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1. MAGNITUDES MEASURED BY THE SCATTERING EXPERIMENTS 

As a representative example, Figure S1.1 shows the differential scattering cross section 

measured by SANS on the sample with 50/50 composition (50h). These data are 

combined with the information obtained from D7. Using both instruments, the Q-range 

from about 0.003 to 2.5Å-1 has been covered. This is equivalent to spatial scales (~1/Q) 

ranging from about the bond length to several nanometers. In addition to the diffraction 

experiments, we have also carried out EFWS on IN13 which cover the high-Q regime 

0.52 ≤ Q ≤ 4.5 Å-1. We address in the following the origin of the contributions to the 

scattered intensity, taking Figure S1.1 as illustration.  

The interaction of a given nucleus with neutrons is characterized by the scattering length 

b. This magnitude depends on the relative orientation of the neutron-nuclear spin pairs 

and varies from one isotope to another. The huge difference of the scattering length values 

for hydrogen and deuterium (bH = -3.74 fm, bD = 6.67 fm; bD ~ bC = 6.65 fm) produces a 

high contrast between h/d isotopically labeled macromolecules. Therefore, SANS 

diffraction experiments accessing low values of Q —exploring thus large-scale 

properties— on mixtures where one of the components is protonated and the other is 

deuterated are highly sensitive to thermally driven concentration fluctuations (TCF). In 

such a Q-range also long-range density fluctuations contribute to the scattered intensity, 

though this contribution is usually expected to be much less important than that of TCF. 

Both, concentration and density fluctuations, give rise to coherent scattering. Toward 

high-Q values —local length scales— the contribution of TCF tends to vanish, and 

coherently scattered neutrons reflect instead the (partial) structure factors revealing the 
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short-range order in the sample. Its main manifestation in glass-forming systems like 

polymers is the broad peak usually appearing in the Q-range of about 1 Å-1 reflecting 

inter-molecular correlations.  

 

Figure S1.1. SANS (circles, scale on the left) and D7 (diamonds, scale on the right) 
results on the 50h-sample (50% hSBR / 50% dPS composition) around RT. Areas with 
different colors show the different contributions to the differential scattering cross-
section: the Q-independent incoherent scattering (red) and the coherent contributions 
mainly dominated by concentration and long-range density fluctuations at low Q (yellow) 
and reflecting the short-range order at high Q (blue). 

 

Superimposed to these coherent contributions incoherent scattering of very different 

nature is also present in the measured signal. The incoherent differential scattering cross 

section is Q-independent and appears as a flat background in diffraction experiments. 

Incoherent scattering is particularly important by hydrogen nuclei. The incoherent 

scattering cross-section of H amounts to 𝜎#$%&  » 80 barn, while its coherent cross-section 

is  𝜎#$%&'  » 2 barn. In general, in hydrogenated samples, or samples containing hydrogens, 
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the incoherent cross section (summed up over all nuclei of the system) is much higher 

than the coherent one (see Table 3 in the main text). However, this does not imply that in 

a given Q-region the incoherent scattering always dominates the spectrum, since —as we 

can see in the example of Fig. S1.1— coherent scattering strongly depends on Q. The 

neutron spin is flipped with 2/3 probability in incoherent scattering due to nuclear spin 

disorder, whereas no flip occurs in the case of coherent scattering1. Thanks to this 

property, polarization analysis of the scattered intensities allows distinguishing between 

these two kinds of phenomena. This is the principle applied in the diffraction experiments 

carried out by means of D7. As can be seen in Fig. S1.1, D7 results tell us that for the 

sample with 50% hSBR / 50% dPS composition the incoherent contribution dominates 

the scattered intensity in the high-Q range above » 0.5 Å-1. This is the range explored by 

IN13. 

On IN13, no polarization analysis is performed. Therefore, the intensity recorded in the 

EFWS has both, incoherent and coherent contributions. From the D7 results also for other 

blends shown in Fig. 3 we can infer that in the IN13 Q-window the coherent contribution 

from TCF is much smaller than the incoherent one, and that the scattered signal is 

dominated by the incoherent contribution. The exception is the sample rich in the 

deuterated component, but only in the neighborhood of the structure factor peak (around 

1.3 Å-1). D7 experiments were restricted to the 80 and 50 % SBR compositions. For the 

20 % SBR samples, we could expect qualitatively similar results as those obtained for the 

80 % SBR systems with opposite labeling.  

Even if deuterons also scatter incoherently, their incoherent cross-section (2barn) is 

negligible compared to that of hydrogen. Carbon scatters only coherently. Thus, 

incoherent scattering from the samples investigated basically stems from hydrogens. 
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Contrarily to coherent scattering, incoherent scattering does not tell anything about 

structural features of the sample. However, it carries very valuable information on the 

self-atomic displacements that can be unveiled by energy-transfer (ℏw) resolved 

experiments. The incoherent double differential scattering cross-section is in fact 

proportional to the incoherent scattering function 𝑆#$%(𝑄,w). 𝑆#$%(𝑄,w) is the Fourier 

transform of the intermediate incoherent scattering function 𝐼#$%(𝑄, 𝑡), and the double 

Fourier transform yields the self-part of the van Hove correlation function 𝐺1(𝑟, 𝑡). In the 

classical limit, 𝐺1(𝑟, 𝑡) is the probability of a given nucleus to be at a distance r from the 

position where it was located at a time t before. Incoherent scattering looks at correlations 

between the positions of the same nucleus at different times. IN13 EFWS record the 

intensity of neutrons scattered with energy tranfers smaller or equal to the instrument 

energy resolution (dℏw » 8 µeV). Though not strictly exact,2,3 the information extracted 

from the EFWS can be considered as an approximation to the intermediate incoherent 

scattering function at the time corresponding to the IN13 resolution 𝐼#$%(𝑄, 𝑡3) (see, e.g. 

4), with 𝑡3	= ℏ / dℏw » 80 ps.  

Moving to X-Rays, the weights of the contributing correlations to the structure factor 

measured by diffraction are the Q-dependent atomic scattering factors for X-Rays. Since 

this probe mainly interacts with the electrons, these weights are proportional to the atomic 

number and no sensitive to isotopic labeling. Therefore, due to lack of contrast, the low-

Q scattering from TCF, so prominent in the SANS experiments on our samples, is absent 

in the X-Ray diffraction measurements (see Fig. S1.2 as an example).  
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Figure S1.2. Comparison between D7 (filled symbols) and X-Ray (empty symbols) 
results for the coherent scattering of the 50d sample. 

 

2. X-RAY DIFFRACTION RESULTS: LOCAL STRUCTURE 

Since the X-Ray diffraction results are free from low-Q contributions from TCF, they 

were used to study the short-range order and possible nano-domain structuration of 

phenyl rings in the samples. Figure S2.1 shows the results obtained for the different 

blends and homopolymers. Panel (a) corresponds to samples based on hSBR and dPS and 

panel (b), on dSBR and hPS. Data have been normalized to their maximum value. This 

maximum is located at around Qmax » 1.3 Å-1, and corresponds to correlations between 

pairs of atoms belonging to nearest neighboring chains. From its position, using the Bragg 

approximation, we can infer the average inter-chain distance dchain=2p/Qmax. This is very 

close and nearly indistinguishable for all the samples: about 4.7 Å for SBR (Qmax » 1.33 

Å-1) and 4.8 Å for PS (Qmax » 1.30 Å-1), and in between for the blends. In addition, we 

can clearly see a peak centered at about 0.68 Å-1 for the PS homopolymers. This peak has 

been assigned to phenyl ring - phenyl ring correlations and thereby attributed to the nano-
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segregation of phenyl rings and main-chain atoms in PS5,6. Our experiments thus prove 

that this kind of nano-seggregation persists in oligomers as small as those here 

investigated. The location of this peak would be determined by the inter-domain distance 

D. On the other hand, the pure SBR samples do not show any clear hint for the presence 

of such a low-Q peak. In the blends there is an extra-intensity with respect to that 

corresponding to the pure SBR results in the low-Q region, which increases with 

increasing PS content. This feature could be attributed to the persistence of nano-

seggregation of the phenyl rings with respect to the main-chains also in the blends. To 

analyze this contribution, we have assumed in a first approximation that the scattered 

intensity is the simple addition of a low-Q peak arising from the nano-domain structure 

and a high-Q peak reflecting the pure inter-chain correlation contributions. To represent 

the latter, we have used the pure SBR results. Thus, the difference between the total 

pattern and the SBR pattern would in a first order correspond to the nano-domain peak. 

This difference is shown in the insets of Fig. S2.1. Using a Gaussian function to describe 

it we have obtained the position of this peak. From the Bragg approximation, the inter-

domain distance D has been deduced as function of composition. The values found are 

represented in Figure 12 together with those obtained for the average inter-molecular 

distances dchain. 
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Figure S2.1. X-Ray diffraction results on the samples composed by (a) hSBR and dPS 
and (b) dSBR and hPS, at the SBR-concentrations indicated, normalized to their value at 
the main peak. The insets show the peak resulting of subtracting the pure SBR results 
from each of the patterns. Lines are fits of a Gaussian function. 
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3. SANS RESULTS: DETERMINATION OF Ts AND c-PARAMETER 

As explained in the manuscript, the values of the spinodal temperatures Ts were obtained 

by extrapolating the law 𝐼5678(0) ∝ 𝑇78 to low temperatures and deducing the value at 

which 𝐼5678(0)=0. The construction is shown in Figure S3.1 for the samples with 20% and 

50% SBR concentration considered in the manuscript and in addition for samples with 

65% SBR content (not included in the manuscript because they were not investigated by 

IN13). The results on the 80% blends are out of the scale in this plot. 

 

 

Figure S3.1. Inverse temperature dependence of the inverse of the OZ amplitudes 
corresponding to the samples with 20, 50 and 65% SBR concentration. Lines are linear 
regression fits and arrows mark the locations of the spinodal temperatures. 
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From the SANS results the interaction parameter between the two components 𝜒 was also 

obtained from the measured amplitudes of the OZ contribution, applying the RPA 

expression: 

(∆>)?

@AB(C)
= 8

EFGHIFGHJFGH
+ 8

ELF(87IFGH)JLF
− NO

PJFGHJLF
     (S3.1) 

where Nx is the number of monomers of species x and the rest of the parameters are 

defined in the manuscript (see Figure S3.2). The values obtained are shown in the insert 

of the figure. They follow the laws 𝜒 = 0.0274 + 16.36/𝑇 (hSBR/dPS) and 𝜒 =

0.0535 + 7.36/𝑇 (dSBR/hPS). 

 

Figure S3.2. SBR volume fraction dependence of the inverse of S(0) at the temperatures 
indicated. Lines are fits of eq. S3.1. Solid symbols and lines correspond to the hSBR/dPS 
samples; empty symbols and dotted lines to the dSBR/hPS samples. The inset shows the 
inverse temperature dependence of the χ-parameter obtained from these fits, described by 
the laws indicated in the text. 



 11 

4. DSC RESULTS AND THEIR MODELING 

The approach proposed here to model the DSC behavior in the SBR/PS blends is based 

on a direct connection between DSC and broad band dielectric spectroscopy (BDS) 

experiments. We first analyze the glass transition and the dielectric relaxation of the neat 

components and afterward we model the calorimetric traces of the blends. 

 

(i) Calorimetric Traces of the Glass Transition 

Figure S4.1 shows an example of the results on the reversible part of the heat flow 

corresponding to the blend hSBR/dPS with 𝑤[\3=0.50 composition. The glass transition 

manifests as a step in this function, and the value of 𝑇] is commonly taken as the inflection 

point of reversible heat flow. To give account for the broadening of this transition, the 

construction illustrated in this figure for the case of the blend results is usually made. For 

this sample, we deduce a value of 𝑇]	= 230 K, with initial and final glass-transition 

temperature values of 𝑇],#$#^ =	221 and 𝑇],_#$ =	238 K respectively (see the arrows). The 

temperature-derivative of rev heat flow is also included in this figure; the glass transition 

is reflected as a peak in this function, where the position of the maximum corresponds to 

the inflection point of rev heat flow and thus directly gives the value of 𝑇] as usually 

defined. This function also reflects very clearly the width of the glass transition process 

and may allow resolving multiple transitions, if present in the sample7,8. 
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Figure S4.1. Reversible heat flow (circles) and its temperature derivative (squares) 
during cooling at 3 K/min for the blend 50h. The filled symbols correspond to the linear 
description of the glassy part. Dotted lines illustrate the usual construction to determine 
the initial and final glass-transition temperature values. Solid arrow marks the glass-
transition temperature as directly determined from the maximum of the derivative. 

 

In order to analyze the contribution to the experimental DSC trace of the segmental 

dynamics responsible for the glass transition, first the glassy behavior has been accounted 

for with a linear function (for the sake of simplicity) and subtracted from the DSC cooling 

scan of the reversible heat flow (Figure S4.1). We have used this procedure for the 

homopolymers as well for the blends. The resulting calorimetric traces for the hSBR/dPS 

and dSBR/hPS systems respectively, that will be used for the following analysis are 

shown in Figure S4.2 and will be referred to as segmental heat capacity, s-Cp. The 

behavior at temperatures well above 𝑇] for all samples nearly superimposes and can be 

approximately described by a power law (𝑇7$) with n=2. It is worth mentioning that the 

subtraction of a linear function does not alter the location of the inflection point. 
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Figure S4.2. Calorimetric traces after the subtraction of the glassy part; same procedure 
has been applied on the neat components and the mixtures hSBR/dPS. The solid lines 
fitting the neat polymers data were obtained by using eq. S4.2 with parameters given in 
Table S1. 

 

 

(ii) Dielectric Relaxation of Neat Components 

 

Figure S4.3 shows an example of the dielectric loss as a function of the frequency for the 

two pure polymers, hSBR and dPS (panel on the left) – dSBR and hPS (panel on the 

right), at temperatures where the main peak is well-centered in the experimental 

frequency window.  In this representation we have used Tan δ≡ a"
a'

 to minimize the impact 

of sample geometry changes that could occur for measurements over a large temperature 

interval. The main loss peak is due to the segmental dynamics or α-relaxation. 
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Figure S4.3. Frequency dependence of the dielectric tan δ for SBR (empty circles) and 
for PS (empty squares) at different temperatures. The solid lines represent the fits by 
means of the Havriliak-Negami equation for the α-relaxation and the addition of the β-
relaxation calculated by extrapolating the lower temperature description, as explained in 
Ref. 11. 

 

The dielectric α-relaxations can be described by means of the Havriliak-Negami (HN) 

equation;9,10 and the necessary β-relaxation contribution has been taken in account by 

using a Gaussian function, following previous work11. 

Figure S4.3 shows that in this way a good description of the experimental data is obtained; 

the low-frequency increase of the data is due to conductivity effects, not considered in 

this analysis. The characteristic time at each temperature can be defined as the inverse of 

the angular frequency at the dielectric loss-permittivity maximum (τmax  º ω-1max) of the 

α-relaxation process as calculated from the HN fitting parameters. Figure S4.4 shows the 

temperature dependence of the τmax for SBR and PS. The lines in the figure correspond to 

the data description by means of Vogel-Fulcher-Tammann (VFT) equation: 12-14  

𝜏(𝑇) = 𝜏d𝑒𝑥𝑝[𝐷𝑇C/(𝑇 − 𝑇C)]                                      (S4.1) 
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In the fits we kept constant the prefactor value τ∞=10-13s in the VFT equation. Table S1 

includes the values obtained for the fragility parameter, D, and the Vogel temperature 𝑇C. 

 

Figure S4.4. Temperature dependence of the characteristic times defined from the inverse 
of the frequencies of the dielectric loss maxima for the α-relaxation process of the neat 
samples investigated hSBR and dPS (empty symbols), dSBR and hPS (filled symbols). 
Circles correspond to SBR and squares to PS. The lines stand for the fits by means of the 
VFT equation.  

 

Table S1: Parameters relevant for the description of the segmental dynamics time and for 
the calorimetric data.  

sample D T0/K tmax(𝑇]∗)/s d/K ∆Cpg/Jg-1K-1 𝑇]∗/K 

hSBR 8.6 161.80 2.33 0.23 0.45 207.01 

dPS 6.3 210.75 40.66 0.14 0.32 250.22 

dSBR 8.6 163.58 2.91 0.21 0.39 208.96 

hPS 6.3 228.00 99.83 0.19 0.23 269.59 
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 (iii) Calorimetric Traces of the Neat Components 

A simple full characterization of the homopolymers’ DSC behavior has been done in 

order to establish the connection between the segmental dynamics time and the DSC data. 

Following previous work,11 the description of the DSC traces in the glass transition range 

for the neat polymers required quantifying the three main quantities for each component: 

a characteristic temperature, a measure of the width of the glass transition range and the 

associated heat capacity jump. A simple but satisfactory way to describe the experimental 

segmental heat capacity of the neat polymers near their respective glass transitions is by 

combining a sigmoidal function with a T-2 law as: 

 

(S4.2)  

 

 

where ∆Cpg is the heat capacity jump, d measures the width of the glass transition range 

and 𝑇]∗ is a characteristic temperature defined as the inflection point of the sigmoidal 

function. As can be appreciated in Figure S4.2, the description of the experimental data 

for the neat components, for example hSBR and dPS, is very good. The parameters 

determined by fitting the curves are given in Table S1.  

Using the neat polymers DSC and BDS results we can connect the DSC 𝑇]∗ value and the 

segmental relaxation time evaluated at this temperature 𝜏l𝑇]∗m for the two components. 

From the analysis of the pure polymers, respectively, we find  that the relationship 

between the dielectric α-relaxation time and the calorimetric 𝑇]∗ is 𝜏]n[\3 ≡ 𝜏n[\3l𝑇]∗m =

2.3	𝑠, 𝜏]pq[ ≡ 𝜏pq[l𝑇]∗m = 41	𝑠, 𝜏]p[\3 ≡ 𝜏p[\3l𝑇]∗m = 2.9	𝑠 and 𝜏]nq[ ≡ 𝜏nq[l𝑇]∗m =

100	𝑠. 

 

s-C𝑝 = ∆𝐶𝑝𝑔x
𝑇]∗

𝑇 y
N 1
1 + 𝑒(z{∗7z)/|
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(iv) Composition Dependence of the Glass Transition of the Blends 

The glass transition processes of the blends manifest broad features in the range between 

the 𝑇]𝑠 of the pure components, as can be observed in figure S4.2. 

Figure S4.5 shows the composition dependence of the glass transition temperatures 

defined from the inflection point. As expected 𝑇] decreases monotonously as we increase 

the content of SBR in the blends.  

Following the scheme of a related work,11 we have first described the whole set of data 

using the using the Gordon-Taylor (G-T) equation15,16 

𝑇]}~�$p = �(1 − 𝜑)𝑇]q[ + 𝑘�7z𝜑𝑇][\3� [(1 − 𝜑) + 𝑘�7z𝜑]⁄    (S4.3) 

 

where 𝜑 is the weight fraction of SBR and a fitting parameter 𝑘�7z is introduced.17 The 

G-T equation includes the Fox equation18  

1/𝑇]\~�$p=𝜑/𝑇][\3 + (1 − 𝜑)/𝑇]q[      (S4.4) 

used in previous works as a particular case (when 𝑘�7z =𝑇]q[ 𝑇][\3� ). 

The G-T equation provides a satisfactory fit of the data for both systems (Figure S4.5) 

and yields to 𝑘�7z = 1.3 for the hSBR/dPS and to 𝑘�7z = 1.6 for the inverse labeling 

dSBR/hPS. The fit by the Fox equation is shown in Fig. S4.5 as dotted lines for 

comparison. While for the hSBR/dPS blends it works rather well, for the dSBR/hPS 

blends deviations are found that can well be accounted for by the Gordon-Taylor 

equation.  

The physical meaning of the 𝑘�7z parameter is well established for strictly athermal 

incompressible mixtures. In this case, 𝑘�7z reflects the different contributions of each 
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component to the jump in heat capacity19: 𝑘�7z= DCpA /DCpB (A=SBR and B=PS in the 

present case). The Fox equation thus results as a particular case of the Gordon and Taylor 

equation that would work if: DCpA TgA=DCpB TgB. However, the Gordon and Taylor 

equation also usually works well for cases where there are weak interactions. Then, the 

value of 𝑘�7z is also influenced by the strength of the interaction. For non-ideal (real) 

mixtures with varying degrees of intermolecular interactions, the 𝑘�7z parameter is 

largely used for data fitting purposes only20. 

 

 

Figure S4.5. Evolution of the glass-transition temperature as a function of composition 
for hSBR/dPS blends (empty squares) and for dSBR/hPS (filled squares). The solid lines 
represent the description by the Gordon-Taylor equation (eq. S4.3) for the blends. Dotted 
lines are the Fox descriptions (eq. S4.4). 
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(v) Modeling the Calorimetric Traces of the Blends 

The model developed during recent years of the segmental dynamics of miscible polymer 

blends11,21,22 is based on two major ingredients: the thermally driven concentration 

fluctuation (TCFs) and self-concentration concept; it is assumed that the TCFs evolve on 

a much longer time scale than that of the segmental relaxation. This entails that the 

polymer blend can be viewed as a set of sub-volumes ‘i’ each with a different SBR 

concentration, 0 ≤ 𝜑# ≤ 1. This quasi-static distribution of concentration 𝑔(𝜑#) in the 

blends can be described by a Gaussian function centered around the bulk concentration 

of the blend 𝜑: 

𝑔(𝜑#) ∝ 𝑒𝑥𝑝
7(I�7I)?

N�?
     (S4.5) 

 

where σ is the standard deviation of the distribution of concentration.  

Within each region we consider the effective concentration 𝜑�__,# describing the fact that 

the dynamics of a given polymer segment in a blend is controlled by the local composition 

in a small region around that segment. This makes the concentration felt by each specific 

component to be higher than the average in this region. This effect is reflected by the 

corresponding self-concentration parameter, 𝜑1�~_ . Thus, the effective concentration 

𝜑�__,# in each region for the SBR and PS components is given by: 

𝜑�__,#[\3 = 𝜑1�~_[\3 + l1 − 𝜑1�~_[\3m𝜑#    (S4.6a) 

𝜑�__,#q[ = 𝜑1�~_q[ + l1 − 𝜑1�~_q[ m(1 − 𝜑#)   (S4.6b) 

In this framework, the calorimetric behavior of SBR/PS blends is assumed to be the result 

of the superposition of contributions to the segmental heat capacity from different 



 20 

regions, and within each region the result of the individual contributions from the blend 

components.11 The contribution of each component in a region i of the blend is taken 

having the shape and amplitude corresponding to the pure component and weighted by 

its concentration. Thus, the contribution to the segmental heat capacity as a function of 

temperature for each component, can be calculated as: 

 (S4.7a) 

  (S4.7b) 

where we have assumed that in the description of the segmental heat capacity the only 

parameter affected by blending is 𝑇],#∗ .  

Therefore, the whole calorimetric signal can be obtained by summing up the respective 

contributions of SBR and PS: 

𝑠-𝐶�,}~�$p(𝑇) = 𝑠-𝐶�[\3(𝑇) + 𝑠-𝐶�q[(𝑇)    (S4.8) 

 

As a final step we will assume that the connections found for the homopolymer between 

the relaxation time and 𝑇]∗ remain valid in each region of the blend, i.e. 𝜏[\3l𝑇],#∗ m = 𝜏][\3  

and 𝜏q[l𝑇],#∗ m = 𝜏]q[. In this way 𝑇],#∗ values appearing in equations S4.7a and S4.7b can 

be calculated using the VFT equation (eq. S4.1)12-14 where the parameters D and T0 

correspond to those of region “i” 

𝜏#(𝑇) = 𝜏d𝑒𝑥𝑝�𝐷#𝑇C,#/l𝑇 − 𝑇C,#m�.                                    (S4.9) 

𝑠-𝐶�[\3(𝑇) =�𝑔(𝜑𝑖)	𝜑𝑖	
∆𝐶�][\3 �

𝑇],#
∗,[\3

𝑇
�
N

1

1 + 𝑒(z{,�
∗,FGH7z)/|FGH

   

𝑠-𝐶�q[(𝑇) =�𝑔(𝜑𝑖)	(1 − 𝜑𝑖)	
∆𝐶�]q[ �

𝑇],#
∗,q[

𝑇
�
N

1

1 + 𝑒(z{,�
∗,LF7z)/|LF
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These parameters were obtained by using mixing rules with the corresponding effective 

concentrations. Particularly, a linear mixing rule is assumed for Di : 

𝐷#[\3= 𝐷[\3𝜑�__,#[\3 + 𝐷q[(1 − 𝜑�__,#[\3 )     (S4.10a) 

𝐷#q[= 𝐷q[𝜑�__,#q[ + 𝐷[\3(1 − 𝜑�__,#q[ )     (S4.10b) 

For 𝑇C,# we have used a Gordon-Taylor-like equation: 

𝑇C,#[\3 =
z�LF��87I���,�

FGH �������I���,�
FGH z�FGH

�87I���,�
FGH ������I���,�

FGH    (S4.11a) 

 

𝑇C,#q[ =
z�LFI���,�

LF ������87I���,�
LF �z�FGH

I���,�
LF ������87I���,�

LF �
                (S4.11b) 

After determining the 𝑇],#∗  values, the DSC curves can be described with the parameters 

above determined (Table S1). They were thus described in terms of those for the pure 

components and three fitting parameters: the self-concentrations of both components 

𝜑1�~_[\3  and 𝜑1�~_q[  determining the local composition in each region, and the widths s of the 

distributions of concentration associated to the spontaneous fluctuations, described by 

means of Gaussian functions, 𝑔(𝜑#). In previous work, the composition dependent values 

of s and the values of 𝜑1�~_[\3  and 𝜑1�~_q[  were obtained from fitting the BDS experimental 

results, but in this work, we have analyzed the DSC curves of the three mixtures of each 

system allowing in a first step the three parameters, 𝜑1�~_[\3  , 𝜑1�~_q[  and s, to vary freely. 

Figure S4.6 shows the steps needed to define the final parameter values: with the first 

step for each composition we have obtained the best values of 𝜑1�~_  for SBR and for PS. 

From these values we obtained the corresponding average self-concentration values 

𝜑1�~_[\3 = 0.03 and 𝜑1�~_q[ = 0.21, which in the following will be taken composition 

independent. With these fixed values of 𝜑1�~_  we have run again the minimization routine 
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for the different compositions allowing only σ to change. We note that the relatively large 

uncertainties of the self-concentration in the analyzed systems are to a large extent related 

with the reduced dynamic asymmetry of these mixtures involving quite low molecular 

weight polystyrene oligomers. The smaller difference in the Tg values of the pure 

components reduces the experimental sensitivity to the self-concentration effects.   

Finally, for each composition we have obtained the final σ values, composition 

dependent, σ=0.044 for the blend 80h, σ=0.108 for the blend 50h, σ=0.156 for the blend 

20h, σ=0.065 for the blend 80d, σ=0.112 for the blend 50d, and σ=0.092 for the blend 

20d. The resulting curves are shown in Figure S4.7 in comparison with the experimental 

data for the different blends investigated, where an overall excellent agreement between 

the two sets of data can be observed.  

 

 

Figure S4.6. Evolution of the model parameter as function of the concentration of SBR 
in the blend. The red squares represent 𝜑1�~_[\3  and the blue circles represent the 𝜑1�~_q[ 	for 
each composition; solid lines in respective colors are the average value, 𝜑1�~_[\3 = 0.03 and 
𝜑1�~_q[ = 0.21. Diamonds stand for σ values, composition dependent, for the different 
blends, keeping 𝜑1�~_[\3  and 𝜑1�~_q[  fixed. 
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Figure S4.8 shows the composition dependence of the width of the Gaussian distribution 

of concentration fluctuations deduced from the SANS results (described in the main 

manuscript) for four different values of the diameter of the explored sphere, 2Rc, 

compared with the σ values obtained by the DSC modeling. From the comparison we can 

deduce that the relevant length scale for the a-relaxation would be of 30 ± 10 Å in these 

mixtures. 

 

 
 
Figure S4.7. Segmental heat capacity for hSBR/dPS and dSBR/hPS blends. Solid lines 
stand for the output of the model. 
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Figure S4.8. Concentration dependence of the width of the Gaussian distributions of 
concentration fluctuations deduced from the SANS results assuming different values for 
the relevant length scale 2Rc (filled symbols). Empty symbols correspond to values 
obtained by fitting DSC data (Fig. S4.7). 

 

(vi) Evaluation of the components’ effective 𝑻𝒈 values  

In Figure S4.9 the good agreement between the DSC trace and model is corroborated in 

the example for the 𝑤n[\3 = 0.5 blend, when the temperature derivative is compared. 

The good quality of the DSC data description is emphasized, both in peak position and in 

the breadth of the glass transition range. Figure S4.10 shows the direct comparison 

between experimental and calculated values of 𝑇]  as a function of blend composition, 

both series calculated from the inflection point of the segmental heat capacity s-Cp(T) 

curves (peak temperatures in Figure S4.9). A very good agreement is obtained in this 

comparison. The whole set of data is very well described by the Gordon-Taylor equation 

(eq. S4.3). 
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Figure S4.9. Segmental heat capacity (a) and temperature derivative of the segmental 
heat capacity (b) and corresponding output model (solid line) for the 𝑤n[\3 = 0.5; dashed 
lines show respectively the model contribution of SBR and PS components. Vertical 
arrows mark the corresponding values of 𝑇] . 

 

The modeling provides not only the overall DSC curves but also the individual 

contributions from SBR and PS components (see dashed and dotted lines in Figure S4.9). 

From the inflection point of the such calculated s-Cp(T) curves for the components, the 

so-called effective glass transition temperature23 can be determined for each component 

of the blend. These effective 𝑇],�__ values have been included in Figure S4.10.  
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Figure S4.10. Comparison of the concentration dependence of the glass transition 
temperature as determined from the experimental curves (filled squares) and the whole 
model curve (empty circles). The lines are the prediction of the Gordon and Taylor 
equation (eq. S4.3) for the blends. The values of the effective glass-transitions of the 
components obtained from the model curves are shown as down-triangles for PS and up-
triangles for SBR. 
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