Evaluation of algaecide effectiveness of five different oxidants applied on harmful phytoplankton

Javier Moreno-Andrés^{1§*}, Leonardo Romero-Martínez^{1§}, Sergio Seoane^{2,3}, Asunción

Acevedo-Merino¹, Ignacio Moreno-Garrido⁴ and Enrique Nebot¹

¹ Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR - Marine Research Institute, CEIMAR - International Campus of Excellence of the Sea. University of Cadiz. Spain

² Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, 48940, Spain.

³ Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station, PiE- UPV/EHU), Plentzia, 48620, Spain.

⁴ Institute of Marine Sciences of Andalusia (CSIC), Campus Río San Pedro, s/n 11510, Puerto Real, Cádiz, Spain.

Supplementary Material

Table S.1. Main characteristics for each chemical investigated in this study. *	[∗] (V vs.	SHE;
pH 7)		

Chemical Reagent	Redox potential, E ^{0*}	Life- time	Possible major action mechanism	Target Concentration	Main References
H ₂ O ₂	1.8	Hours to days	<i>Extracellular:</i> Passive diffusion trough cell membrane porins. Lipid peroxidation. <i>Intracellular:</i> Inhibition of peroxidase activity, metabolic activity, and photosynthesis. Internal Fenton process	0 – 10 mg·L ⁻¹ (0-0.29 mM)	[1-4]
C ₂ H ₄ O ₃ (PAA)	1.4	Minutes to hours	<i>Extracellular:</i> PAA easily adsorb onto cell membrane (alkyl moiety which provides hydrophobic characteristics). Passive diffusion and oxidize sulfhydryl (-SH) and sulfur bonds (S-S). Damage on outer membrane lipoproteins. Lipid peroxidation. <i>Intracellular:</i> Inhibition of catalases, denaturalization of DNA. Internal Fenton process.	$0 - 2 \text{ mg} \cdot \text{L}^{-1}$ (0-0.026 mM)	[1,5–8]
S ₂ O ₈ ²⁻ (PDS)	2.1	Days to months	Extracellular: Cell membrane	0 - 192.13 mg·L ⁻¹ (0-1 mM)	[1,9]
HSO ₅ - (PMS)	1.82	Hours	<i>Extracellular:</i> Changes in the proteins in cell membranes. Fast reaction with dissolved anions	$0 - 2 \text{ mg} \cdot \text{L}^{-1}$ (0-0.018 mM)	[10]
NaClO	1.4	Hours to days	<i>Extracellular:</i> Disrupt cell membrane integrity <i>Intracellular:</i> chlorophyll autofluorescence, intracellular esterase activity, primary productivity	$0 - 4 \text{ mg} \cdot \text{L}^{-1}$ (0-0.05 mM)	[1,11,12]

Table S.2. Growth rates calculated for both *P. parvum* and *H. akashiwo* upon exposure to different concentration of reagents tested (H_2O_2 , PAA, PMS, PDS, NaClO). The growth rate has been calculated during the exponential growth of each microalgae, which, in general, has been up to day 14: *P. parvum* and day 9: *H. akashiwo*.

Reagent	Species	Growth rate μ (d ⁻¹) ± S.D.				
		Control	2.5 mg/L	5 mg/L	7.5 mg/L	10 mg/L
H ₂ O ₂	P. parvum	0.25 ± 0.02	0.28 ± 0.01	0.20 ± 0.03	0.15 ± 0.02	-0.06 ± 0.04
	H. akashiwo	0.18 ± 0.01	0.18 ± 0.01	0.18 ± 0.01	0.12 ± 0.02	-0.15 ± 0.01
		Control	0.1 mg/L	0.5 mg/L	1 mg/L	2 mg/L
РАА	P. parvum	0.27 ± 0.01	0.26 ± 0.01	-0.10 ± 0.01	-0.07 ± 0.01	
	H. akashiwo	0.16 ± 0.01	0.13 ± 0.02	0.08 ± 0.03	0.06 ± 0.05	$0.06{\pm}0.01$
		Control	0.1 mg/L	0.5 mg/L	1 mg/L	2 mg/L
PMS	P. parvum	0.26 ± 0.01	0.25 ± 0.02	0.20 ± 0.03	-0.12 ± 0.05	-0.08 ± 0.10
	H. akashiwo	0.18 ± 0.01	0.17 ± 0.01	0.22 ± 0.03	0.18 ± 0.01	$0.12{\pm}0.02$
		Control	19.21 mg/L	48 mg/L	144 mg/L	192 mg/L
PDS	P. parvum	0.25 ± 0.01	0.27 ± 0.01	0.25 ± 0.01	0.25 ± 0.01	0.25 ± 0.01
	H. akashiwo	0.15 ± 0.01	0.12 ± 0.02	$0.14 {\pm} 0.01$	0.13 ± 0.02	0.12 ± 0.01
		Control	0.5 mg/L	1 mg/L	2 mg/L	4 mg/L
NaClO	P. parvum	0.28 ± 0.01	0.26 ± 0.01	0.25 ± 0.01	0.01 ± 0.02	
	H. akashiwo	0.18 ± 0.01	0.18 ± 0.01	0.17 ± 0.01	0.16 ± 0.02	0.13 ± 0.01

Table S.3a. Fitted parameters obtained from modelling the concentration-response curves represented on Figures 1-5. Each model parameter has been obtained from Eq. 3 and for each reagent (H_2O_2 , PAA, PMS, NaClO) at specific incubation days (from day 2 to day 14) and for both target microalgae: *Prymnesium parvum* (Table S3a) and *Heterosigma akashiwo* (Table S3b).

Species	Reagent	Integration time (d)	$f \pm SE$ (p-value)	$x_0 \pm SE (p-value)$ (ppm)	$b \pm SE$ (p-value)	\mathbb{R}^2
P. parvum	H_2O_2	4	$0.00 \pm 0.47 \; (1.000)$	$12.82 \pm 13.29 \ (0.367)$	$0.99 \pm 2.67 \; (0.722)$	0.737
		7	$0.00 \pm 0.26 \; (1.000)$	$7.09 \pm 1.27 \; (0.001)$	$1.72 \pm 0.66 \; (0.035)$	0.768
		9	$0.00 \pm 0.12 \; (1.000)$	$6.71 \pm 0.83 \; (0.000)$	$2.46 \pm 1.18 \; (0.075)$	0.830
		11	$0.00 \pm 0.04 \; (1.000)$	$7.12 \pm 0.43 \; (0.000)$	$4.01 \pm 1.28 \; (0.016)$	0.921
		14	$0.00 \pm 0.04 \; (1.000)$	$6.45 \pm 0.36 \; (0.000)$	$3.52 \pm 0.80 \; (0.003)$	0.958
P. parvum	PAA	4	1.56 ± 2.88 (0.604)	$0.34 \pm 0.08 \; (0.004)$	$1.93 \pm 0.40 \; (0.002)$	0.948
		7	$0.31 \pm 1.16 \; (0.795)$	$0.32 \pm 0.27 \; (0.281)$	$4.20\pm7.69\;(0.602)$	0.967
		9	$0.02\pm 0.72\;(0.981)$	$0.32 \pm 0.63 \; (0.625)$	$5.40 \pm 23.75 \; (0.827)$	0.985
		11	$0.46 \pm 0.50 \; (0.386)$	$0.33 \pm 1.67 \; (0.848)$	$6.90 \pm 82.40 \; (0.936)$	0.991
		14	$0.50\pm 0.31\;(0.156)$	$0.34 \pm 6.94 \; (0.963)$	$8.75 \pm 443.96 \; (0.985)$	0.996
P. parvum	PMS	4	3.22 ± 1.72 (0.103)	$0.51 \pm 0.05 \; (0.000)$	$2.11 \pm 0.29 \; (0.000)$	0.975
		7	$0.97 \pm 1.27 \; (0.469)$	$0.40 \pm 0.05 \; (0.000)$	$2.16 \pm 0.38 \; (0.001)$	0.977
		9	$0.01 \pm 0.64 \; (0.988)$	$0.40 \pm 0.04 \; (0.000)$	$2.34 \pm 0.52 \; (0.003)$	0.983
		11	$0.00 \pm 0.56 \; (1.000)$	$0.39 \pm 0.04 \; (0.000)$	$2.50 \pm 0.60 \; (0.004)$	0.985
		14	$0.00 \pm 0.59 \; (1.000)$	$0.44 \pm 0.04 \; (0.000)$	$3.86 \pm 2.06 \ (0.103)$	0.975
P. parvum	NaClO	4	$0.38 \pm 0.20 \; (0.104)$	$1.47 \pm 0.09 \; (0.000)$	$3.18 \pm 0.52 \; (0.001)$	0.957
		7	$0.21 \pm 0.15 \; (0.217)$	$1.28 \pm 0.07 \; (0.000)$	$3.78 \pm 0.66 \; (0.001)$	0.970
		9	$0.00\pm 0.11\;(1.000)$	$1.23 \pm 0.06 \; (0.000)$	$4.35 \pm 0.79 \; (0.001)$	0.977
		11	$0.00\pm 0.14\;(1.000)$	$1.17 \pm 0.06 \; (0.000)$	$4.30 \pm 1.02 \; (0.004)$	0.970
		14	$0.00 \pm 0.21 \; (1.000)$	$1.10 \pm 0.08 \; (0.000)$	$3.64 \pm 1.07 \; (0.011)$	0.957

Table S.3b. Fitted parameters obtained from modelling the concentration-response curves represented on Figures 1-5. Each model parameter has been obtained from Eq. 3 and for each reagent (H_2O_2 , PAA, PMS, NaClO) at specific incubation days (from day 2 to day 14) and for both target microalgae: *Prymnesium parvum* (Table S3a) and *Heterosigma akashiwo* (Table S3b).

Species	Reagent	Integration	$f \pm SE$ (p-value)	$x_0 \pm SE \text{ (p-value)}$	$b \pm SE$ (p-value)	R ²
		time (d)		(ppm)		
H. akashiwo	H_2O_2	4	$0.00 \pm 0.01 \; (1.000)$	$6.82 \pm 0.13 \; (0.000)$	$4.64 \pm 0.45 \; (0.000)$	0.993
		7	$0.00 \pm 0.01 \; (1.000)$	$6.67 \pm 0.15 \; (0.000)$	$5.86 \pm 0.77 \; (0.000)$	0.990
		9	$0.00 \pm 0.01 \; (1.000)$	$6.81 \pm 0.16 \; (0.000)$	$6.11 \pm 0.98 \; (0.000)$	0.989
		11	$0.00 \pm 0.01 \; (1.000)$	$6.96 \pm 0.17 \; (0.000)$	$6.17 \pm 1.10 \; (0.001)$	0.986
		14	$0.00 \pm 0.01 \; (1.000)$	$7.19 \pm 0.20 \; (0.000)$	$6.18 \pm 1.31 \; (0.002)$	0.979
H. akashiwo	PAA	4	$0.92 \pm 0.34 \; (0.031)$	$2.93 \pm 0.42 \; (0.000)$	$2.15 \pm 0.35 \; (0.000)$	0.895
		7	$0.51 \pm 0.28 \; (0.112)$	$2.70 \pm 0.35 \; (0.000)$	$2.16 \pm 0.45 \; (0.002)$	0.902
		9	$0.43 \pm 0.31 \; (0.203)$	$2.71 \pm 0.38 \; (0.000)$	$2.03 \pm 0.44 \; (0.003)$	0.906
		11	$0.27 \pm 0.25 \; (0.317)$	$2.88 \pm 0.45 \; (0.000)$	$2.00 \pm 0.53 \; (0.007)$	0.918
		14	$0.88 \pm 0.54 \; (0.147)$	$5.64 \pm 1.99 \; (0.025)$	$1.43 \pm 0.14 \; (0.000)$	0.918
H. akashiwo	PMS	4	$0.00\pm 0.00\;(0.295)$	1.95 ± 0.31 (0.002)	$1.79 \pm 1.15 \; (0.181)$	0.835
		7	$0.00 \pm 0.01 \; (1.000)$	$1.99 \pm 0.11 \; (0.000)$	$9.65 \pm 0.84 \; (0.763)$	0.803
		9	$0.00 \pm 0.15 \; (1.000)$	$2.01 \pm 0.10 \; (0.000)$	$6.05 \pm 16.26 \; (0.721)$	0.795
		11	$0.00 \pm 0.13 \; (1.000)$	$2.10 \pm 1.00 \; (0.075)$	$7.87 \pm 81.95 \; (0.926)$	0.852
		14	$0.00 \pm 0.12 \; (1.000)$	$2.17 \pm 2.74 \; (0.455)$	$8.62 \pm 139.20 \ (0.952)$	0.891
H. akashiwo	NaClO	4	$0.01 \pm 0.04 \; (0.879)$	$3.85 \pm 0.36 \ (0.000)$	$7.87 \pm 19.44 \; (0.698)$	0.960
		7	$0.07 \pm 0.06 \; (0.316)$	$3.20 \pm 0.21 \; (0.000)$	$4.15 \pm 0.94 \; (0.003)$	0.945
		9	$0.10 \pm 0.06 \; (0.143)$	$3.13 \pm 0.17 \ (0.000)$	$3.96 \pm 0.68 \; (0.001)$	0.958
		11	$0.07 \pm 0.05 \; (0.224)$	$3.23 \pm 0.16 \; (0.000)$	$3.81 \pm 0.65 \; (0.001)$	0.967
		14	$0.05 \pm 0.04 \; (0.281)$	3.48 ± 0.13 (0.000)	$3.43 \pm 0.56 \; (0.001)$	0.977

References:

- G. Farinelli, M. Giagnorio, F. Ricceri, S. Giannakis, A. Tiraferri, Evaluation of the Effectiveness, Safety, and Feasibility of 9 Potential Biocides to Disinfect Acidic Landfill Leachate from Algae and Bacteria, Water Res. 191 (2021) 116801. https://doi.org/10.1016/j.watres.2020.116801.
- H. Zhang, R. Zong, H. He, T. Huang, Effects of hydrogen peroxide on Scenedesmus obliquus: Cell growth, antioxidant enzyme activity and intracellular protein fingerprinting, Chemosphere. 287 (2022) 132185. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132185.
- [3] E. Arvin, L.F. Pedersen, Hydrogen peroxide decomposition kinetics in aquaculture water, Aquac. Eng. 64 (2015) 1–7. https://doi.org/10.1016/j.aquaeng.2014.12.004.
- [4] M. Drábková, H.C.P. Matthijs, W. Admiraal, B. Maršálek, Selective effects of H2O2 on cyanobacterial photosynthesis, Photosynthetica. 45 (2007) 363–369. https://doi.org/10.1007/s11099-007-0062-9.
- [5] X. Ao, J. Eloranta, C.H. Huang, D. Santoro, W. jun Sun, Z. dong Lu, C. Li, Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review, Water Res. 188 (2021) 116479. https://doi.org/10.1016/j.watres.2020.116479.
- [6] L. Pedersen, C. Lazado, Decay of peracetic acid in seawater and implications for its chemotherapeutic potential in aquaculture, Aquac. Environ. Interact. 12 (2020) 153–165. https://doi.org/10.3354/aei00354.
- [7] M. Kitis, Disinfection of wastewater with peracetic acid: a review, Environ. Int. 30 (2004) 47–55. https://doi.org/10.1016/S0160-4120(03)00147-8.
- [8] P. Sun, T. Zhang, B. Mejia-Tickner, R. Zhang, M. Cai, C.H. Huang, Rapid Disinfection by Peracetic Acid Combined with UV Irradiation, Environ. Sci. Technol. Lett. 5 (2018) 400–404. https://doi.org/10.1021/acs.estlett.8b00249.
- [9] S. Ahn, T.D. Peterson, J. Righter, D.M. Miles, P.G. Tratnyek, Disinfection of ballast water with iron activated persulfate, Environ. Sci. Technol. 47 (2013) 11717–11725. https://doi.org/10.1021/es402508k.
- [10] Z. Chen, J. Li, M. Chen, K.Y. Koh, Z. Du, K.Y.H. Gin, Y. He, C.N. Ong, J.P. Chen, Microcystis aeruginosa removal by peroxides of hydrogen peroxide, peroxymonosulfate and peroxydisulfate without additional activators, Water Res. 201 (2021) 117263. https://doi.org/10.1016/J.WATRES.2021.117263.

- [11] X. Li, S. Chen, J. Zeng, K. Chabi, W. Song, X. Xian, X. Yu, Impact of chlorination on cell activation, toxin release and degradation of cyanobacteria of development and maintenance stage, Chem. Eng. J. 397 (2020) 125378. https://doi.org/10.1016/j.cej.2020.125378.
- V. Ebenezer, Y.V. Nancharaiah, V.P. Venugopalan, Chlorination-induced cellular damage and recovery in marine microalga, Chlorella salina, Chemosphere. 89 (2012) 1042–1047.
 https://doi.org/10.1016/J.CHEMOSPHERE.2012.05.067.