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Study site. The experimental study was conducted at Pollença bay (Mallorca Island, Western Mediterranean), a sheltered bay15

exposed to high human pressure (1) with the sea bottom colonized by Posidonia oceanica. At the northeast of the bay and at16

2-3 m water depth, P. oceanica grows forming rings which are delimited by bare sand or P. oceanica dead matte colonized by17

sparse vegetation of the macroalgae Caulerpa prolifera and the seagrass Cymodocea nodosa. The measurements for this study18

were conducted on six P. oceanica rings located at 150-250 meters from the coast, although there is a wave breaker in between19

(around 75 and 150 meters of distance to the rings), in September 2021.20

Fieldwork sampling. In each selected P. oceanica ring, we laid one transect perpendicular to the vegetation front from one21

meter before the inner edge of the front to one meter after the outer edge of it. Along each transect, and every 20 cm, we22

measured P. oceanica shoot density in 25 × 25 cm squares and collected a sample of the top 10 cm of sediment with 2.6 cm23

diameter cores. The sediment was fixed in 1 M zinc acetate (vol:vol). The samples were stored frozen until distillation. Acid24

volatile sulfide (AVS) was liberated by the addition of 6 M HCl (in 50% ethanol) and was trapped in zinc acetate, following25

Fossing & Jørgensen (1989) (2) and Marbà et al. (2007) (3). The concentrations of AVS pools from the traps were determined26

spectrophotometrically according to Cline (1969) (4).27

The sulfides in the AVS pool can contain sulfides bound to Fe as FeS. However, the carbonate sediment in the coasts of28

Mallorca, and in the Pollença bay in particular, are strongly iron-depleted, so the fraction of sulfides bound to Fe as FeS should29

be very small in this case (13, 19). Therefore we consider the concentration of AVS pools to be a fair approximation of the30

porewater sulfide concentration at this location, which corresponds to the sulfide connectration described by the model.31

At the inner and outer edges of each ring, we collected three shoots for determination of δ34S in the leaves. In the laboratory,32

we scraped the epiphytes from the leaves, soaked the leaves into miliQ water for 5 minutes to remove the salts, and oven-dried33

them at 60◦C for 48h. The δ34S in the samples was determined at the Iso Analytical Limited Lab (UK) using a continuous34

flow isotope ratio mass spectrometer interfaced with an elemental analyzer (EA-IRMS).35

Model for coupled vegetation density and sulfide concentration dynamics36

We build on a previous model (5) for the dynamics of the vegetation density n ≡ n(x, y, t) to include the effects of hydrogen37

sulfide concentration S ≡ S(x, y, t).38

The time evolution of the vegetation is described by the following partial differential equation:39

∂tn = (ωb − ωd(n, S))n+ d0∇2n+ d1n∇2n+ d1|∇n|2, [1]40

where ωb refers to the branching rate, the terms with spatial derivatives encode clonal growth mechanisms (5), with ∇ = (∂x, ∂y),41

and the mortality rate ωd depends not only on the local density but also on the porewater hydrogen sulfide concentration S in42

µM . Direct measurements of demographic rates of P. oceanica exposed to different sulfide concentrations indicate a clear effect43

of sulfides on mortality, reducing the shoot population growth rate up to 15% when exposed to moderate sulfide concentrations44

around 30µM (6). We include this effect in our model increasing the mortality ωd proportionally to the sulfide concentration S:45

ωd(n, S) = ωd0 −
ωd0an

1 + an
+ bn2 + γS. [2]46

Parameter γ is the sensitivity of the plant to sulfide concentration and measures the increment of the mortality rate for each unit47

of sulfide concentration. ωd0 represents the intrinsic mortality rate of a shoot in the absence of neighboring plants, determining48

the typical lifespan of a single shoot, which can depend on external factors such as temperature, salinity, or light availability49

(7, 8). Moreover, local density-dependent effects decreasing mortality (facilitation) appear as a result of stress amelioration, for50

example reducing wave energy within the meadow or contributing to stabilize or trap sediments (9). Facilitation is included via51

the term µan
1+an which grows linearly with n for low densities and saturates to the value of µ which corresponds to the maximum52

facilitation. To avoid unrealistic growth, facilitation can not overcome mortality, since it would represent the creation of plants.53

Hence, µ ≤ ωd0 which for simplicity we choose µ = ωd0. The third term in the right hand side of (2) represents negative effects54

increasing mortality with density, as a result from self-shading or competition due to resource depletion, determining the55

maximum density in the meadow.56

The evolution of the sulfide concentration is dominated by three processes, the diffusion of organic matter produced by57

the plant, production of sulfides due to decomposition, and sulfide removal. In fact, it is possible to describe the evolution of58

both organic matter and sulfides with two equations, similarly to what is done in other models (10), where organic matter59

diffuses to the surroundings and generates sulfides, which also are able to diffuse on a slower time scale through the sediment.60

However, we prefer to use a simpler description accounting only for sulfide concentration, thus, effectively, sulfides are produced61

exogenously at a constant rate and proportionally to death plants, and its diffusion encompasses not only diffusion of sulfides62

in the sediment but diffusion of organic matter in the water column due to the flow. The evolution of the concentration of63

sulfide S ≡ S(~x, t) is then described by64

∂tS = csωd(n, S)n+ Ps − δsS − δonS +Ds∇2S, [3]65

where cs accounts for the increment of sulfide concentration for each dead shoot, δs + δon is the rate of removal of sulfides, and66

Ds is the effective diffusion of sulfides. We consider all parameters to take only positive values. Thus, Eqs. (1-3) reproduce the67
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coupled dynamics of vegetation and sulfide concentration and determine the effect of this toxic compound on the growth of the68

plant.69

Concerning the generation of sulfides, both exogenous carbon inputs and endogenous carbon generated by dead plants,70

after being buried in the first centimeters of sediment, drive sulphate reduction, resulting in increasing porewater sulfide71

concentrations. The sulfate reduction rate (SRR) quantifies the production of sulfide. This flux can not be directly associated to72

the net sulfide production, because sulfide is oxidized back again to sulfate if oxygen is present in the upper layer of the sediment.73

Furthermore, seagrass roots release oxygen into the sediment, particularly during day time, when the plant photosynthesizes, as74

a protection mechanism against sulfide intrusion (11), which increases sulfide oxidation. Hence, to determine the net production75

of sulfide it is necessary to consider the balance between these two processes. Seagrass sediment SRR, and sulfide and sulfate76

concentrations in the literature (6, 12–16) range between 100− 500 µM/d, 1− 300 µM , and ∼ 30 mM respectively. However,77

there are fewer estimations of the sulfide oxidation rates (12). We assume, then, the hydrogen sulfide in the sediment to be78

produced proportionally to the density of dead plants, csωd(n, S)n, and introduced also exogenously at a constant rate Ps.79

We distinguish two processes regarding sulfide removal. First, sulfide is removed through combination with iron to form80

pyrite (FeS2), which is dependent on iron concentration and independent of shoot density. Second, density-dependent processes81

include direct absorption through the roots, resulting in intoxication of the plant (17), and sulfide oxidation to sulfate due to82

oxygen released by the plant into the sediment, both of which are assumed to be proportional to shoot density and sulfide83

concentration. The contribution of each process to the total removal is unclear and highly dependent on the properties of the84

substrate. In particular, carbonate sediments, characterized by low iron availability and slow sulfide removal, are associated85

with high seagrass vulnerability to sulfide intrusion (3, 6, 13, 18–20). So, porewater sulfide is removed in Eq. (3) at a constant86

rate δs, accounting for the combination with iron, and proportionally to the shoot density and sulfide concentration, δonS,87

accounting for direct absorption and sulfide oxidation.88

The spatial reach of sulfide impacts on seagrass have been quantified in fish farms, providing insights into the spatial scale89

of sulfide effects on P. oceanica (21–24). The production of biomass at a given position can affect the growth at important90

distances due to either the direct diffusion of sulfides in the substrate or within plants, or the transport of decomposing organic91

matter by the water. Nevertheless, the real spatial range of sulfide effects is uncertain yet, ranging from tens of centimeters to92

tens of meters. Due to the limited evidence, we describe this process as regular diffusion, exploring the effects of different93

diffusion constant values Ds on the spatiotemporal dynamics.94

Parametrization for Posidona oceanica. The values of the parameters characterizing the clonal growth of several seagrasses,95

namely the branching rate and angle, and the elongation velocity of the rhizome are available in the literature. For P. oceanica96

we take the branching rate ωb = 0.6 year−1, the branching angle φb = 49◦ (∼ 45◦ for simplicity) and the elongation velocity of97

the rhizome ν = 6.11 cm/year (25). In order to show that rings can form it is useful to explore the parameter ωb in the range98

∼ 0.06− 0.6, which can be justified by measurements indicating a ten fold increment close to the coast. The coefficients of the99

terms with spatial derivatives can be approximately determined from these parameters (5). Here we take d0 = 31.1 cm2 year−1,100

and d1 = 1.04× 102 cm4 year−1. The taken value of d0 leads, for ωd ∼ ωb, to a vegetation diffusion length of 7 cm, compatible101

with the growth of a rizhome over a year for Posidonia oceanica.102

The parameter b = 6.67 cm4 year−1 is chosen to have the maximum density of 3000 shoots/m2 with no sources of mortality103

other than density dependent terms (ωd0 = γ = 0). Equivalently, to determine the scale for the shoot density we set104 √
ωb/b = 0.3 shoots/cm2. The range of bistability is mainly controlled by parameter a. Given the limited evidence, we choose105

this parameter such that the change in mortality ωd0 within the bistable range is comparable to the branching rate ∼ ωb for106

the other parameters fixed, similarly to what was done in a previous work (26).107

Estimates of sulfide removal δs + δon ∼ 1 year−1 were determined using time series (3). The variability in estimating108

such parameters is very large and some estimates are bigger than the values of the parameters δs and δo compatible with109

the existence of excitable pulses. According to Eq. (8), the parameter δs, which is the most relevant for having excitability,110

must be smaller than ωb, what means that the evolution of sulfides is slower than the time scale of vegetation. Given the111

limited precision of the data avaliable in the literature, we take δs = 3.6× 10−2 year−1 and δo = 6× 10−2 year−1 cm2 to set112

the system in the excitable region. This value is smaller than a previous estimation (3) but reasonable within the variability113

of sulfide concentration measures. The production of sulfides Ps is included in the model to allow to reproduce a constant114

background of sulfides. In our measurement this background concentration, determined using the values of sulfide concentration115

outside of the ring, is S0 = Ps/δs ∼ 31.4 µM, and we set Ps = 1.13 µM year−1. Parameter cs ∼ 30.6µM cm2 is set to fit116

the scale of the measured sediment sulfide concentrations, ensuring the order of magnitude, while being in agreement with117

other previous experimental measurements (6). To determine the values of cs we have used the relation between the sulfide118

concentration and vegetation density for the stationary homogeneous solution S∗ = csωbn
∗+Ps

δs+δon∗ , which linearized allows to119

estimate an order of magnitude for cs from the relation between sulfide concentration and density determined experimentally120

Sexp ∼ Ps/δs + (csωbδs − Psδo)/δ2
snexp with the other parameters fixed. Regarding sulfide diffusion, there are no precise121

estimates of the diffusion coefficient of sulfides, which we have changed significantly to investigate its role in the dynamics. The122

precise values used are given in the figure captions. The value used in Fig. 3 to generate traveling pulses is Ds = 3.6 cm2
123

year−1 which correspond to a diffusion length
√
Ds/δs = 0.1 m, compatible with diffusion through the sediment.124

Finally, the sensitivity to sulfides is one of our main control parameters and we vary it significantly to explore the different125

dynamical regimes. The precise values are indicated in the figures. The value used in the numerical simulations of the rings126

γ = 7.19× 10−3 µ M−1 year−1 (γ cs√
ωbb

= 1.1× 10−1), is less than twice (1.8 fold) the experimental value of γ = 4.1× 10−3
127
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µ M−1 year−1 (γ cs√
ωbb

= 6.27 × 10−2) estimated in the literature (6). Moreover, it is worth mentioning the experimental128

value would also exhibit excitability although in a smaller range of mortality. We also point out that the relevant parameter129

to observe a given dynamical regime is not γ alone, but the product γcs (see Fig. 2), and cs determines the scale of the130

sediment sulfide concentration. We have chosen cs to fit the measured concentrations, but sediment sulfide concentration is131

highly variable over time compared to the changes in vegetation density. Therefore the values of γ used are referred to the132

concentrations measured in September 2021, which may not account for previous sulfide exposure. Should the concentration be133

higher in other periods, the effective values of γ could be lower.134

Dimensionless parameters. For simplicity it is convenient to work with dimensionless units, such that time, space and density135

of shoots in the new units are given by: t′ = ωbt, ~r′ =
√

ωb
d0
~r, n′ =

√
b
ωb
n and S′ = 1

cs

√
b
ωb
S. We note that the branching136

rate fixes the temporal scale, the spatial scale is determined by the vegetation diffusion, the scale of the density of shoots is137

determined by the saturation parameter b, and, finally, the scale of sulfide concentration is determined by cs. In the following138

we drop the primes from the variables and parameters expressed in the new units.139

Dynamical regimes and linear stability analysis. The model given by Eqs. (1-3) describes the coupled dynamics of seagrass140

shoot density and porewater sulfide concentration, allowing to study the effects of instabilities on the spatial distribution141

of vegetation and the emerging spatiotemporal regimes. The homogeneous steady states n∗ of Eqs. (1-3) are given by the142

solutions of the nonlinear equation (ωb − ωd(n∗, S∗))n∗ = 0, where S∗ = csωbn
∗+Ps

δs+δon∗ . The solutions can be multiple depending143

on the parameters.144

Under favorable conditions (i.e. when the density-independent mortality is smaller than the branching rate ωd0/ωb < 1, light145

blue shaded region in Fig. 2), bare soil (n∗ = 0), which is always a solution of the equations independently of the parameters,146

is unstable and vegetation grows and forms a homogeneous meadow with density n∗ = n∗p. Given a fixed branching rate,147

increasing mortality ωd0 leads to a reduction in the stationary value of shoot density, until large values of ωd0 lead to bare soil148

as the only possible stable configuration (white region). As a result of facilitative effects, the systems exhibits bistability at149

values of ωd0 above, but close to, the critical value (ωd0/ωb = 1) provided moderate sensitivity to sulfide concentration (γ),150

leading to the populated and unpopulated solutions coexisting for a range of ωd0 values above ωb (dark blue shaded region151

in Fig. 2). In this regime an additional homogeneously populated unstable solution n∗ = n∗u with an intermediate density152

between 0 and n∗p exists too.153

The homogeneous solutions are affected by different instabilities that determine the spatiotemporal evolution of the vegetation154

density. We use linear analysis to calculate the stability of the stationary homogeneous solutions by considering perturbations155

of the form n = n∗ + np, S = S∗ + Sp. The linearized systems reads:156

∂tnp = (ωb − ωd(n∗, S∗) + β(n∗))np − γn∗Sp + (d0 + d1n
∗)∇2np, [4]157

158

∂tSp = cs(ωd(n∗, S∗)− β(n∗))np + (csγn∗ − δs − δon∗)Sp
−δoS∗np +Ds∇2Sp,

[5]159

where β(n∗) = −2bn∗ + ωd0an
∗

(1+an∗)2 . Considering perturbations of the form ∼ e−i~q·~x the following eigenvalue problem results,160 ∣∣∣∣ωb − ω∗d + β∗ −D∗nq2 − λ −γn∗
cs(ω∗d − β∗)− δoS∗ csγn

∗ − δs − δon∗ −Dsq2 − λ

∣∣∣∣ = 0 [6]161

where q2 = ~q · ~q = q2
x + q2

y and β∗ = β(n∗), ω∗d = ωd(n∗, S∗) and D∗n = d0 + d1n
∗. Thus, the eigenvalues for the unpopulated162

solution (n∗ = 0) are λ = ωb − ωd0 − γPs/δs − d0q
2 and λ = −δs −Dsq2. The first eigenvalue is negative for all values of q163

when ωb > ωd0 + γPs/δs, which corresponds to a transcritial bifurcation determining the stability of the unpopulated solution.164

The second eigenvalue, which is always negative, determines the time scale of sulfides close to the unpopulated solution being165

determined by the removal rate δs. Both eigenvalues have high-wavenumber damping given by diffusion.166

The eigenvalues of the populated solutions are given by roots λ of the following characteristic polynomial:167

λ2 − λ(β∗ − (D∗n +Ds)q2 + csγn
∗ − δs − δon∗)

−β∗(δs + δon
∗) + csωbγn

∗ − γn∗δoS∗

−(β∗Ds +D∗n(csγn∗ − δs − δon∗))q2

+D∗nDsq4 = 0.

[7]168

Finding the roots of (7), one obtains that the homogeneous solution n∗ = n∗u is always unstable, while n∗ = n∗p is always stable169

for low enough ωd0. Instead for values of ωd0 comparable to ωb, and large enough sensitivity to sulfide γ, the total mortality170

ωd increases significantly with increasing sulfide concentration, destabilizing the homogeneous vegetation distribution in two171

different ways.172

On one hand, it can experience an oscillatory instability of the homogeneous meadow, a Hopf bifurcation, where vegetation173

experiences a periodic cycle (pink region in Fig. 2). The Hopf bifurcation can be identified by imposing λ(q = 0) = iω with174

ω ∈ IR in Eq. (7) and determining this way the parameter regimes leading to oscillatory behavior. The presence of oscillations175
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can be easily understood considering the negative feedback loop between vegetation and sulfides. The growth of vegetation176

leads to sulfide production with a certain time lag, which beyond a threshold concentration causes vegetation density to decline.177

The production of sulfides, then, decreases as well until its concentration becomes low enough to allow the vegetation to regrow,178

generating a spatially homogeneous periodic oscillation of the vegetation density and sulfide concentration.179

On the other hand, the homogeneous solution can also experience a Turing instability, which is calculated imposing the180

conditions Re[λ(q)] = Re[ ∂λ(q)
∂q

] = 0 on Eq. (7) and it is indicated in Fig. 2 with dashed lines for different values of the sulfide181

diffusion constant Ds. As a result of this instability spatial modulations grow leading to the formation of regular patterns. The182

spatiotemporal dynamics resulting from these two combined instabilities leads to a very complex Turing-Hopf behavior (27). In183

this work we focus on the case in which the dynamics is dominated by the Hopf bifurcation, which corresponds to low values of184

Ds (Fig. 2), in particular, values of the interaction length of vegetation driven by sulfides
√
Ds/δs smaller than half meter.185

In this case, starting from a populated homogeneous solution and increasing ωd0, the Hopf bifurcation occurs first and the186

oscillatory dynamics dominates over pattern formation.187

In the bistable regime the homogeneous steady state n∗p coexists with the unpopulated state n∗ = 0 and the unstable188

homogeneous steady state n∗u. The intermediate density n∗u acts as a threshold for the facilitation to operate and sustain an189

homogeneous meadow. On top of this, the presence of a cycle bifurcating from the Hopf instability of the upper homogeneous190

solution n∗p, and whose amplitude grows as mortality is increased, can lead to a situation in which, during the cycle, the191

density reaches the value of the unstable solution n∗u. At this point the cycle is destroyed, since facilitative interactions are192

not strong enough to support vegetation for densities below n∗u. This transition, known as homoclinic bifurcation, is a global193

bifurcation that changes the dynamics of the system drastically. Close to the onset of the homoclinic bifurcation, the dynamics194

of the periodic oscillation become very slow for densities close to n∗u, increasing the period of the oscillations, which diverges at195

threshold (28). When the homoclinic transition is crossed and there is no limit cycle (orange region in Fig. 2), the dynamics196

becomes excitable. Since, n∗u acts as a threshold for the vegetation to grow, vegetation will decrease exponentially to zero197

below this threshold, while densities larger than n∗u will allow the vegetation to grow, increasing also the sulfide concentration198

until a certain point in which mortality overshoots leading to vegetation density to decrease again below n∗u, and then to zero.199

This excitable excursion reproduces a single cycle of the former oscillatory state. In this excitable regime the final state is200

always bare soil independently of the initial density, but if the initial vegetation is dense enough to overcome the threshold,201

then the system produces a pulse of vegetation before ending up in bare soil.202

The curve delimiting the homoclinic bifurcation in parameter space (orange region in Fig. 2) is born at two Takens-Bogdanov203

(TB1,2) points, where the Hopf coincides with the saddle node bifurcation. Writing the stationary condition as ωd0 ≡ ωd0(n∗)204

one can impose the saddle node condition ∂ωd0(n∗)
∂n∗ = 0 and introduce it in Eq. (7). This forces one of the eigenvalues to be205

zero. Imposing the second eigenvalue to be zero allows to determines the TB points. The three condition give involved relations206

which are solved numerically.207

Under the right conditions, an analytical criteria for the existence of a TB can be derived. In general the maximum208

vegetation density is determined by the term bn2 present in the total mortality. However the term γS also prevents an unlimited209

growth determining the maximum value of the density. Under these circumstances a good approximation is to neglect the term210

bn2. For δo = Ps = 0, this allows to find an approximated value of the mortality at which the TB1 takes place:211

ωd0,TB1

ωb
≈ 1

1− δ2
s

ω2
b

[8]212

Since the TB1 point is the origin of the homoclinic bifurcation, the existence of a TB point is good indication of the existence213

of excitable dynamics in a nearby parameter region. This requires the right hand side of Eq. (8) to be positive, as the mortality214

and branching rates take positive values only. Thus, excitability is more easily observed for δs < ωb. This implies that the215

formation of rings are most likely to occur if the removal rate of sulfides δs is smaller than the branching rate of the plant ωb.216

Numerical simulations. The model described by (1), (2) and (3) is a system of two coupled partial differential equations (PDEs)217

which is integrated in time with a pseudo-spectral method (29). We consider a squared grid with Nx and Ny grid points218

with periodic boundary conditions and we integrate the linear terms in Fourier space exactly, while the nonlinear terms are219

integrated using a second-order in time approximation.220

The excitable region is calculated using numerical simulations for the temporal systems where the diffusion in space has not221

been considered. Starting from the stationary populated solution n∗, S∗ plus a small perturbation as initial condition we led222

the system time evolve for long times and compute the amplitude of the limit cycle. Following this procedure for different223

values of ωd0 in the bistable range one can identify when the minimum density of the limit cycle coincides with the value of the224

unstable branch n∗u. This process is repeated for different values of the parameter γ to identify the homoclinic bifurcation in225

the phase diagram in Fig. 2.226

Numerical simulations of excitable pulses or rings are performed using a grid of size Nx = Ny = 512 starting with an initial227

condition with S(~x) = S0 and with spots of vegetation located at different positions where the density n follows a Gaussian228

function in two dimensions where the maximum density has a value of the density equal or greater than n∗u for each parameter229

set. Neither the width of the Gaussian nor the initial position have effect on the final ring. A different initial spatial distribution230

has been used capturing the details of vegetation from ortophotos. The images have been processed in gray scale filtering231

regions with vegetation over a certain threshold and converted to a binary array Nx = Ny = 1024 with value equal to one for232

the position of vegetation. A diffusive filter has been applied to obtain soft transitions at the interfaces by multiplying by233
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e−k
2t the Fourier amplitudes Ak of the array, where k is the wavenumber and t controls the softness of the interfaces. Finally,234

multiplying the values of the array by the stationary value of the density n∗ for each parameter set, the array has been scaled235

to obtain the desired values of the maximum of the vegetation density for the initial condition.236
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Fig. S1. Aerial image of the study site. Drone image of the study site in Pollença bay showing the environment where the vegetation patterns of Posidonia oceanica develop.
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Fig. S2. General aerial view of the patterns observed in the Posidonia oceanica meadows present in the Pollença bay.
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Fig. S3. Excitable ring. High-resolution 2021 drone image of an excitable ring of Posidonia oceanica in the Pollença bay.
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Fig. S4. Collision of two rings. High-resolution 2021 drone image of the region where two excitable rings collided.
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Fig. S5. Spiral of Posidonia oceanica. High-resolution 2021 drone image showing a spiral of Posidonia oceanica and other disordered patterns as a result of the
excitable dynamics.
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Movie S1. Time evolution of excitable rings under spatially homogeneous mortality: Movie of the simulation237

shown in Figs. 3 (a-e) for homogeneous mortality conditions starting from initial conditions resembling aerial238

pictures of the vegetation from 1973. A collision of two rings is observed during the evolution.239

Movie S2. Time evolution of excitable rings under spatially heterogeneous mortality conditions: Movie of the240

simulations shown in Figs. 3 (f-j) for spatially heterogeneous mortality conditions starting from vegetation241

initial conditions resembling aerial pictures from 1973.242

Movie S3. Animation of aerial images of the study site in Pollença bay from 1973 to 2018 showing the actual243

evolution of the spatial distribution of vegetation patterns.244

Movie S4. Animation showing a zoom of the collision of two excitable rings from historic aerial images from245

1973 to 2018.246
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