pueden citar, por ejemplo, tetraetilortosilicato, sílice coloidal y sílice amorfa.

Entre los elementos en estado de oxidación +3 se puede usar el Al, pudiendo usar como fuente de aluminio, por ejemplo, alcóxidos de aluminio, óxidos de aluminio o sales de aluminio.

En cualquiera de las realizaciones del método de preparación del material amorfo descrito anteriormente el compuesto orgánico R está preferentemente en forma de hidróxido. Alternativamente, es posible utilizar el catión orgánico en forma de sal (por ejemplo, un haluro, preferiblemente cloruro, bromuro o ioduro).
Según una realización preferida del método de síntesis, el compuesto orgánico comprende uno o varios grupos amino. Dicho compuesto orgánico puede también comprender uno o varios grupos amonio.

Según una realización preferida del método de síntesis, el compuesto orgánico está seleccionado entre N(16)-metilesparteinio, hidróxido de 1,4-bisciclohexilpirrolidinobutano, hidróxido de 1,8-bisquinuclidiniooctano, hidróxido de 1,4-bisciclohexilpirrolidinobutano, hidróxido de hexametilonio e hidróxido de tetraetilamoniol.

El tratamiento térmico de la mezcla de reacción puede realizarse en estático o con agitación de la mezcla. Una vez finalizada la preparación del material amorfo microporoso, se separa el producto sólido y se seca. La calcinación posterior a temperaturas entre 400 y 700°C, preferiblemente entre 450 y 600°C, muestra que los materiales son térmicamente estables, y se produce la descomposición de los restos orgánicos ocluidos y la salida de éstos, dejando libres los poros.

De manera general, la mezcla de reacción tiene una composición que responde a la fórmula empírica

\[a \text{ROH} : b \text{M}_{1/n}\text{F} : x \text{X}_3\text{O}_3 : y \text{YO}_2 : \text{SiO}_2 : w \text{H}_2\text{O} \]

donde \(X \) es uno o más elementos en estado de oxidación +3, \(Y \) es uno o más elementos en estado de oxidación +4, \(M \) está seleccionado entre \(H^+ \), uno o varios cationes inorgánicos de carga +n, y una mezcla de los mismos, y \(R \) es uno o más compuestos orgánicos, y los valores de \(a, b, x, y, w \) están en los rangos

\[a = \text{ROH/SiO}_2 = 0.01-3.0, \text{preferiblemente 0.1-1.0} \]
\[b = \text{M}_{1/n}\text{F/SiO}_2 = 0-3.0, \text{preferiblemente 0.1-1.0} \]
12

$x = \frac{X_2O_3}{SiO_2} = 0-0.01$, preferiblemente 0-0.05

$y = \frac{YO_2}{SiO_2} = 0-0.2$, preferiblemente 0-0.1,

$w = \frac{H_2O}{SiO_2} = 1-100$, preferiblemente 1-50, más preferiblemente 1-20.

La presente invención se refiere también a un método de uso del material amorfó microporoso definido anteriormente como catalizador en un proceso de conversión de compuestos orgánicos que comprende poner en contacto una alimentación con una cantidad de dicho catalizador.

Dicho proceso puede ser un proceso de craqueo catalítico de compuestos orgánicos, preferentemente hidrocarburos.

Según realizaciones preferidas el proceso está seleccionado entre un proceso de hidrocracqueo, hidrocracqueo suave de hidrocarburos, hidrocracqueo suave de hidrocarburos funcionalizados, hidrocracqueo suave de hidrocarburos e hidrocarburos funcionalizados, hidroisomerización de olefinas, un proceso de isomerización de parafinas ligeras, desparafinado, isodesparafinado y un proceso de alquilación.

En el caso de un proceso de alquilación, dicha alquilación puede estar seleccionada entre alquilación de isoparafinas con olefinas, alquilación de olefinas con isoparafinas, alquilación de aromáticos con olefinas o alcoholes, alquilación de aromáticos sustituidos con olefinas o alcoholes, alquilación de compuestos tiofénicos con olefinas o alcoholes, alquilación de compuestos alquilotiofénicos con olefinas o alcoholes y alquilación de compuestos alquilbenzotiofénicos con olefinas o alcoholes. De manera especialmente preferida, dicha alquilación es la alquilación de benceno con propileno.
Según realizaciones alternativas del método de uso del material amorfo, microporoso, éste puede actuar como catalizador en un proceso que es una reacción de acilación de compuestos aromáticos sustituidos utilizando ácidos, cloruros de ácido o anhídridos de ácidos orgánicos como agentes acilantes.

Según una realización alternativa adicional el proceso es una oxidación selectiva de compuestos orgánicos usando un oxidante seleccionado entre H_2O_2, peróxidos orgánicos e hidroperóxidos orgánicos.

Según una realización alternativa adicional el proceso está seleccionado entre una reacción de oxidación de tipo Meerwein-Pondorf-Verley y una reacción de oxidación de tipo Baeyer-Villiger.

En el caso de contener Ti, dicho material amorfo microporoso se puede usar como catalizador en un proceso de epoxidación de olefinas, oxidación de alcanos, oxidación de alcoholes y oxidación de compuestos orgánicos que contengan azufre y que puedan producir sulfóxidos y sulfonas, utilizando hidroperóxido orgánicos o inorgánicos, como por ejemplo H_2O_2, tertbutilhidroperóxido, hidroperóxido de cumeno u oxígeno molecular como agentes oxidantes y en amoximación de cetonas, y más específicamente de ciclohexanona a ciclohexanona oxima con NH_3 y H_2O_2, o NH_3 y O_2.

En el caso de contener Sn el material amorfo microporoso de la presente invención se puede usar como catalizador en una oxidación de tipo Baeyer-Villiger utilizando H_2O_2 como agente oxidante.
14

BREVE DESCRIPCIÓN DE LAS FIGURAS

La figura 1 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 1, usando N(16)-metilesparteinio, y antes de calcinar.

La figura 2 muestra el espectro IR de una muestra del material amorfo microporoso de la invención, denominado MAS-1, preparado según el ejemplo 1, usando N(16)-metilesparteinio y antes de calcinar.

La figura 3 muestra la distribución de poro de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 1, usando N(16)-metilesparteinio, y calcinado.

La figura 4 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 2, usando N(16)-metilesparteinio, y antes de calcinar.

La figura 5 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención conteniendo Ti, y preparado según el ejemplo 3, usando N(16)-metilesparteinio, y sin calcinar.

La figura 6 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención MAS-1 pura sílice, y preparada según el ejemplo 4, usando N(16)-metilesparteinio, y sin calcinar.

La figura 7 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 5, denominado MAS-2, usando hidróxido de 1,8-bisquinoclidiniooctano, y sin calcinar.

La figura 8 muestra el espectro IR de una muestra del material amorfo microporoso de la invención preparado según el
ejemplo 5, usando hidróxido de 1,8-bisquinoxalidiniooctano, y sin calcinar.

La figura 9 muestra la distribución de poro de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 5, usando hidróxido de 1,8-bisquinoxalidiniooctano, y calcinado.

La figura 10 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 6, usando hidróxido del 1,8-bisquinoxalidiniooctano, y sin calcinar.

La figura 11 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 7, denominado MAS-3, usando hidróxido de 1,4-bisciclohexilpirrolidiniobutano, y sin calcinar.

La figura 12 muestra el espectro IR de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 7, usando hidróxido de 1,4-bisciclohexilpirrolidiniobutano y sin calcinar.

La figura 13 muestra la distribución de poro de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 7, usando hidróxido de 1,4-bisciclohexilpirrolidiniobutano, y calcinado.

La figura 14 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 8, usando hidróxido de 1,4-bisciclohexilpirrolidiniobutano, y sin calcinar.

La figura 15 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 9, denominado MAS-4, usando hidróxido de hexametonio, y sin calcinar.
La figura 16 muestra el espectro IR de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 9, usando hidróxido de hexametonio, y sin calcinar.

La figura 17 muestra la distribución de poro de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 9, usando hidróxido de hexametonio, y calcinado.

La figura 18 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 10, denominado MAS-5, usando hidróxido de tetraetilamonio, y sin calcinar.

La figura 19 muestra el espectro IR de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 10, usando hidróxido de tetraetilamonio, y sin calcinar.

La figura 20 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 11, usando hidróxido de tetraetilamonio, y sin calcinar.

EJEMPLOS

Ejemplo 1

Se hidrolizan 0.272 gramos de isopropóxido de aluminio y 4.167 gramos de tetraetilortosilicato en 11.00 gramos de disolución de hidróxido de N(16)-metilesparteinio con una concentración de 0.91 moles/Kg. La disolución obtenida se mantiene en agitación dejando evaporar todo el alcohol formado en la hidrólisis y el agua sobrante. Posteriormente, se añade 0.416 g de una disolución de ácido fluorhídrico (48.1 % de HF en peso) y se sigue evaporando hasta que la mezcla de reacción alcanza una composición final:
$\text{SiO}_2 : 0.033 \text{ Al}_2\text{O}_3 : 0.50 \text{ ROH} : 0.50 \text{ HF} : 2 \text{ H}_2\text{O}$

donde ROH es hidróxido de N(16)-metilesparteinio.

El gel se calienta a 175°C en estático durante 16 horas en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es MAS1. El patrón de difracción de rayos X del sólido obtenido, medido por el método de polvo utilizando una rendija de divergencia fija y empleando la radiación K_{α} del Cu, se muestra en la figura 1 y el espectro IR en la figura 2.

El material se calcina a 580°C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior. El sólido denominado MAS-1 presenta un superficie específica de 738 m^2/g y un volumen de microporos de 0.28 cm^3/g. El diámetro de poro es de 7.5 Å, y la distribución de poro medida por adsorción de Ar siguiendo el formalismo de Hovartz-Kavazoe se presenta en la figura 3.

Ejemplo 2

En 132.98 g de disolución de hidróxido de N(16)-metilesparteinio con una concentración de 0.94 moles/Kg se hidrolizan 52.08 g de tetraetilortosilicato y 2.04 g de isopropóxido de aluminio. La disolución obtenida se mantiene en agitación dejando evaporar el etanol y el isopropanol formados en la hidrólisis. Posteriormente, se añade 5.20 g de una disolución de ácido fluorhídrico (48.1 % de HF en peso) y se sigue evaporando hasta que la mezcla alcance la composición:

$\text{SiO}_2 : 0.02 \text{ Al}_2\text{O}_3 : 0.50 \text{ ROH} : 0.50 \text{ HF} : 2 \text{ H}_2\text{O}$

donde ROH es hidróxido de N(16)-metilesparteinio.

El gel se calienta durante 16 horas en autoclaves de acero con una funda interna de teflón a 175°C en estático. El sólido
obtenido tras filtrar, lavar con agua destilada y secar a 100°C es MAS-1. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 4.

El sólido denominado MAS-1, tras calcinar a 580°C en flujo de aire durante 3 horas presenta un superficie específica de 643 m²/g y un volumen de microporo de 0.24 cm³/g.

Ejemplo 3

Se hidrolizan 0.19 g de tetraetilortotitanato y 8.33 g de tetraetilortosilicato en 24.39 g de disolución de hidróxido de N(16)-metilesparteinio con una concentración de 0.86 moles/Kg. En la disolución obtenida se deja evaporar todo el alcohol formado en la hidrólisis y parte del agua sobrante. Posteriormente, se añade 0.80 g de una disolución de ácido fluorhídrico (50 % de HF en peso). La composición final del gel de síntesis es:

\[\text{SiO}_2 : 0.02 \text{ TiO}_2 : 0.50 \text{ ROH} : 0.50 \text{ HF} : 2 \text{ H}_2\text{O} \]

donde ROH es hidróxido de N(16)-metilesparteinio.

El gel se calienta a 175°C en estático durante 3 días en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es Ti-MAS-1. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 5.

Ejemplo 4

Se hidrolizan 34.67 g de tetraetilortosilicato en 73.45 g de disolución de hidróxido de N(16)-metilesparteinio con una concentración de 1.133 moles/Kg, manteniendo en agitación y dejando evaporar todo el etanol formado en la hidrólisis. Posteriormente, se añade 3.55 g de una disolución de ácido
fluorhídrico (46.9 % de HF en peso) y se continúa evaporando hasta que la mezcla de reacción alcanza una composición final:

$$\text{SiO}_2 : 0.50 \text{ ROH} : 0.50 \text{ HF} : 3 \text{ H}_2\text{O}$$

donde ROH es hidróxido de N(16)-metilesparteinio.

Tras 2 días de cristalización a 175°C en agitación en autoclaves de acero con una funda interna de teflón, se obtiene MAS-1 pura sílice. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 6.

Ejemplo 5

En 18.80 g de disolución de hidróxido de 1,8-bisquinuclidiniooctano con una concentración de 0.81 moles de OH/Kg se hidrolizan 6.34 g de tetraetilortosilicato y 0.12 g de isopropóxido de aluminio. La disolución obtenida se mantiene en agitación dejando evaporar el etanol y el isopropanol formados en la hidrólisis. Posteriormente, se añade 0.61 g de una disolución de ácido fluorhídrico (49.8 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición:

$$\text{SiO}_2 : 0.01 \text{ Al}_2\text{O}_3 : 0.25 \text{ R(OH)}_2 : 0.50 \text{ HF} : 15 \text{ H}_2\text{O}$$

donde R(OH)$_2$ es hidróxido de 1,8-bisquinuclidiniooctano.

El gel se calienta durante 7 días en autoclaves de acero con una funda interna de teflón a 175°C en agitación. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es MAS-2. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 7 y el espectro IR en la figura 8.

El material se calcina a 580°C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior. El sólido denominado MAS-2 presenta un superficie específica de 388 m2/g y un volumen de microporo
de 0.14 cm³/g. El diámetro de poro es de 6.0 Å, y la distribución de poro medida por adsorción de Ar siguiendo el formalismo de Hovartz-Kavazoe se presenta en la figura 9.

5 Ejemplo 6

En 18.84 g de disolución de hidróxido del 1,8-bisquinuclidiniooctano con una concentración de 1.06 moles OH/Kg se hidrolizan 8.32 g de tetraetilortosilicato y 0.16 g de isopropóxido de aluminio. La disolución obtenida se mantiene en agitación dejando evaporar el etanol y el isopropanol formados en la hidrólisis. Posteriormente, se añade 0.85 g de una disolución de ácido fluorhídrico (46.9 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición:

\[\text{SiO}_2 : 0.01 \, \text{Al}_2\text{O}_3 : 0.50 \, \text{R(OH)}_2 : 0.50 \, \text{HF} : 15 \, \text{H}_2\text{O} \]

donde \(\text{R(OH)}_2 \) es hidróxido de 1,8-bisquinuclidiniooctano.

El gel se calienta durante 3 días en autoclaves de acero con una funda interna de teflón a 150°C en agitación. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es MAS-2. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 10.

Ejemplo 7

Se hidrolizan 1.27 gramos de isopropóxido de aluminio y 12.93 gramos de tetraetilortosilicato en 70.04 gramos de disolución de hidróxido de 1,4-bisciclohexilpirrolidiniobutano con una concentración de 0.47 moles OH/Kg. La disolución obtenida se mantiene en agitación dejando evaporar todo el alcohol formado en la hidrólisis y el agua sobrante. Posteriormente, se añade 1.33 g de una disolución de ácido
fluorhídrico (50 % de HF en peso) y se sigue evaporando hasta que la mezcla de reacción alcanza una composición final:

\[\text{SiO}_2 : 0.05 \quad \text{Al}_2\text{O}_3 : 0.27 \quad \text{R(OH)}_2 : 0.54 \quad \text{HF} : 7.25 \quad \text{H}_2\text{O} \]

donde ROH es hidróxido de 1,4-bisciclohexilpirrolidiniobutano.

El gel se calienta a 175°C en agitación durante 5 días en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es MAS-3. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 11 y el espectro IR en la figura 12.

El material se calcina a 580°C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior. El sólido denominado MAS-1 presenta un superficie específica de 418 m²/g y un volumen de microporos de 0.15 cm³/g. El diámetro de poro es de 6.2 Å y la distribución de poro medida por adsorción de Ar siguiendo el formalismo de Hovartz-Kavazoe se presenta en la figura 13.

Ejemplo 8

En 38.75 g de disolución de hidróxido de 1,4-bisciclohexilpirrolidiniobutano con una concentración de 0.28 moles OH/Kg se hidrolizan 8.65 g de tetraetilortosilicato y 0.34 g de isopropóxido de aluminio. La disolución obtenida se mantiene en agitación dejando evaporar el etanol y el isopropanol formados en la hidrólisis. Posteriormente, se añade 0.88 g de una disolución de ácido fluorhídrico (50 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición:

\[\text{SiO}_2 : 0.02 \quad \text{Al}_2\text{O}_3 : 0.27 \quad \text{R(OH)}_2 : 0.54 \quad \text{HF} : 7.25 \quad \text{H}_2\text{O} \]

donde ROH es hidróxido del1,4-bisciclohexilpirrolidiniobutano.

El gel se calienta durante 4 días en autoclaves de acero con una funda interna de teflón a 175°C en agitación. El
sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es MAS-3. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 14.

5 Ejemplo 9

En 39.01 g de disolución de hidróxido de hexametilentriaminito con una concentración de 0.84 moles OH/Kg se disuelven 0.24 g de GeO₂. En la disolución obtenida se hidrolizan 11.84 g de tetraetilortosilicato, y se mantiene en agitación dejando evaporar el etanol formado. Posteriormente, se añade 1.37 g de una disolución de ácido fluorhídrico (48.1 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición:

0.96 SiO₂ : 0.04 GeO₂ : 0.28 R(OH)₂ : 0.56 HF : 7 H₂O

donde R(OH)₂ es hidróxido de hexametilentriaminito.

10 El gel se calienta durante 5 días en autoclaves de acero con una funda interna de teflón a 135°C en agitación. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es MAS-4. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 15 y el espectro IR en la figura 16.

El material se calcina a 580°C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior. El sólido denominado MAS-4 presenta una superficie específica de 348 m²/g y un volumen de microporos de 0.13 cm³/g. El diámetro de poro es de 5.5 Å y la distribución de poro medida por adsorción de Ar siguiendo el formalismo de Hovartz-Kavazoe se presenta en la figura 17.

Ejemplo 10

Se añaden 19.9 g de tetraetilortosilicato sobre 14.39 g de una disolución acuosa de hidróxido de tetraetilamonio (TEAOH)
al 40% en peso y 3 g de agua y se agita la mezcla. A continuación se adiciona una solución que contiene 0.32 g de aluminio metálico (99.95%) previamente disuelto en 9 g de TEAOH (40%). Se deja la mezcla evaporando en agitación hasta completa eliminación del etanol procedente de la hidrólisis del TEOS más la cantidad de agua necesaria hasta alcanzar la composición final que se indica. Finalmente, se añaden 2.15 g de una disolución acuosa de ácido fluorhídrico (48 % de HF en peso). La composición del gel es:

SiO₂ : 0.062 Al₂O₃ : 0.665 ROH : 0.54 HF : 7 H₂O.

donde ROH es hidróxido de tetraetilamonio.

La mezcla obtenida se introduce en un autoclave provisto de una funda interna de politetrafluoretileno y se calienta a 140°C durante 6 días en una estufa provista de un sistema de rotación. Transcurrido este tiempo se recuperan, mediante filtración, lavado con agua y posterior secado a 100°C, 27.9 g de sólido por 100 g de gel. El sólido obtenido es MAS-5, y su patrón de difracción de rayos X se muestra en la figura 18 y el espectro IR en la figura 19.

El material se calcina a 580°C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior.

Ejemplo 11

Se hidrolizan 15.00 gramos de tetraetilortosilicato en 16.36 gramos de disolución de hidróxido de tetraetilamonio (TEAOH) al 40% en peso y 3 g de agua y se agita la mezcla. La disolución obtenida se mantiene en agitación dejando evaporar todo el alcohol formado en la hidrólisis y el agua sobrante. Posteriormente, se añade 1.56 g de una disolución de ácido
fluorhídrico (50 % de HF en peso) y se sigue evaporando hasta que la mezcla de reacción alcanza una composición final:

\[\text{SiO}_2 : 0.54 \quad \text{ROH} : 0.54 \quad \text{HF} : 7 \quad \text{H}_2\text{O} \]

donde ROH es hidróxido de tetraetilamonio.

El gel se calienta a 175°C en agitación durante 4 horas en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es MAS-5, y su difractograma se muestra en la figura 20.

Ejemplo 12

En este ejemplo se muestra la actividad catalítica de un catalizador bifuncional formado por una función ácida (MAS, preparado según ejemplo 2) y una función hidrogenante-deshidrogenante (Pt 1.0% en peso), introducido por impregnación a partir de una solución acuosa de ácido hexacloro platínico, para el hidrocracueo de n-hexadecano. La reacción se llevó a cabo, en un reactor continuo de lecho fijo, a 270°C, 40 bares de presión, con una relación molar \(\text{H}_2/\text{hexadecano} \) de 95 y un tiempo de contacto (W/F) de 0.27 horas. En estas condiciones la conversión de n-hexadecano fue de 84.6% con una selectividad a isómeros \(\text{C}_{16} \) del 2.3% y una selectividad a productos de hidrocracueo del 97.7%. Entre los productos de hidrocracueo no se detectaron productos con uno o dos átomos de carbono. El rendimiento a productos \(\text{C}_5-\text{C}_7 \) fue del 35.8%.

Ejemplo 13

En este ejemplo se muestra la actividad de un catalizador bifuncional formado por una función ácida (MAS, preparado según ejemplo 2) y una función hidrogenante (Pt, 1% en peso), introducido por impregnación a partir de una solución acuosa
25
de ácido hexacloro platínico, para el hidrocrackeo de un gasoil hidrotratado conteniendo 10.6% en peso de hidrocarburos con un punto de ebullición entre 250°C y 380°C, y 89.4% con punto de ebullición por encima de 380°C, y un contenido de azufre de 87 ppm. Las condiciones de reacción fueron: 370°C, 0.2 horas tiempo de contacto (W/F), 50 bares de presión y relación en volumen en condiciones normales de H₂/gasoil = 988.

Después de ocho horas en estas condiciones de reacción, la conversión (380°C⁻) fue de 56.4% con rendimientos a gases del 0.7%, a nafta (65°C-150°C) del 12.5%, a keroseno (150°C-250°C) del 20.1%, y a destilados medios (250°C-380°C) del 23.0%.

Ejemplo 14

En este ejemplo se muestra la actividad catalítica para cраqueo catalítico de un material MAS preparado según ejemplo 2, en el que se utiliza n-decano como reactivo. Las condiciones de reacción fueron: presión atmosférica, relación en peso catalizador/alimentación de 0.70, temperatura de 500°C y tiempo de reacción de 60 segundos. En estas condiciones la conversión fue del 33%.

Ejemplo 15

En este ejemplo se muestra la actividad catalítica para el cраqueo de un gasoil de vacío, del material MAS preparado según ejemplo 2. Las condiciones de reacción fueron: presión atmosférica, relación catalizador/alimentación 0.65 en peso, temperatura de reacción de 500°C y, tiempo de reacción de 60 segundos. La conversión fue del 60% en peso, con un rendimiento a gases, gasolina, diesel y coque del 19.1, 23.2, 14.0 y 3.7%, respectivamente, siendo la relación
propileno/propano en los gases del 4.9, para un rendimiento en propileno del 7%.
REIVINDICACIONES

1. Un material amorfo microporoso caracterizado porque tiene una composición química en el estado calcinado y anhidro que puede representarse por la fórmula empírica:

\[x \left(M_{1/n}XO_2 \right) : y \text{YO}_2 : \text{SiO}_2 \]

en la que:
- \(x \) posee un valor inferior a 0.2; pudiendo ser igual a cero,
- \(y \) tiene un valor menor de 0.2; pudiendo ser igual a cero,
- \(M \) está seleccionado entre \(H^+ \), uno o varios cationes inorgánicos de carga +n, y una mezcla de los mismos,
- \(X \) es uno o varios elementos químicos de estado de oxidación +3, e
- \(Y \) es uno o más elementos en estado de oxidación +4, que tiene una distribución uniforme de poro y un volumen de microporo mayor o igual de 0.05 cm\(^3\)·g\(^{-1}\) y
que tiene una superficie específica superior a 100 m\(^2\)·g\(^{-1}\).

2. Un material amorfo microporoso, según la reivindicación 1, caracterizado porque tiene una composición química en el estado calcinado y anhidro que puede representarse por la fórmula empírica:

\[x \left(M_{1/n}XO_2 \right) : y \text{YO}_2 : \text{SiO}_2 \]

en la que:
- \(x \) posee un valor inferior a 0.1, pudiendo ser igual a cero;
- \(y \) tiene un valor menor de 0.1, pudiendo ser igual a cero;
- \(M \) está seleccionado entre \(H^+ \), uno o varios cationes inorgánicos de carga +n; y una mezcla de los mismos,
- \(X \) es uno o varios elementos químicos de estado de oxidación +3, e
- \(Y \) es uno o varios elementos químicos con estado de oxidación +4.
3. Un material amorfo microporoso según la reivindicación 1 ó 2, caracterizado porque X está seleccionado entre Al, Ga, B, Fe, Cr y una mezcla de ellos.

4. Un material amorfo microporoso según la reivindicación 1 ó 2, caracterizado porque Y está seleccionado entre Ti, Ge, Sn, V y una mezcla de ellos.

5. Un material amorfo microporoso según una de las reivindicaciones 1, 2 ó 3, caracterizado porque su composición corresponde a la fórmula:

 \[x \left(M_{1/n} X O_2 \right) : SiO_2 \]

en la que:
- \(x \) posee un valor inferior a 0.2, pudiendo ser igual a cero,
- M está seleccionado entre \(H^+ \), uno o varios cationes inorgánicos de carga \(+n \); y una mezcla de los mismos, y
- X es uno o varios elementos químicos de estado de oxidación +3.

6. Un material amorfo microporoso según una de las reivindicaciones 1, 2 ó 3, caracterizado porque su composición en el estado calcinado y anhídrico puede representarse por la fórmula empírica

 \[y \left(Y O_2 \right) : SiO_2 \]

en la que:
- y tiene un valor menor de 0.2, pudiendo ser igual a cero; e
- Y es uno o varios elementos químicos con estado de oxidación +4.

7. Un material amorfo microporoso según una de las reivindicaciones 1, 2 ó 3, caracterizado porque su composición
química en el estado calcinado y anhidro se representar por la fórmula empírica

\[x \ (\text{HXO}_2) : \text{SiO}_2 \]

en la que:

- \(x \) posee un valor inferior a 0.2, pudiendo ser igual a cero, y
- \(X \) es uno o varios elementos químicos de estado de oxidación +3.

8. Un material amorfo microporoso según una de las reivindicaciones 1, 2 ó 3, caracterizado porque su composición química en el estado calcinado y anhidro se representa por la fórmula empírica \(\text{SiO}_2 \).

9. Un método para sintetizar un material amorfo microporoso definido en una de las reivindicaciones 1 a 8, caracterizado porque comprende:

- preparar una mezcla de reacción que comprende al menos:
 - una fuente de \(\text{SiO}_2 \),
 - uno o más compuestos orgánicos, y
 - agua,

- someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos
 - \(\text{ROH}/\text{SiO}_2 = 0.01-3 \),
 - \(\text{H}_2\text{O}/\text{SiO}_2 = 1-100 \),

donde \(R \) es una o más compuestos orgánicos.
10. Un método para sintetizar un material amorfo según la reivindicación 9, caracterizado porque la mezcla de reacción comprende además una fuente de iones fluoruro.

11. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 ó 10, caracterizado porque comprende:
 - preparar una mezcla de reacción que comprende al menos:
 - una fuente de SiO₂,
 - una fuente de uno o varios elementos tetravalentes Y,
 - uno o más compuestos orgánicos,
 - agua,
 - someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos:
 - ROH/SiO₂ = 0.01-3.0,
 - H₂O/SiO₂ = 1-100, e
 -YO₂/SiO₂ = 0.001-0.2,
 donde Y es uno o más elementos en estado de oxidación +4, y R es uno o más compuestos orgánicos.

12. Un método para sintetizar un material amorfo según la reivindicación 9 ó 10, caracterizado porque comprende:
 - preparar una mezcla de reacción que comprende:
 - una fuente de SiO₂,
 - una fuente de uno o varios elementos trivalentes X,
 - uno o más compuestos orgánicos, y
 - agua,
- someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos
- ROH/SiO₂ = 0.01-3.0,
- H₂O/SiO₂ = 1-100, y
- X₂O₃/SiO₂ = 0.001-0.1,
donde X es uno o más elementos en estado de oxidación +3 y R es uno o más compuestos orgánicos.

13. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 ó 10, caracterizado porque comprende:
- preparar una mezcla de reacción que comprende:
 - una fuente de SiO₂,
 - una fuente de uno o varios elementos trivalentes X,
 - uno o más elementos M de carga +n,
 - uno o más compuestos orgánicos, y
- agua,
- someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos
- ROH/SiO₂ = 0.01-3.0,
- H₂O/SiO₂ = 1-100, y
- X₂O₃/SiO₂ = 0.001-0.1,
donde X es uno o más elementos en estado de oxidación +3, M está seleccionado entre H⁺, uno o varios cationes inorgánicos
32
de carga +n, y mezclas de ellos, y R es uno o más compuestos orgánicos.

14. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 ó 10, caracterizado porque comprende:
 - preparar una mezcla de reacción que comprende:
 - una fuente de SiO₂,
 - una fuente de uno o varios elementos trivalentes X,
 - una fuente de uno o varios elementos tetravalentes Y,
 - uno o más elementos M de carga +n,
 - uno o más compuestos orgánicos, y
 - agua,
 - someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos:
 - ROH/SiO₂ = 0.01-3.0,
 - H₂O/SiO₂ = 1-100,
 - X₂O₃/SiO₂ = 0.001-0.1,
 - YO₂/SiO₂ = 0.001-0.2,
 donde X es uno o más elementos en estado de oxidación +3, Y es uno o más elementos en estado de oxidación +4, M está seleccionado entre H⁺, uno o varios cationes inorgánicos de carga +n; y una mezcla de los mismos, y R es uno o más compuestos orgánicos.

15. Un método para sintetizar un material amorfo según la reivindicación 14, en el que la mezcla de reacción tiene una
composición, en términos de relaciones molares de óxidos, comprendida entre los rangos
ROH/SiO$_2$ = 0.1-1.0
X$_2$O$_3$/SiO$_2$ = 0.001-0.05,
YO$_2$/SiO$_2$ = 0.001-0.1,
H$_2$O/SiO$_2$ = 1-50,
donde X es uno o varios elementos trivalentes seleccionado entre Al, B, Ga, Fe y Cr, e Y es uno o varios elementos tetravalentes seleccionado entre Ti, Ge, Sn y V.

16. Un método para sintetizar un material amorfo según la reivindicación 14, en el que la mezcla de reacción tiene una composición que responde a la fórmula empírica
aROH : bM$_{1/n}$F : xX$_2$O$_3$: yYO$_2$: SiO$_2$: wH$_2$O
donde X es uno o más elementos en estado de oxidación +3, Y es uno o más elementos en estado de oxidación +4, M está seleccionado entre H', uno o varios cationes inorgánicos de carga +n, y una mezcla de los mismos, y R es uno o más compuestos orgánicos,
y los valores de a, b, x, y, y w están en los intervalos:
a = ROH/SiO$_2$ = 0.1-3.0,
b = M$_{1/n}$F/SiO$_2$ = 0.1-3.0,
x = X$_2$O$_3$/SiO$_2$ = 0-0.05,
y = YO$_2$/SiO$_2$ = 0-0.1, y
w = H$_2$O/SiO$_2$ = 1-50.

17. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 a 16, en el que la mezcla se somete a calentamiento con o sin agitación a temperatura comprendida entre 100 y 200°C.
18. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 a 17, en el que el compuesto orgánico R está en forma de hidróxido.

19. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 a 17 en el que el compuesto orgánico comprende uno o varios grupos amino.

20. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 a 17 en el que el compuesto orgánico comprende uno o varios grupos amonio.

21. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 a 17 en el que el compuesto orgánico está seleccionado entre N(16)-metilesparteinio, hidróxido de 1,4-bisciclohexilpirrolidiniobutano, hidróxido de 1,8-bisquinuclidiniooctano, hidróxido de 1,4-bisciclohexilpirrolidiniobutano, hidróxido de hexametonio e hidróxido de tetraetilamonio.

22. Método de uso de un material amorfo de una cualquiera de las reivindicaciones 1 a 14 como catalizador en un proceso de conversión de compuestos orgánicos que comprende poner en contacto una alimentación con una cantidad de dicho catalizador.

23. Método de uso según la reivindicación 22 caracterizado porque el proceso es un proceso de craqueo catalítico de compuestos orgánicos.
24. Método de uso de un material amorfo según la reivindicación 23 caracterizado porque dichos compuestos orgánicos son hidrocarburos.

25. Método de uso de un material amorfo según la reivindicación 22, caracterizado porque el proceso está seleccionado entre un proceso de hidrocrackeo, hidrocrackeo suave de hidrocarburos, hidrocrackeo suave de hidrocarburos funcionalizados, hidrocrackeo suave de hidrocarburos e hidrocarburos funcionalizados, hidroisomerización de olefinas, un proceso de isomerización de parafinas ligeras, desparafinado, isodesparafinado y un proceso de alquilación.

26. Método de uso de un material amorfo, según la reivindicación 25, caracterizado porque el proceso de alquilación está seleccionado entre alquilación de isoparafinas con olefinas, alquilación de olefinas con isoparafinas, alquilación de aromáticos con olefinas o alcoholes, alquilación de aromáticos sustituidos con olefinas o alcoholes, alquilación de compuestos tiofénicos con olefinas o alcoholes, alquilación de compuestos alquiltiofénicos con olefinas o alcoholes, alquilación de compuestos alquilbenzotiofenicos con olefinas o alcoholes,

27. Método de uso de un material amorfo, según la reivindicación 25, caracterizado porque el proceso de alquilación es la alquilación de benceno con propileno.

28. Método de uso de un material amorfo según la reivindicación 22, caracterizado porque el proceso es una reacción de acilación de compuestos aromáticos sustituidos
utilizando ácidos, cloruros de ácido o anhídridos de ácidos orgánicos como agentes acilantes.

29. Método de uso de un material amorfo según la reivindicación 22, caracterizado porque el proceso es una oxidación selectiva de compuestos orgánicos usando un oxidante seleccionado entre H₂O₂, peróxidos orgánicos e hidroperóxidos orgánicos.

30. Método de uso de un material amorfo según la reivindicación 22, caracterizado porque el proceso está seleccionado entre una reacción de oxidación de tipo Meerwein-Pondorf-Verley y una reacción de oxidación de tipo Baeyer-Villiger.

31. Método de uso de un material amorfo según la reivindicación 22 caracterizado porque dicho material amorfo comprende Ti y el proceso está seleccionado entre:
 - un proceso de epoxidación de olefinas,
 - oxidación de alcanos, oxidación de alcoholes,
 - oxidación de compuestos orgánicos que contengan azufre y que puedan producir sulfóxidos y sulfonas, utilizando hidroperóxido orgánicos o inorgánicos, u oxígeno molecular como agentes oxidantes y
 - amoximación de cetonas.

32. Método de uso de un material amorfo según la reivindicación 22 caracterizado porque dicho material amorfo comprende Sn y el proceso es una oxidación en reacciones Baeyer-Villiger utilizando H₂O₂ como agente oxidante.
Figura 9

\[\frac{d}{d} \text{(vol. poro)/d(diam. poro) (cm}^3\text{/g/A)} \]

\[\text{Diámetro poro (A)} \]
Figura 13

d\((\text{vol. poro})/d(\text{diam. poro})\) (cm\(^3\)/g/A)

Diámetro poro (A)
Figura 20

Gráfica de intensidad en función de 2Θ (grados)
INTERNATIONAL SEARCH REPORT

International application No.

PCT/ ES 2005/070039

A. CLASSIFICATION OF SUBJECT MATTER

IPC C01B33/46, C10G11/02, B01J21/06, 21/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC C01B, C10G, B01J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CIBEPAT, EPDOC, WPI, CAS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 340862 A (ENICHEM SYNTHESIS S.p.A.) 08.11.1989; the whole document</td>
<td>1-32</td>
</tr>
<tr>
<td>A</td>
<td>EP 340868 A (ENIRICERCHE S.p.A.) 08.11.1989; the whole document</td>
<td>1-32</td>
</tr>
<tr>
<td>A</td>
<td>US 6121187 A (MAIER) 19.09.2000; the whole document</td>
<td>1-32</td>
</tr>
<tr>
<td>A</td>
<td>EP 463673 A (ENIRICERCHE S.p.A.) 02.01.1992; the whole document</td>
<td>1-32</td>
</tr>
<tr>
<td>A</td>
<td>EP 987220 A (TECHNISCHE UNIVERSITEIT DELFT - ABB LUMMUS GLOBAL INC.) 22.03.2000; the whole document</td>
<td>1-32</td>
</tr>
</tbody>
</table>

[] Further documents are listed in the continuation of Box C.
[] See patent family annex.

* Special categories of cited documents:
 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier document but published on or after the international filing date
 “I” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

27 June 2005 (27/06/05)

Date of mailing of the international search report

29 July 2005 (29/07/05)

Name and mailing address of the ISA/S.P.T.O.

C/Panamá 1, 28071 Madrid, España.

Facsimile No. 34 91 3495504

Authorized officer

N. Vera Gutiérrez

Telephone No. 34 91 3495544

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IT 1217525 B</td>
<td>22.03.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4992608 A</td>
<td>12.02.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68910871 D,T</td>
<td>05.01.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2059701 T</td>
<td>16.11.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2779450 B</td>
<td>23.07.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 8902503 A</td>
<td>23.01.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1219692 B</td>
<td>24.05.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9105192 B1</td>
<td>23.07.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5049336 A</td>
<td>17.09.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 72414 T</td>
<td>15.02.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68900807 D</td>
<td>19.03.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2030966 T</td>
<td>16.11.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3004136 T</td>
<td>31.03.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 169950 B</td>
<td>02.08.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SU 1837958 A3</td>
<td>30.08.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1334964 C</td>
<td>28.03.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2239142 A1</td>
<td>12.06.1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9720630 A1</td>
<td>12.06.1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0876215 A1</td>
<td>11.11.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000501371 T</td>
<td>08.02.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 242052 T</td>
<td>15.06.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59610514 D</td>
<td>10.07.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9102614 A</td>
<td>21.01.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4226104 A</td>
<td>14.08.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3136492 B</td>
<td>19.02.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5149896 A</td>
<td>22.09.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 172234 B</td>
<td>08.12.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9400786 B1</td>
<td>31.01.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2014315 C1</td>
<td>15.06.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1248985 B</td>
<td>11.02.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 117664 T</td>
<td>15.02.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69106948 D,T</td>
<td>09.03.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2067139 T</td>
<td>16.03.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 463673 T</td>
<td>08.05.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3015112 T</td>
<td>31.05.1995</td>
</tr>
<tr>
<td>EP 0987220 A1</td>
<td>22.03.2000</td>
<td>CA 2344250 A1</td>
<td>23.03.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0015551 A1</td>
<td>23.03.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6389299 A</td>
<td>03.04.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20011239 A</td>
<td>18.05.2001</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
<td>Publication date</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>CN 1335819 A</td>
<td>13.02.2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6358486 B1</td>
<td>19.03.2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2003525188 T</td>
<td>26.08.2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA 4787 B1</td>
<td>26.08.2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 9913727 A</td>
<td>05.04.2005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INFORME DE BUSQUEDA INTERNACIONAL

A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD
CIP 7 C01B33/46, C10G11/02, B01J21/06, 21/12

De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y la CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
CIP 7 C01B, C10G, B01J

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
CIBEPAT, EPODOC, WPI, CAS

C. DOCUMENTOS CONSIDERADOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoría*</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para las reivindicaciones nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 340862 A (ENICHEM SYNTHESIS S.p.A.) 08.11.1989; todo el documento</td>
<td>1-32</td>
</tr>
<tr>
<td>A</td>
<td>EP 340868 A (ENIRICERCHE S.p.A.) 08.11.1989; todo el documento</td>
<td>1-32</td>
</tr>
<tr>
<td>A</td>
<td>US 6121187 A (MAIER) 19.09.2000; todo el documento</td>
<td>1-32</td>
</tr>
<tr>
<td>A</td>
<td>EP 463673 A (ENIRICERCHE S.p.A.) 02.01.1992; todo el documento</td>
<td>1-32</td>
</tr>
<tr>
<td>A</td>
<td>EP 987220 A (TECHNISCHE UNIVERSITEIT DELFT - ABB LUMMUS GLOBAL INC.) 22.03.2000; todo el documento</td>
<td>1-32</td>
</tr>
</tbody>
</table>

☐ En la continuación del recuadro C se relacionan otros documentos
☒ Los documentos de familias de patentes se indican en el anexo

* Categorías especiales de documentos citados:

 "A" documento que define el estado general de la técnica no considerado como particularmente relevante.

 "E" solicitud de patente o patente anterior pero publicada en la fecha de presentación internacional o en fecha posterior.

 "L" documento que puede plantear dudas sobre una reivindicación de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada).

 "O" documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio.

 "P" documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad reivindicada.

 "T" documento ulterior publicado con posterioridad a la fecha de presentación internacional o de prioridad que no pertenece al estado de la técnica pertinente pero que se cita por permitir la comprensión del principio o teoría que constituye la base de la invención.

 "X" documento particularmente relevante; la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva por referencia al documento aisladamente considerado.

 "Y" documento particularmente relevante; la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva cuando el documento se asocia a otro u otros documentos de la misma naturaleza, cuya combinación resulta evidente para un experto en la materia.

 "&" documento que forma parte de la misma familia de patentes.

Fecha en que se ha concluido efectivamente la búsqueda internacional: 27 Junio 2005 (27.06.2005)

Fecha de expedición del informe de búsqueda internacional: 29 JUL 2005

Nombre y dirección postal de la Administración encargada de la búsqueda internacional: O.E.P.M.
C/ Panamá 1, 28071 Madrid, España.
Nº de fax 34 91 3495304

Funcionario autorizado: N. Vera Gutiérrez
Nº de teléfono: 34 91 3495544

29.07.2005
<table>
<thead>
<tr>
<th>Documento de patente citado en el informe de búsqueda</th>
<th>Fecha de publicación</th>
<th>Miembro(s) de la familia de patentes</th>
<th>Fecha de publicación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IT 1217525 B</td>
<td>22.03.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4992608 A</td>
<td>12.02.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68910871 D,T</td>
<td>05.01.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2059701 T</td>
<td>16.11.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2779450 B</td>
<td>23.07.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 8902503 A</td>
<td>23.01.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1219692 B</td>
<td>24.05.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9105192 B1</td>
<td>23.07.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5049536 A</td>
<td>17.09.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 72414 T</td>
<td>15.02.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68900807 D</td>
<td>19.03.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2030966 T</td>
<td>16.11.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3004136 T</td>
<td>31.03.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 169950 B</td>
<td>02.08.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SU 1837958 A3</td>
<td>30.08.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1334964 C</td>
<td>28.03.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2239142 A1</td>
<td>12.06.1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9720630 A1</td>
<td>12.06.1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0876215 A1</td>
<td>11.11.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000501371 T</td>
<td>08.02.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 242052 T</td>
<td>15.06.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59610514 D</td>
<td>10.07.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9102614 A</td>
<td>21.01.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4226104 A</td>
<td>14.08.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3136492 B</td>
<td>19.02.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5149896 A</td>
<td>22.09.1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 172234 B</td>
<td>08.12.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9407086 B1</td>
<td>31.01.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2014315 C1</td>
<td>15.06.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1248985 B</td>
<td>11.02.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 117664 T</td>
<td>15.02.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69160948 D,T</td>
<td>09.03.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2067139 T</td>
<td>16.03.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 463673 T</td>
<td>08.05.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3015112 T</td>
<td>31.05.1995</td>
</tr>
<tr>
<td>EP 0987220 A1</td>
<td>22.03.2000</td>
<td>CA 2344250 A1</td>
<td>23.03.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0014519 A1</td>
<td>23.03.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6389299 A</td>
<td>03.04.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20011239 A</td>
<td>18.05.2001</td>
</tr>
<tr>
<td>Documento de patente citado en el informe de búsqueda</td>
<td>Fecha de publicación</td>
<td>Miembro(s) de la familia de patentes</td>
<td>Fecha de publicación</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>--------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>CN 1335819 A</td>
<td>13.02.2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6358486 B1</td>
<td>19.03.2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2003525188 T</td>
<td>26.08.2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA 4787 B1</td>
<td>26.08.2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR 9913727 A</td>
<td>05.04.2005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>