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Expanding success in the isolation of abundant marine bacteria 
after reduction in grazing and viral pressure and increase in 
nutrient availability
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ABSTRACT Isolation of microorganisms is a useful approach to gathering knowledge 
about their genomic properties, physiology, and ecology, in addition to allowing 
the characterization of novel taxa. We performed an extensive isolation effort on 
samples from seawater manipulation experiments that were carried out during the 
four astronomical seasons in a coastal site of the northwest Mediterranean to evalu­
ate the impact of grazing, viral mortality, resource competition reduction, and light 
presence/absence on bacterioplankton growth. Isolates were retrieved using two growth 
media, and their full 16S rRNA gene was sequenced to assess their identity and calculate 
their culturability across seasons and experimental conditions. A total of 1,643 isolates 
were obtained, mainly affiliated to the classes Gammaproteobacteria (44%), Alphapro­
teobacteria (26%), and Bacteroidia (17%). Isolates pertaining to class Gammaproteobac­
teria were the most abundant in all experiments, while Bacteroidia were preferentially 
enriched in the treatments with reduced grazing. Sixty-one isolates had a similarity 
below 97% to cultured taxa and are thus putatively novel. Comparison of isolate 
sequences with 16S rRNA gene amplicon sequences from the same samples showed that 
the percentage of reads corresponding to isolates was 21.4% within the whole data set, 
with dramatic increases in the summer virus-reduced (71%) and diluted (47%) treat­
ments. In fact, we were able to isolate the top 10 abundant taxa in several experiments 
and from the whole data set. We also show that top-down and bottom-up controls 
differentially affect taxa in terms of culturability. Our results indicate that culturing 
marine bacteria using agar plates can be successful in certain ecological situations.

IMPORTANCE Bottom-up and top-down controls greatly influence marine microbial 
community composition and dynamics, which in turn have effects on their culturability. 
We isolated a high amount of heterotrophic bacterial strains from experiments where 
seawater environmental conditions had been manipulated and found that decreasing 
grazing and viral pressure as well as rising nutrient availability are key factors increasing 
the success in culturing marine bacteria. Our data hint at factors influencing culturability 
and underpin bacterial cultures as a powerful way to discover new taxa.

KEYWORDS bacterial isolates, microcosm experiments, culturability

C urrent marine microbial ecology is largely based on culture-independent studies, 
yet isolation of marine microbes is still an essential process that allows performing 

physiological experiments and testing ecological hypotheses derived from culture-inde­
pendent studies, by allowing access to whole genomes that inform about microbial 
metabolic capabilities and characterization of novel genes (1), through retrieval of novel 
taxa (2), and enabling the utilization of naturally present organisms in, e.g., bioremedia­
tion.
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It is well known that most marine microbes have historically been recalcitrant to 
cultivation in a phenomenon labeled as the “great plate count anomaly” (3) or the 
“1% culturability paradigm” (4). This statement, however, has recently been disproved 
and we now know that higher-than-thought proportions of taxa have been cultured 
across biomes, in particular in the oceans (4–6). This is partly due to alternative culturing 
techniques that have been developed to increase the retrieval in culture of microorgan­
isms from environmental samples, such as diffusion chambers (7, 8), cultivation chips (9, 
10), microfluidic systems (10, 11), microencapsulation (12, 13), high-throughput culturing 
(14), or high-throughput dilution to extinction (HT-DTE) (15). These techniques try to 
overcome some of the factors that make microbes recalcitrant to cultivation, such as 
the requirement of specific growth factors, inorganic compounds or electron donors and 
acceptors which are not included in common culture media, symbiotic interdependen­
cies which make some organisms dependent on others to be cultured, or out-competi­
tion of oligotrophs by copiotrophs (16).

Still, classic agar plates are the most economic and easy-to-implement method to 
culture microorganisms. This technique generally produces somehow unsatisfactory 
results because it is biased toward copiotrophic taxa, which normally are present in low 
abundances in the sea (17). However, high culturabilities have been obtained using agar 
plates after sudden environmentally relevant events (18), or in nutrient-rich conditions 
(3, 19–23), suggesting that changes in environmental conditions could lead to a larger 
culturing efficiency with this technique. In fact, low abundances and dormancy induced 
by poor nutrient availability (bottom-up control) are factors that limit the culturability of 
marine microbes (16). It is also known that copiotrophs are especially targeted by protists 
and viruses (top-down control) (24–26) and some studies propose that viral infection 
could be responsible for low plating efficiency (27, 28). Importantly enough, certain 
copiotrophs can quickly respond to changes in the environment, so that they sometimes 
dominate microbial communities (24, 29–31), and these environmental changes might 
be related to increased nutrient availability or reduced predator or viral mortality. We 
also know that light significantly determines seasonal changes in marine microbial 
communities and could thus also influence culturability (32–35).

Micro- or mesocosm experiments are a common approach to determining the effects 
of environmental variables on microbial abundance, activity, and diversity. They have 
been used, e.g., to describe the effects of phytoplankton blooms (36), oil spills (37), 
grazer reduction (38), or viral suppression (25) on bacterial community dynamics using 
molecular approaches, but so far we are not aware of culturing efforts in this type 
of experiments. In this study, we performed extensive bacterial isolation efforts in 
several manipulation experiments carried out in the four astronomical seasons that 
evaluated the impact of grazers, viruses, light, and resource availability on the bacterial 
community dynamics of the Blanes Bay Microbial Observatory (BBMO; northwest [NW] 
Mediterranean) using two different culture media: the standard, nutrient-rich Marine 
Agar 2216 (MA) and Marine Reasoner’s 2A Agar (mR2A), which has lower concentration of 
nutrients. Our main objectives were (i) to obtain a heterotrophic bacterial collection 
from Blanes Bay as diverse as possible, eventually retrieving novel taxa, (ii) to test 
the phylogenetic compositional differences of culturable bacteria across culture media, 
seasons, and experiments, and (iii) to compare the isolates with 16S rRNA gene amplicon 
sequencing data from the same experiments to determine the influence of environmen­
tal conditions on culturability. Thus, we isolated bacteria from initial (t0) and final times 
(tf) of experiments where we manipulated seawater to remove large predators in light/
dark cycles (predator-reduced light [PL]) and in the dark (predator-reduced dark [PD]), 
to increase nutrient availability through dilution of the original bacterial community 
while also reducing predators in light/dark cycles (diluted light [DL]) and to add to these 
manipulations virus reduction in light/dark cycles (virus-reduced light [VL]). There were 
also unmanipulated controls for these experiments in light/dark cycles (control light [CL]) 
and in the dark (control dark [CD]).
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RESULTS

Composition and diversity of the isolate collection

We obtained 1,643 bacterial isolates (listed in Table S1 at https://github.com/x-rv/
Manuscript-2023/raw/main/Supplemental_Tables.xlsx) belonging to 5 phyla, 7 classes, 
24 orders, 52 families, and 125 genera that we clustered at 99% sequence similarity 
into 336 isolated operational taxonomic units (iOTUs) and at 100% similarity into 715 
zero-radius iOTUs (ziOTUs). The number of isolates was relatively homogeneous across 
culture media (816 isolates in MA, 827 isolates in mR2A), seasons and treatments, and 
comparatively higher in t0 samples altogether (Table 1). The most abundant isolates 
pertained to classes Gammaproteobacteria, Alphaproteobacteria, and Bacteroidia (Fig. 1A) 
and genera Alteromonas (360 isolates), Limimaricola (129 isolates), Pseudoalteromonas 
(111 isolates), Bacillus (78 isolates), and Alcanivorax (71 isolates). Interestingly, two of 
our isolates were affiliated to the recently described class Rhodothermia (39) and one to 
Verrucomicrobiae.

The mean culturability, measured as the ratio of the concentration of plate colony 
counts (CFU mL−1) and total prokaryotic cell concentration in DAPI (4′,6-diamidino-2-phe­
nylindole) samples (cells mL−1), was 0.1 ± 0.22% and it almost always increased from 
t0 to tf, presenting its minimum in the fall (treatment PL at t0, mR2A, 0.001%) and its 
highest values in the fall VL tf (the maximum was 1.4% in MA) and summer and spring DL 
and VL tf (Table S2 at https://github.com/x-rv/Manuscript-2023/raw/main/Supplemen­
tal_Tables.xlsx).

Isolate composition and diversity across culture media

In general, culturability (CFU DAPI−1) had slightly higher values in MA, with a mean 
of 0.11 ± 0.24% than in mR2A, with a mean of 0.085 ± 0.2% (Wilcoxon rank-sum 
test P = 0.07). The class composition of the isolates was highly similar in MA and 
mR2A, and principal coordinate analysis (PCoA) did not show culture media to explain 
any compositional variation (Fig. S1A at https://github.com/x-rv/Manuscript-2023/blob/
main/Supplemental_Figures.pdf). However, while 51 genera were isolated with both 
media, 47 were only isolated in MA and 27 were unique for mR2A (Table S3 at https://
github.com/x-rv/Manuscript-2023/raw/main/Supplemental_Tables.xlsx). In fact, only 82 
(24.4%) iOTUs were shared among MA and mR2A (Fig. 1B).

TABLE 1 Distribution of the isolates by class, season, and treatmentb

Class

Season Treatmenta

Fall Winter Spring Summer t0 CL CD PL PD DL VL

Gammaproteobacteria
42.6%
(156)

45.9%
(206)

29.5%
(117)

58.1%
(251)

33.8%
(194)

39.6%
(39)

35.9%
(40)

55.5%
(41)

52.0%
(42)

56.2%
(122)

56.2%
(123)

Alphaproteobacteria
26.2%
(41)

15.6%
(43)

39.1%
(155)

25.9%
(112)

29.4%
(169)

32.5%
(44)

36.5%
(45)

14.5%
(24)

13.3%
(19)

25.3%
(46)

26.0%
(45)

Bacteroidia
18.6%
(47)

22.5%
(48)

19.9%
(49)

5.6%
(23)

13.2%
(50)

15.6%
(23)

17.9%
(27)

23.7%
(51)

29.3%
(52)

12.0%
(25)

15.1%
(32)

Bacilli
4.1%
(53)

3.3%
(53)

9.6%
(37)

10.0%
(54)

12.5%
(55)

7.8%
(12)

5.8%
(9)

0.6%
(1)

2.7%
(4)

4.6%
(10)

1.4%
(3)

Actinobacteria
8.2%
(29)

12.5%
(40)

1.8%
(7)

0.2%
(1)

10.5%
(56)

4.5%
(7)

3.8%
(6)

5.8%
(10)

2.7%
(4)

1.8%
(4)

1.4%
(3)

Rhodothermia
0.3%
(1)

0.0%
(0)

0.0%
(0)

0.2%
(1)

0.3%
(2)

0.0%
(0)

0.0%
(0)

0.0%
(0)

0.0%
(0)

0.0%
(0)

0.0%
(0)

Verrucomicrobiae
0.0%
(0)

0.2%
(1)

0.0%
(0)

0.0%
(0)

0.2%
(1)

0.0%
(0)

0.0%
(0)

0.0%
(0)

0.0%
(0)

0.0%
(0)

0.0%
(0)

Total 366 449 396 432 574 154 156 173 150 217 219
at0 considers all treatments at the initial time, CL to VL correspond to the final time of each treatment.
bRelative abundances (in %) and number of isolates in brackets are presented for each class (based on SILVA classification).
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All α-diversity indices were significantly lower in mR2A than in MA (Fig. 
S1B at https://github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf). 
Rarefaction curves of the different media showed a similar pattern: with an equivalent 
sampling effort we obtained more iOTUs on MA than on mR2A and the latter was closer 
to reach an asymptote (Fig. S1C at https://github.com/x-rv/Manuscript-2023/blob/main/
Supplemental_Figures.pdf).

Isolate composition and diversity across seasons

The compositional comparison between seasons at the class level is shown in Table 1. 
Gammaproteobacteria isolates had higher proportions in the summer experiment, while 
Bacteroidia were at their minimum. Alphaproteobacteria isolates were more numerous 
in the spring experiment, Actinobacteria were mostly isolated in the winter and the fall 
experiments, and the only isolate pertaining to class Verrucomicrobiae was obtained in 
the winter experiment.

The composition of the isolates at the iOTU level was significantly  affected 
by season as shown in the PCoA followed by envfit  analysis (Pr[>r] <0.001; Fig. 
S2A at https://github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf). 
A dendrogram of the iOTU table by season using Euclidean distances indicated 
clustering between winter and fall,  with the summer experiment clearly sep­
arated (Fig. S2B at https://github.com/x-rv/Manuscript-2023/blob/main/Supplemen­
tal_Figures.pdf).

Chao1 richness estimators and Shannon diversity indices of the isolated community 
were comparable in the winter and fall experiments, with lower values in the spring and 
especially the summer experiment. Pielou evenness and Faith’s phylogenetic diversity 
(FPD) were lower in the summer than in the rest of the seasons and had slightly 
higher values in the fall (Fig. S2C at https://github.com/x-rv/Manuscript-2023/blob/main/
Supplemental_Figures.pdf). Rarefaction curves indicated that with a similar sampling 
effort (slightly lower in fall), the summer communities had almost reached the asymptote 
while the winter, with the highest iOTU number, was far from it (Fig. S2D at https://
github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf).

FIG 1 Overview of the isolate collection. (A) Pie chart showing proportional class distribution of the iOTUs. (B) Proportional Venn diagram showing similarity in 

iOTU composition between the two culture media used. Data calculated from the non-normalized iOTU table.

Research Article Microbiology Spectrum

September/October 2023  Volume 11  Issue 5 10.1128/spectrum.00890-23 4

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

25
 O

ct
ob

er
 2

02
3 

by
 1

61
.1

11
.1

38
.2

24
.

https://github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf
https://github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf
https://github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf
https://github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf
https://github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf
https://github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf
https://doi.org/10.1128/spectrum.00890-23


Isolate composition and diversity across treatments

To compare treatments we clustered together all t0 samples (untreated) into one 
category and compared that category to each tf (treatments). All treatments except 
controls were enriched in Gammaproteobacteria compared to t0. Alphaproteobacteria 
relative abundances increased slightly in the control treatments and decreased when 
predators were reduced. Bacteroidia were more abundant in predator-reduced treat­
ments compared to the rest, while Actinobacteria and Bacilli were more abundant at t0 
(i.e., reduced their presence in all experimental treatments). The rare classes, Rhodother­
mia and Verrucomicrobiae, were both isolated only in t0 samples. On the other hand, light 
did not show any notable influence in isolate class composition (Table 1).

Regarding isolate similarity, the PCoA followed by envfit analysis showed that 
treatments explained the variance of iOTU composition with a significant goodness of 
fit (Pr[>r] <0.001) with t0 samples opposed to PL, PD, DL, and VL treatments, with tf 
controls half the way between t0 and treatments tf (Fig. S3A at https://github.com/x-rv/
Manuscript-2023/blob/main/Supplemental_Figures.pdf).

Due to the high variance of the t0 samples and the similarity of the light and 
dark treatments (Table 1), we only tested the α-diversity indices at tf of the light 
treatments. In general, isolates in DL and VL had the lowest values of the Chao1 
estimator, Shannon diversity, Pielou evenness, and FPD indices while CL and PL had 
similarly higher values (Fig. S3B at https://github.com/x-rv/Manuscript-2023/blob/main/
Supplemental_Figures.pdf). ANOVA and Tukey’s post-hoc test showed no significant 
differences between these values, probably due to the low number of samples in 
each category. Rarefaction curves (Fig. S3C and D at https://github.com/x-rv/Manu­
script-2023/blob/main/Supplemental_Figures.pdf) concur with this observation: at final 
times, DL and VL were the treatments with the lowest number of iOTUs despite being the 
most sampled.

Comparison between isolate diversity and amplicon 16S rRNA gene diversity

We compared the complete 16S rRNA gene sequences of our isolates with the V4-V5 
region of the same gene in the amplicon sequence variants (ASVs) from the same 
experiments, and we found that 63.08% of our ziOTUs matched to an ASV with 100% 
similarity. We isolated 173 out of 4,594 ASVs (3.76%) accounting for 21.37% of the 
reads in the whole data set, with high variability between samples: there were lower 
values in t0 samples with a mean of 2.44 ± 2.78% than at tf, with a mean of 9.97 ± 
16.38% (Wilcoxon rank-sum test P < 0.01). Importantly, this value escalated in summer 
and spring VL and DL treatments (Fig. 2; Table S4 at https://github.com/x-rv/Manu­
script-2023/raw/main/Supplemental_Tables.xlsx displays a complete list), reaching as 
high as 70.76% cultured reads in the summer VL treatment and 47.09% in spring VL. 
It also increased notably in the summer CD treatment, while in the fall and winter VL 
treatment the values were more modest but still higher than at t0.

While in most samples we cultured taxa pertaining to the rare biosphere (Fig. 3A; Fig. 
S4 at https://github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf), 
in some we isolated very relevant ASVs in terms of abundance (Fig. 3B). We cultivated 
organisms that were 100% equal to almost all the top rank taxa detected by amplicon 
sequencing of the V4-5 region of 16S rRNA gene in the summer experiment VL and DL tf 
treatments, affiliated to genera Alteromonas, Vibrio, and Limimaricola. Interestingly, we 
also isolated ranks six and eight of summer CD treatment at tf that pertained again to 
genus Alteromonas. In the spring experiment, we cultured the first ASV of VL treatment tf 
and the second from DL treatment tf, affiliating to genus Nereida. In the fall and winter 
experiments, we obtained more modest but still notable results from treatment VL tf. 
Ranks four, five, and eight (genera Alteromonas, Halomonas, and Nereida) were isolated in 
the fall experiment while in the winter experiment we cultured organisms 100% identical 
to ranks seven, eight, nine, and ten (genera Vibrio, Polaribacter, Lentibacter, and Colwellia). 
We isolated Pseudoalteromonas, which was in rank eight of winter DL tf, and Tenacibacu­
lum, which appeared in important positions at tf of the winter, fall, and spring VL 
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experiments (ranks 14, 16, and 19, respectively). Surprisingly, there were some t0 samples 
from where some isolates were identical to relevant taxa: the summer experiment, 
treatment DL t0 (ranks three and four, Limimaricola and Palleronia), and the fall experi­
ment VL t0 (rank four, Halomonas). Importantly, we isolated organisms 100% identical to 
ranks three, six, seven, and nine of the whole data set pertaining to genera Alteromonas 
and Vibrio. Ranks, mean abundances, and closest neighbors of all the ASVs with identical 
cultured organisms can be found in Table S5 (at https://github.com/x-rv/Manu­
script-2023/raw/main/Supplemental_Tables.xlsx) for each season and treatment and 
Table S6 (at https://github.com/x-rv/Manuscript-2023/raw/main/Supplemen­
tal_Tables.xlsx) for the data set as a whole.

To decipher the link between culturability and the manipulations done in this study, 
we integrated the information of in situ ASV relative abundances (Table S5 at https://
github.com/x-rv/Manuscript-2023/raw/main/Supplemental_Tables.xlsx) and the 
frequency of isolation for the most relevant genera (those which reached high abundan­
ces in the treatments, and the 10 most cultured) in Fig. 4. This shows that especially 
Alteromonas were very frequently cultured in all the tf of the experiments, coupled with 
an increase in their relative abundances. A similar but slightly less strong trend could be 
seen for Pseudoalteromonas. Other genera that were more culturable and abundant in 
some or all of the manipulations were Limimaricola, Nereida, Vibrio, Tenacibaculum, 
Dokdonia, Polaribacter, Colwellia, and Lentibacter. All of them showed higher culturabili­
ties in specific treatments, for example, Limimaricola were more culturable in the control, 
DL, and VL treatments, which correlated with their abundances; Vibrio were more 
culturable in DL while in VL, despite being more abundant, were not cultured; Dokdonia 
preferred predator-reduced treatments despite being more abundant in the stronger 
manipulations (DL and VL) and Colwellia were only cultured in some of the manipula­
tions. On the contrary, Palleronia, Erythrobacter, Halomonas, Bacillus, and Alcanivorax 
were more culturable in t0 samples, despite sometimes being more abundant at the end 
of the manipulations.

FIG 2 Cultured proportion of the population in each season, treatment, and time. Percentage of Illumina 

16S rRNA gene reads that corresponds to isolates at 100% identity vs treatments. Hollow circles represent 

t0, full circles represent tf. Gray areas indicate standard deviations of replicates.
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Novelty of the isolate collection

To test the novelty of our collection, we plotted the closest environmental match (CEM) 
vs the closest cultured match (CCM) of our isolates (Fig. 5). This presents 61 isolates (3.7% 
of total isolates) that belong to 39 iOTUs (11.6% of total iOTUs) and 48 ziOTUs (6.7% of 
total ziOTUs) with less than 97% similarity with their CCM (i.e., they correspond to taxa 
that have never been cultured). Thirty isolates (1.8%) scored between 94.5% and 97% 
similarity with both CCM and CEM, which could represent 19 genuinely novel species, as 
was revealed by clustering them to 97% similarity. Moreover, two isolates had less than 
94.5% similarity with neither their CCM nor CEM, and thus they could represent two 
novel genera (40).

To examine the phylogenetic placement of the novel strains, we constructed a 
phylogenetic tree with the putative novel ziOTUs (Fig. 6), which indicates that novel 
isolates pertained mostly to classes Bacteroidia, Gammaproteobacteria, and Alphaproteo­
bacteria. There were three ziOTUs affiliated to class Bacilli, and two ziOTUs to class 
Rhodotermia, which interestingly were the only ones from this class in the whole 
collection. Novel isolates were mostly cultured in MA (35 ziOTUs in MA, 13 in mR2A) and 
distributed similarly between seasons. Most novel ziOTUs were obtained from t0 samples 
(twenty-six) with some in control treatments (eleven), predator-reduced (nine), and less 
frequently DL (four) and VL (one) treatments.

DISCUSSION

We have obtained an extensive collection of 1,643 isolates from different manipulation 
experiments that were carried out in the four astronomical seasons, using two distinct 
culture media. Overall, the phylogenetic distribution of our collection at the class level 
(Table 1) is similar to that obtained in other studies made in the same sampling site (41). 
It is noteworthy, though, that classes Rhodotermia and Verrucomicrobiae had never been 
isolated in the BBMO, though the latter had been detected by culture-independent 
approaches (e.g., reference 41). In addition to this general picture, one of the aims of this 
study was to test differences in the phylogenetic composition and diversity of our 
isolates across culture media, seasons, and treatments.

Culture medium MA has a higher organic matter concentration (5 g L−1 proteose 
peptone, 1 g L−1 yeast extract, total 6 g L−1 organic matter) than mR2A, while the latter 

FIG 3 Selected rank abundance plots based on 16S rRNA gene amplicon sequencing (region V4-V5) with indication of the cultured organisms that match the 

sequences (in red). The non-isolated ASVs are represented in gray. (A) Examples where we only isolated rare taxa. All seasons are considered. (B) Summer and 

spring samples where we isolated dominant taxa.
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presents a more diverse composition in terms of carbon sources (0.5 g L−1 proteose 
peptone, 0.5 g L−1 casamino acids, 0.5 g L−1 yeast extract, 0.5 g L−1 dextrose, total 2.5 g L−1 

organic matter); therefore, the use of these two media aimed to increase the diversity of 
the obtained heterotrophic isolates. This goal was achieved, as the proportion of shared 
genera (Table S3 at https://github.com/x-rv/Manuscript-2023/raw/main/Supplemen­
tal_Tables.xlsx) and iOTUs (Fig. 1B) across culture media was low. We expected to obtain 
higher CFU mL−1 in mR2A considering that previous studies have shown that more 
oligotrophic culture media resulted in better culturabilities than standard rich media (14, 
42). However, in this study mR2A yielded slightly lower values than MA. This could have 
happened because mR2A is not oligotrophic (i.e., low-nutrient) enough to manifest this 
effect, and after all it still contains 2.5 g L−1 organic matter. Probably, using a more 
nutrient-poor medium such as the modified seawater medium (SW) (14, 43) could have 
led to the isolation of other taxonomic groups adapted to the low nutrient availability 
observed in the environment.

FIG 4 Culturability (proportion of isolates) and relative abundances of relevant genera in this study in the different treatments. White color means that the 

particular genus was not isolated in that treatment. Category t0 incorporates all treatments at the initial time; CL to VL correspond to the final times of each 

treatment.
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The isolate composition varied significantly across seasons: fall and winter were the 
most similar seasons and summer the most distant (Fig. S2B at https://github.com/x-rv/
Manuscript-2023/blob/main/Supplemental_Figures.pdf). This is the exact same trend 
that was observed for the structure of the environmental bacterial communities in the 
BBMO as determined by DGGE in Alonso-Sáez et al. (34), and by 16S rRNA gene amplicon 
sequencing (44). Our isolates reached their lowest α-diversity in summer with higher 
values in the spring and, especially, in the fall and winter (Fig. S2C at https://
github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf). Other studies 
carried out in the BBMO using molecular methodologies have shown similar tendencies 
(34, 44). While the seasonality of microbial communities in BBMO has been broadly 
described (32, 34, 44–46), this is the first evidence of seasonality in the culturable 
bacteria fraction of the BBMO community.

The dominance of Gammaproteobacterial isolates in all treatments except the 
controls (Table 1) correlates with CARD-FISH relative abundances in these experiments 
(32) which were seen to be high for this class and especially for Alteromonadaceae in the 

FIG 5 Percentage similarity between the CCM and the CEM of isolate 16S rRNA gene sequences. Horizontal and vertical lines represent the typical cut-off values 

of 97% (black dashed lines) commonly used for species delineation, and the cut-off values of 94.5% (gray dashed lines) used for genera delineation. Colored by 

treatment. Category t0 incorporates all treatments at the initial time; CL to VL correspond to the final times of each treatment.
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mentioned samples. Likewise, the isolation of comparatively more taxa affiliating to class 
Bacteroidia in the PL and PD treatments (Table 1) is in accordance with the same data: 
CARD-FISH abundance corresponding to this class peaked especially in the winter and 
spring PL and PD treatments (32). The PCoA by treatment (Fig. S3A at https://
github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf) suggests that 
while the sole fact of confining seawater in bottles caused a change in the composition 
of culturable bacteria, a known effect that has already been reported (47, 48), treatments 
that implied a real manipulation of environmental conditions (PL, PD, DL, and VL) had by 
themselves a notable effect in changing the composition of the culturable bacterial 

FIG 6 Phylogeny of putative novel isolates. Phylogenetic tree includes 48 ziOTUs with <97% similarity to their CCM in the RDP database and their closest match 

in the SILVA Living Tree Project (in bold). The numbers in the nodes represent bootstrap coefficients calculated from 1,450 replicates. Non-supported branches 

(bootstrap coefficients below 50%) were collapsed. Colored circles represent the treatments from where the ziOTUs were isolated. Classes to which the different 

taxa pertain are also indicated. Category t0 incorporates all treatments at the initial time; CL to VL correspond to the final times of each treatment.
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community. This compositional change did not affect α-diversity in PL and PD; however, 
it had an effect in DL and VL treatments (Fig. S3B at https://github.com/x-rv/Manu­
script-2023/blob/main/Supplemental_Figures.pdf), where α-diversity decreased, 
suggesting that these treatments favored a narrow set of culturable bacteria over the 
other treatments. In the microcosm experiments performed by Teira et al. (38), the α-
diversity indices were reduced when reducing grazer pressure (equivalent to the PL 
treatment here), but here it did so only with deeper manipulations (DL and VL). While 
Teira et al. performed their experiments in offshore waters in different oceans (Atlantic, 
Pacific, and Indian) that were analyzed with 16S rRNA gene amplicon sequencing, we 
observed a similar trend in the coastal Mediterranean sea.

When comparing the 16S rRNA gene sequences of isolates and ASVs (V4-V5 region), 
we observed that 63.08% of our ziOTUs were identical to an ASV and 3.76% of all ASVs 
were represented by isolates. It is common to find similar or lower proportions of isolates 
represented by sequences detected using molecular approaches (14, 22, 41, 49, 50). 
This is because taxa recovered by isolation usually belong to the “rare biosphere” of a 
given environment, while molecular techniques retrieve preferentially the relatively more 
abundant bacteria (17, 51). The low proportion of ASVs represented by isolates is actually 
similar to the value found in other studies (23, 50).

In this study we demonstrate that, using agar plates, it is possible to isolate dominant 
heterotrophic marine bacteria that represent a significant proportion of the population. 
In fact, our isolates accounted for 21.37% of the total reads and this percentage was 
higher in certain samples, reaching up to 70.76% (in the summer experiment, treatment 
VL, Fig. 2; Table S4 at https://github.com/x-rv/Manuscript-2023/raw/main/Supplemen­
tal_Tables.xlsx). Studies that compare isolates with sequencing data are scarce and they 
usually do not provide culturability values. Among the ones that made available these 
data, Sanz-Sáez et al. (22) obtained a mean of 0.3–1.1% with 7.8% as the maximum 
proportion of reads matching with isolates in samples from global oceans at different 
depths. Wang et al. (23) isolated 45% of their whole 3-sample data set from marine 
sediments, yet they applied a 97% similarity threshold to consider an OTU as cultured 
and thus, this number was likely an overestimation in comparison with our approach. 
Alejandre-Colomo et al. (14) obtained a mean of 5.75 ± 2.99% cultured reads during 
a phytoplankton bloom in the North Sea, with a maximum of 11.51% in one sample 
(calculated from their Table S4 at https://github.com/x-rv/Manuscript-2023/raw/main/
Supplemental_Tables.xlsx); however, they could not isolate any of the most abundant 
taxa. Sanz-Sáez et al. (52) obtained isolates representing up to 45% of the reads in the 
bathypelagic particle-associated fraction and isolated the most abundant ASVs in this 
fraction and ocean depth, reinforcing the idea that isolation of heterotrophic bacteria 
can be successful in certain environments or ecological situations.

Other studies that used alternative culturing techniques in natural samples, mainly 
HT-DTE, have obtained similar results in terms of the proportion of isolates matching 
to sequences seen through culture-independent approaches, but much better results 
in terms of culturability. While we isolated 3.76% of the total ASVs, Henson et al. (15) 
obtained 5% of them in coastal samples, although they used a 99% identity thresh­
old. Bartelme et al. (53) obtained 20% culturability from soil samples in their HT-DTE 
experiments, with 11% of the total community isolated at 97% identity, while Yang et al. 
(54) and Connon et al. (55) obtained, respectively, 12% and 14% culturability in surface 
waters. Interestingly, Kim et al. (56) reached up to 34.6% culturability in a freshwater 
sample with a modified HT-DTE protocol supplemented with catalase. Other studies have 
isolated top-abundant taxa with flow sorting combined with diverse culture media in 
soil samples (57) or a combination of diffusion chambers and HT-DTE in coastal waters 
(58). All the above-mentioned studies obtained higher culturability values compared to 
our study, in which we reached a maximum of 1.4% (Table S2 at https://github.com/x-rv/
Manuscript-2023/raw/main/Supplemental_Tables.xlsx). Thus, it seems that techniques 
designed for culturing oligotrophs are best to isolate the microbial majority in non-
experimentally modified seawater conditions.
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In general, the DL and VL treatments were the ones with the highest proportions 
of reads in the 16S rRNA gene amplicon sequencing data set matching exactly 
with an isolate (Fig. 2). The ASVs that accounted for high percentages of reads in 
these treatments and were 100% identical to isolates in this collection (Tables S5 
and S6 at https://github.com/x-rv/Manuscript-2023/raw/main/Supplemental_Tables.xlsx) 
mostly pertained to genera Alteromonas, Vibrio, Limimaricola, and Nereida, fast-growing 
r-strategists that have commonly also been isolated in other studies (14, 22, 41), and 
affiliate to phylogenetic groups which have been reported to actively respond to the 
increase of resource availability in the environment during events like phytoplankton 
blooms (30, 36, 59–61). In this case, treatments DL and VL provided increased resource 
availability. In view of these data, it looks like the high proportions of reads affiliating to 
cultured taxa in this study are caused by the effects of the experimental manipulations, 
especially the increase in nutrient availability in DL and VL, that favored the growth 
of copiotrophic taxa which are normally found in the environment as part of the rare 
biosphere (17) but can become dominant under certain conditions, such as the ones 
created in the experiments (25, 31, 62, 63). This also suggests that r-strategists are 
more strongly limited by bottom-up (resources) controls than by top-down (grazers and 
viruses) factors.

The effect of experimental treatments in terms of isolation success (i.e., having 
cultured top-rank taxa and high percentages of reads affiliating to isolates) appears to 
be markedly different between seasons. Summer was clearly the most successful season, 
followed by spring, while in the fall and winter experiments, the various treatments had 
very weak effects (Fig. 2; Fig. S4 at https://github.com/x-rv/Manuscript-2023/blob/main/
Supplemental_Figures.pdf). This could partially be explained by looking at the identities 
of the most abundant ASVs that we did not isolate in this study. In the DL and VL 
treatments (tf), the most abundant uncultured taxa accounting for a high proportion 
of fall, winter, and spring reads affiliated to a total of 12 species in the NCBI 16S rRNA 
database (Table S7 at https://github.com/x-rv/Manuscript-2023/raw/main/Supplemen­
tal_Tables.xlsx) and, except for Donghicola eburneus, they had been isolated in different 
conditions (culture media or temperature) and/or from other environments different 
than the ones used in this study (see references in Table S7 at https://github.com/x-rv/
Manuscript-2023/raw/main/Supplemental_Tables.xlsx). It is also important to note that 
in situ temperatures in summer (21.3°C [32]) and fall (19.5°C [32]) were the closest to the 
one used in this study (RT; 20–25°C). All this suggests that isolation success was higher in 
summer and spring because dominant taxa in these seasons were easier to culture with 
our methods, especially our used culture media.

We isolated low proportions of the community in t0 samples (Fig. 2) and, except for 
some specific treatments and seasons, we did not isolate dominant taxa in terms of 
abundance (Fig. 3A). Most of the top-abundant ASVs in untreated samples pertain to 
oligotrophic genera such as Prochlorococcus or Pelagibacter that cannot be isolated in 
agar plates using nutrient-rich media. On the contrary, they have been isolated with 
methods such as HT-DTE (15) or the use of complex media (64). A taxon affiliating to 
species Aquibacter zeaxanthinfaciens was among the top ASVs but, in contrast to this 
study, had been isolated using the DTE plating method (65). This supports the idea that 
a change in the microbial community caused by the manipulations selected more readily 
culturable microorganisms (at the final times), so taxa that are normally abundant in the 
environment (the ones in initial times) are missed by our approach.

It is well known that PCR-based sequencing overrepresents the abundances of 
bacteria with multiple 16S rRNA gene copies (66). In fact, all our isolates that accounted 
for high numbers of reads are known to harbor numerous copies of the ribosomal 
operon according to the rrnDB database (67); therefore, it is likely that our proportions 
of reads corresponding to isolates are overestimated. For this reason, we generated a 
revised ASV abundance table by dividing each ASV read value by the number of 16S 
rRNA gene copies obtained from rrnDB (67) according to their class assignment, and 
recalculated the proportions of cultured reads in relation to these “corrected” values. 
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With “correction,” the mean proportions of reads corresponding to isolates changed 
from 6.20 ± 12.23% to 5.48 ± 10.70% and the raw maximum of 70.76% decreased 
to 59.66% (Table S4 at https://github.com/x-rv/Manuscript-2023/raw/main/Supplemen­
tal_Tables.xlsx). These estimations would only slightly reduce our isolation success, 
showing nonetheless the same trend.

We wanted to explore how the different treatments influenced the culturability of 
genera that were relevant in this study, also taking into account their abundances as 
determined by amplicon sequencing. We know that when using rich culture media, the 
culturability of a given taxon is determined by its ability to grow faster than potential 
competitors (16). Thus, the organisms with increased culturability in a given experiment 
would be the most adapted to grow on the solid media used and the particular 
experimental conditions. It is shown in Fig. 4 that the genus most benefited by the 
manipulations in terms of culturability was Alteromonas, which developed better than 
all the other taxa even in the control treatments, in accordance with its well-known 
opportunistic behavior (47). The culturability of Pseudoalteromonas also increased in all 
manipulations, but its higher isolation in PL and DL indicates that this genus might 
be limited both by predators and nutrient availability, and that light could be benefi-
cial for its cultivation. Some species of Pseudoalteromonas are photoheterotrophs and, 
in fact, they have been seen to have higher abundances in the light compared to 
darkness (68). Limimaricola seems to be an opportunistic genus scarcely influenced by 
grazing, given that its abundance and culturability did not increase in the PL and PD 
treatments. The comparably higher cultivation of genera Nereida and Vibrio in the DL 
treatment suggests that they are especially subject to nutrient availability. Importantly, 
Vibrio was not isolated in the VL treatment despite being more abundant than in the 
rest of the experiments, indicating that the presence of virus might favor its growth 
on solid media, or that other groups are more sensitive to viral lysis. Tenacibaculum 
and Dokdonia were clearly benefited by predator reduction while Polaribacter seems 
to develop well in all conditions. The genus Colwellia was only isolated in the manipu­
lations, where it also increased in relative abundance, suggesting poor cultivation in 
unmanipulated conditions and a high influence of predation and viral lysis. The slight 
increase of Lentibacter isolation in controls implies that this genus has an opportunistic 
behavior, but it does not develop well on plates when manipulations are stronger. Finally, 
genera Palleronia, Erythrobacter, Halomonas, Bacillus, and Alcanivorax were more easily 
isolated in initial times despite sometimes being more abundant in the manipulations, 
suggesting that they are less adapted to grow on plates than other taxa when conditions 
are favorable to copiotrophic growth. Copiotrophs are known to be especially subject 
to grazer control, influenced by nutrient availability and targeted by viruses (24–26); 
however, we have shown here that each taxonomic group seem to be differentially 
influenced by these factors in terms of culturability (using agar plates) and how some 
genera are more competitive (i.e., in terms of developing on the plates) than others when 
limitations are reduced.

The other main outcome of this study is that our isolation effort resulted in a 
high proportion (3.7% of all isolates) of putative novel taxa (Fig. 5). This novelty 
is comparatively higher than that found in other studies focused on isolation, such 
as the one from Ma et al. (69), in which 1.9% isolates represented potential novel 
species in samples from deep-sea water and sediments from the Mariana Trench 
using six culture media, or the 0.2% isolates representing novel genera in samples 
from different depths across the global ocean plankton using one culture medium 
(22). This could be explained as a result of the extensive isolation carried out from 
a single sample from one site and also by the colony-picking strategy seeking differ-
ent morphologies. It is noteworthy that the rarefaction curve of the study (Fig. S1D 
at https://github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf) had 
not reached an asymptote, implying that a greater isolation effort could have resulted in 
the discovery of more novel isolates. In fact, higher numbers of potential novel isolates 
have been obtained with a remarkable culturing effort using high-throughput isolation 
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techniques (14). The novelty obtained in this study was not equally relevant across 
culture media as more novel ziOTUs were found in MA, which is logical if we attend 
to the alpha-diversity values (Fig. S1B at https://github.com/x-rv/Manuscript-2023/blob/
main/Supplemental_Figures.pdf) and rarefaction curves (Fig. S1C at https://github.com/
x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf): MA was less selective than 
mR2A and permitted the culturability of a wider range of bacteria. It is also noteworthy 
that most putative novel taxa were isolated from t0 and control treatments. Taking 
into account that the sampling effort at t0 (considering all samples) was 3–4 times 
higher than that of the treatments at tf (Table 1), it is not surprising to find more 
novel taxa there. Also, it is coherent that the frequency of isolation of novel taxa 
diminishes as the manipulation of environmental conditions is stronger, since it implies 
the selection of a smaller set of taxa. Alpha-diversity (Fig. S3B at https://github.com/
x-rv/Manuscript-2023/blob/main/Supplemental_Figures.pdf) and rarefaction curves (Fig. 
S3C and D at https://github.com/x-rv/Manuscript-2023/blob/main/Supplemental_Fig­
ures.pdf) concur with this idea: among final times, less diversity was found in the more 
manipulated treatments (DL and VL).

We conclude that our extensive isolation effort applied to experimental manipulation 
experiments resulted in the isolation of responsive taxa corresponding to exceptionally 
high proportions of the microbial population, although they were mainly common 
copiotrophs. We are far from being able to obtain all the natural environment microor­
ganisms in culture, but our data show that we can find a reasonable number of the 
bacteria responding to manipulations, indicating that culturability is highly influenced by 
environmental factors, especially resource availability, grazing, and viral lysis.

Overall, our results point to environmental conditions as key factors influencing 
isolation success. Also, culturing microorganisms with traditional methods proves useful 
to discover novel taxa and isolate those members of the community that are most 
abundant under certain environmental conditions.

MATERIALS AND METHODS

Origin of samples

Surface seawater samples were collected from the BBMO in the NW Mediterranean 
(41°40′N, 2°48′E), about 70 km north of Barcelona, and approximately 1 km offshore. 
Samples were collected on the four astronomical seasons: winter (21 February 2017), 
spring (26 April 2017), summer (5 July 2017), and fall (7 November 2017) and water was 
filtered in situ through a 200-µm mesh and transported to the laboratory within 2 h.

Manipulation experiments

Six experimental treatments were set up the following day for each season as described 
in Sánchez et al. (32). Briefly, the treatments consisted of the following: (i) unfiltered 
seawater in light/dark cycles (CL) and in the dark (CD), (ii) seawater prefiltered through 
a 1-µm filter to remove large predators while preserving most bacteria in light/dark 
cycles (PL) and in the dark (PD), (iii) unfiltered seawater diluted 1/4 with 0.2-μm-filtered 
seawater to reduce predators and increase nutrient availability for bacteria in light/dark 
cycles (DL), and (iv) unfiltered seawater diluted 1/4 with 30-kDa-filtered seawater to 
reduce predators, viruses, and to increase nutrient availability, in light/dark cycles (VL). 
The different treatments were incubated in triplicated 9 L Nalgene bottles for 48 h at 
in situ temperature (see Table 1 in Sánchez et al. [32]) in a water bath with circulating 
seawater. Light treatments were limited to photosynthetically active radiation, and dark 
treatments were covered with several layers of dark plastic.

Samples were taken for bacterial isolation at the same time as samples for inorganic 
nutrient concentration and other ancillary data (reported in reference 32), DAPI total 
counts, CARD-FISH, and 16S rRNA gene amplicon sequencing. Samples were obtained 
at times 0 h, 12 h, 24 h, and 36 h in summer and winter or 48 h in the fall and spring 
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experiments. For isolation, 1 mL seawater subsamples were mixed with 75 µL dimethyl 
sulfoxide (DMSO) in cryovials that were stored at −80°C in triplicates. In the winter 
experiment, samples for isolation were not taken at 0 h; therefore, 12 h after the start of 
the experiments was our initial time for isolation in this season.

Community DNA extraction and sequencing

For 16S rRNA gene amplicon sequencing, samples were prefiltered through a 20-µm 
mesh to remove large particles, and microbial biomass was concentrated onto 0.2-µm-
polycarbonate filters using a peristaltic pump. About 2–4 L were filtered from each 
replicate of all treatments. We extracted the DNA from the filters as described in Massana 
et al. (70), and then purified and concentrated it using Amicon 100 columns (Millipore) 
and quantified it in a NanoDrop-1000 spectrophotometer (Thermo Scientific). We stored 
the DNA at −80°C and an aliquot from each sample was used for sequencing using a 
MiSeq sequencer (2 × 250 bp, Illumina). A first run was sent to the Integrated Microbiome 
Resource (Halifax, NS, Canada; https://imr.bio) and a second run was sent to the Research 
and Testing Laboratory (Lubbock, TX, USA; http://rtlgenomics.com/) in order to improve 
the quality of some of the samples. Primers 515F-Y (5′-GTG YCAG CMG CCG CGG TAA) 
and 926R (5′-CCG YCA ATT YMT TTR AGT TT) from Parada et al. (71) were used to amplify 
the V4-V5 regions of the 16S rRNA gene.

Amplicon sequencing data processing and taxonomic classification

We obtained two different runs of sequences that needed to be processed separately. 
Initially, we used cutadapt (72) to trim primers. Then, ASVs were obtained running 
DADA2 1.18.0 version (73), which consisted of different steps. The qscore plots were 
used to inspect the quality of our samples and decide where to trim. The subsequent 
step was running the DADA2 process using the pool method to increase sensitivity to 
sequences that might be present at very low frequencies in multiple samples. Finally, 
we merged the two runs and removed chimeras keeping 82.7% ± 0.1 sequences per 
sample and obtaining the final ASV table. Taxonomic assignation was performed with 
DECIPHER 2.16.1 version (74) at 60% confidence aligning against the SILVA database 
(SILVA_SSU_r138_2019.RData). Four samples with <5,000 reads were discarded, keeping 
a total of 308 samples for further analyses.

Isolation of bacteria

Initial experiment sampling times (t0) and final (tf) of dark/light treatments from each 
season were used for isolation. Samples from 0 h of dark treatments from the control 
and predator-reduced experiments were not employed for this purpose, since at that 
point there had not been time for the light regime to cause an effect; therefore, the total 
number of samples was 42. Two different solid culture media were used, MA (Difco) and 
mR2A, which consisted of R2A Agar (Difco) prepared in Milli-Q water with 40 g L−1 Sea 
Salts (Sigma) (75), pH adjusted to 7.6. For liquid cultures, Marine Broth 2216 (Difco) and 
mR2A Broth prepared with R2A Broth (Neogen) in Milli-Q water with 40 g L−1 Sea Salts 
(Sigma) were used.

Aliquots of 100 µL of undiluted, 1:10, and 1:100 diluted seawater were spread in 
triplicates on agar plates and incubated at room temperature (20–25°C) until no more 
colonies appeared (maximum 30 days). Colonies with different morphologies were 
selected from each sample and streaked on new agar plates in order to obtain pure 
cultures. These cultures were then transferred to liquid medium, and after turbidity was 
detected, 100 µL from the suspensions were kept at −20°C for DNA extraction, while the 
rest was stored in 25% glycerol in cryovials at −80°C. Culturability was calculated as the 
ratio between the concentration of CFU mL−1 in agar plates and the total concentration 
of cells obtained from DAPI counts (DAPI mL−1, data obtained from Sánchez et al. [32]).
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PCR amplification and sequencing of isolates

Genomic DNA was extracted from 100 µL of liquid cultures incubated 10 min at 99°C 
in a thermal cycler and 10 min at −20°C for three times. These extractions were used to 
PCR-amplify the nearly complete 16S rRNA gene with primers 27Fmod (5′-AGR GTT TGA 
TCM TGG CTC AG-3′) and 1492Rmod (5′-TAC GGY TAC CTT GTT AYG ACT T-3′) from Page 
et al. (76). Each PCR reaction was composed of 32.75 µL Milli-Q water, 10 µL 5× Green 
GoTaq Reaction Buffer (Promega), 1 µL dNTPs mix (each deoxynucleotide at 10 mM), 2 µL 
of each primer (10 µM), 0.25 µL GoTaq DNA Polymerase (Promega), and 2 µL of extracted 
DNA. When faint or no bands were observed on agarose gel electrophoresis following 
PCR, DNA extraction was repeated with DNeasy Blood&Tissue Kit (Qiagen) following the 
manufacturer’s recommendations. Purification and OneShot Sanger sequencing of PCR 
products was carried out by Genoscreen (Lille, France) with the two above-mentioned 
primers.

Isolates data processing and taxonomic classification

The sequences were manually quality-checked, trimmed, and assembled with Geneious 
software v.2022.0.1 (77). The UCLUST algorithm from USEARCH software (78) was used 
to cluster sequences at 99% similarity (79) in order to infer iOTUs. These iOTUs were 
used for all the subsequent analyses except to compare isolates and ASV sequences 
and to compute a phylogenetic tree to describe putative novel isolates, for which a 
100% identity clustering was performed to define ziOTUs. Taxonomic classification was 
performed with the SINA aligner (80) against SILVA (release 138.1) (81), RDP (release 11) 
(82), and GTDB (release 202) (83). Additionally, isolates sequences were submitted to 
BLASTn v.2.12.0+ (84) against a subset of the RDP database containing only cultured taxa 
(CCM) and another one containing only uncultured taxa (CEM) in order to test for their 
novelty. All ziOTUs that had less than 97% similarity with their CCM were considered 
as putatively novel strains. To assess the number of putative novel species and genera, 
the USEARCH software was used to cluster putative novel isolates to 97% and 94.5% 
similarity.

Phylogenetic analyses

Two phylogenetic trees were constructed, one with all iOTUs to assess diversity of the 
complete collection, and another one only with putative novel ziOTUs to examine the 
phylogenetic placement of the novel strains. The general iOTUs tree was computed 
without reference sequences since it was only used to calculate phylogenetic diversity. 
For the tree with putative novel isolates, the closest sequence in SILVA Living Tree Project 
(LTP_12_2021) (81) for each ziOTU was inferred with BLASTn (84) and Prochlorococcus 
marinus subsp. marinus (ref AE017126 from LTP_12_2021) used as an outgroup. In both 
cases, the sequences were aligned with ClustalW in Geneious software v.2022.0.1 (77) 
and unaligned ends were trimmed. Phylogeny was constructed using maximum-likeli­
hood inference with RAxML-NG 0.9.0 (85) and the GTR + G + I evolutionary model. For 
the iOTUs tree, bootstraps converged after 1,150 replications with 3% cutoff, while for 
the tree with putative novel isolates it did after 1,450 replications with 2% cutoff. The tree 
with putative novel isolates was plotted with iTOL v.6 (86).

Compositional and statistical analyses

All analyses were carried out with the R software v.R 4.1.3 (87) and RStudio software 
v.1.3.1093 (88). Data manipulation was carried out mostly using packages tidyverse 
v.1.3.1 (89) and qdap v.2.4.3 (90), and plots were created in ggplot2 v.3.3.5 (91). An iOTU 
table was generated with 99%-clustered isolate 16S rRNA gene sequences. Normalized 
and rarefied tables were used in some of the subsequent analyses. To generate these 
rarefied tables, an iOTU table was first grouped by treatment and then rarefied to the 
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lowest sampling effort (80 isolates in the DL treatment at t0) with 1,000 permutations 
with the package EcolUtils v.0.1 (92).

We determined whether culture media, season, and treatment shaped the compo­
sition of isolates at the class level. To compare iOTU composition between culture 
media, a proportional Venn diagram was plotted with package VennDiagram v.1.7.3 
(93). To estimate sampling effort in each culture medium and season, rarefaction curves 
were performed with package vegan v.2.5.7 (94) using non-normalized iOTU tables. 
To estimate sampling effort across treatments, rarefaction curves were inferred with 
both non-normalized and rarefied iOTU tables. A PCoA based on Bray-Curtis distances 
followed by envfit analysis was carried out to test β-diversity across culture media, 
seasons, and treatments with package vegan v.2.5.7. α-diversity, richness, and the Chao1 
estimator (95) were computed using the non-normalized iOTU table, while Shannon 
indices (96), FPD (97), and standardized effect size mean nearest taxon distance (98) 
were calculated with the normalized table. Packages ape v.5.6.2 (99) and picante v.1.8.2 
(100) were used in order to infer FPD of the iOTUs tree. To test for differences between 
culture media, seasons, and treatments in all these indices, ANOVA tests and Tukey’s post 
hoc tests were carried out with package stats v.4.1.3. To test differences in culturability 
across culture media, Wilcoxon rank-sum test was performed with package stats after 
rejecting normal distribution with Shapiro-Wilk test from the same package. Welch’s t 
test was used to test significant differences in proportions of cultured reads between t0 
and tf of experiments (only when both samples had more than one replicate). Fisher’s 
exact test was performed to test whether some genera were more likely to be isolated in 
certain treatments using the non-normalized iOTU table and package stats v.4.1.3. When 
multiple testing, P-values were adjusted with the Benjamini-Hochberg FDR method 
(101). All statistical tests were made with the false-discovery rate set to 0.05.

Comparison of isolates with ASVs

The 100%-clustered full 16S rRNA gene sequences of the isolates (ziOTUs) were 
compared to the ASVs defined from the V4-V5 region of the 16S rRNA gene using BLASTn 
v.2.12.0+ (84). Those ASVs that presented 100% similarity with one or more ziOTUs were 
considered as “cultured.” An ASV table was used to infer the rank and abundance of 
each cultured and uncultured taxa by treatment and season, at times t0 and tf. Addition­
ally, the fraction of cultured taxa was calculated also for each treatment and season 
at times t0 and tf. The abundances used for these calculations were the means of all 
sample replicates. The closest neighbor to our isolates and ASVs was inferred searching 
our ziOTUs sequences against the NCBI 16S ribosomal RNA database (downloaded on 
2022/03/01) using BLASTn. To calculate 16S amplicon sequencing abundances, corrected 
by their 16S rRNA gene copies, reads of each ASV were divided by their mean 16S rRNA 
gene copies by class except for SAR11, which was treated as a separate category. 16S 
rRNA gene copy numbers were obtained from rrnDB v.5.8 (67).
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