Science Advances

Supplementary Materials for

Structure-guided engineering of a receptor-agonist pair for inducible activation of the ABA adaptive response to drought

Jorge Lozano-Juste et al.

Corresponding author: Pedro L. Rodriguez, prodriguez@ibmcp.upv.es; Armando Albert, xalbert@iqfr.csic.es

Sci. Adv. **9**, eade9948 (2023) DOI: 10.1126/sciadv.ade9948

This PDF file includes:

Supplementary Text Figs. S1 to S7 Table S1

Supplementary Text Chemical synthesis

SB was purchased from UAB Crea-Chim (Lithuania). Synthesis of iSB07 and iSB09, as well as SB derivatives that maintain the same sulfonamide arrangement as SB are described in Supplemental information. All reactions were carried out under air unless stated otherwise. Reactions were monitored by thin-layer chromatography (TLC) analysis on Merck® silica gel 60 F254 TLC plates. Spots were visualized by exposure to ultraviolet (UV) light (254 nm), or by staining with a 5% solution of phosphomolybdenic acid (PMA) in ethanol or basic aqueous potassium permanganate (KMnO₄) and then heating. Flash chromatography was carried out using Merck® silica gel 60 (230-400 mesh). All solvents were of HPLC grade quality and used as received. All reagents were purchased at the highest commercial quality and used without further purification. 1H-NMR spectra were recorded on a Varian Mercury (300 MHz) spectrometer. Chemical shifts are reported in parts per million (ppm) down field from TMS as an internal standard. Data are reported as follows: chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, dd=doublets of doublets, m=multiplet, br=broad), coupling constant(s) and integration. HPLC analyses were carried out on a Waters system model Alliance HT (Mass detector: Micromass ZQ 2000). A: water, B: CH₃CN:CH₃OH (1:1), C: 100 mM ammonium acetate solution (approx. pH 6.8). Method A (9 min): Analysis conditions: Luna C18(2) 5 µm, 2.0 × 50 mm. Gradient: A:B:C 30 s at 85:10:5; then from 85:10:5 to 0:95:5 in 4 min, finally 4.5 min at 0:95:5. Method B (15 min): Analysis conditions: Luna C18(2) 5 μ m, 2.0 \times 50 mm. Gradient: A:B:C 3 min at 85:10:5; then from 85:10:5 to 0:95:5 in 6 min, finally 7 min at 0:95:5. Method C (30 min): Analysis conditions: SunFire C18 3.5 μ m, 2.1 × 100 mm.Gradient: A:B:C 5 min at 85:10:5; then from 85:10:5 to 0:95:5 in 15 min, finally 10 min at 0:95:5.

Synthesis of iSB07 and iSB09:

i) Ethyl acetoacetate, xylene, 135 °C, 5 h; ii) H₂SO₄, 100 °C, 2 h; iii) R₁I, NaH, rt, 4-6 h; iv) Zn(CN)₂, Pd(PPh₃)₄, DMF, 100 °C, 6 h; v) H₂, Pd-C, HCI (37%), MeOH, rt, 1-2 days; vi) PhSO₂CI, DIPEA, DMF, rt, 2 h.

i) *para*-Bromoaniline (1, 52,31 mmol) was dissolved in xylene (30 mL) and ethyl acetoacetate was added (1.2 equiv). The solution was heated at 135 °C for 24 h. After allowing the flask to naturally cool down to room temperature (rt), the reaction flask was placed in the freezer for 5 h, obtaining a white precipitate. The solid was filtered off, washed with hexane (3 x 20 mL) and dried under vacuum to afford **2** as a light brown solid (22% isolated yield). LC-MS (Method B): Purity=96.37%, M+1=254.1 (ESI-).

ii) **2** (10.5 mmol) was dissolved in H₂SO₄ (10 mL, 97%) and the solution was heated at 100 °C for 2 h. After cooling down to rt, iced water was added dropwise (total volume of 20 mL). The resulting suspension was left stirring overnight at rt. The white solid was filtered off, washed with water (3 x 3 mL), Et₂O (5 x 3 mL), and finally with hexane (3 x 3 mL), affording **3** as a grey-ish solid (92% isolated yield). LC-MS (Method A): Purity=91.0%, M+1=239.1 (ESI+).

iii) **3** (1,68 mmol) was suspended in DMF (25 mL), affording a grey-ish suspension. To this mixture was added NaH (60%, 3 equiv.) at rt, after which bubbling was observed. The reaction mixture was left at rt for 20 min. Next, the corresponding alkylation reagent (MeI or EtI) was added (1 equiv). The reaction was completed in 4-6 h, after which the solution was concentrated under vacuum, the residue was dissolved in DCM (15 mL), and water (20 mL) was added. The layers were separated, and the aqueous phase was further washed with DCM (2 x 15 mL). The combined organic layers were dried over Na₂SO4, filtered off, and the solvent removed under vacuum, affording a light brown solid in the case of **4a** (63% isolated yield; LC-MS (Method B): Purity=98.68%, M+1=252.1 (ESI+)) and a yellow-ish solid in the case of **4b** (82% isolated yield; LC-MS (Method B): Purity=96.33%, M+1=265.8 (ESI+)).

iv) 4 (1.31 mmol) was dissolved in DMF and then $Zn(CN)_2$ (2 equiv) was added. The mixture was deoxygenated for 5 min with nitrogen, before adding Pd(PPh₃)₄ (0.1 equiv). The reaction was heated at 100 °C until completion (2-6 h). The mixture was allowed to cool down to rt and poured over an aqueous solution of sat. NaCl. This mixture was extracted with AcOEt (3 x 10 mL) and the combined organic layers were dried over Na₂SO₄, filtered off, and the solvent removed under vacuum. The resulting residue was washed with hexane (2 x 1 mL) and Et₂O (2 x 1 mL) to afford **5a** as a white solid (64% isolated yield; LC-MS (Method B): Purity=98.87%, no ionization) or **5b** as a yellow-ish solid (91% isolated yield; LC-MS (Method B): Purity=98.94%, M+1=213.2 (ESI+)).

v) **5** (1.18 mmol) was suspended in MeOH (10 mL) and HCl (37%, 3 mL) was added. The mixture was bubbled with N₂ for 5 min to remove oxygen, after which the catalyst Pd-C (10%, 0.1% wt) was added. The reaction mixture was placed under atmospheric pressure of H₂ (rubber balloon) and left stirring at rt until completion (1-2 days). Next, the mixture was filtered through Celite® with MeOH washes (4 x 5 mL). The solvent was removed under vacuum affording **6a** as a white solid (98% isolated yield; LC-MS (Method B): Purity= 96.99%, M+1= 203.0 (ESI+) or **6b** as a yellow-ish solid (94% isolated yield; LC-MS (Method B): Purity=93.41%, M+1=218.1 (ESI+).

vi) **6** (1 mmol) was suspended in DMF (7 mL) and DIPEA (3 equiv) was added, affording a yellow solution. Benzenesulfonyl chloride (1.2 equiv) was then added, and the reaction was stirred for 2 h at rt. The solvent was then removed under vacuum and the resulting residue dissolved in DCM (10 mL). Aqueous NH₄Cl was added (20 mL) and the organic layer separated. The aqueous phase was further extracted with DCM (2 x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered off, and the solvent removed under vacuum. The resulting oily solid was finally purified by silica column (MeOH 3% \rightarrow 5%/DCM) affording the desired final product.

iSB07: white solid, 52% isolated yield; LC-MS (Method C): Purity=99.15%, M+1=343.1 (ESI+). 1H NMR (300 MHz, DMSO-*d6*): δ 8.25 (s, 1H), 7.84 – 7.70 (m, 2H), 7.65 – 7.37 (m, 6H), 6.51 (d, J = 1.4 Hz, 1H), 4.12 (s, 2H), 3.56 (s, 3H), 2.34 (s, 3H).

iSB09: white solid, 45% isolated yield. LC-MS (Method C): Purity=99.82%, M+1=357.1 (ESI+). 1H NMR (300 MHz, DMSO-*d6*): δ 8.23 (s, 1H), 7.76 (dd, J = 8.0, 1.7 Hz, 2H), 7.62 – 7.43 (m, 6H), 6.49 (s, 1H), 4.23 (q, J = 7.1 Hz, 2H), 4.12 (s, 2H), 2.34 (s, 3H), 1.16 (t, J = 7.0 Hz, 3H).

Synthesis of SB derivatives:

i) R₁X, NaH, DMF, rt. 4-6 h; ii) cyclopropylboronic acid, (AcO)₂Cu, Pyr, NaHMDS, toluene, 100 °C, 20 h; iii) CISO₃H, 50 °C, 4-6 h; iv) (R₂)PhCH₂NH₂, Py, DMF, rt, 1-2 h; v) (R₂)PhCH₂NH₂, Et₃N, DCM, 0 °C to rt, 4 h.

i) 7 (4.39 mmol) was suspended in DMF (10 mL) under N₂ atmosphere. To this mixture was added NaH (60%, 3 equiv.) at rt, after which bubbling was observed in the grey-ish solution. The reaction mixture was left at rt for 20 min. Next, the corresponding alkylation reagent (MeI or EtBr) was added (2.5 equiv). The reaction was completed in 4-6 h, after which it was quenched with a few drops of water. Next, NaCl (sat aq, 30 mL) was added and extracted with AcOEt (2 x 30 mL). The combined organic phases were dried over Na₂SO₄, filtered off, and the solvent removed under vacuum. The obtained crude product was finally purified by chromatography (SiO₂, 30% \rightarrow 60% AcOEt/Hexane).

8a: yellow oil, 70% yield. LC-MS (Method A): Purity=93.46%, M-Me=173.6 (ESI+).

8c: white solid, 89% yield. LC-MS (Method A): Purity=98.84%, M+1=199.7 (ESI+).

ii) 7 (3.76 mmol) was suspended in toluene (20 mL), after which cyclopropylboronic acid (2 equiv), $(AcO)_2Cu$ (1 equiv), and pyridine (5 equiv) were sequentially added. The mixture was deoxygenated with N₂ and NaHMDS (1 equiv) was added. The reaction mixture was stirred at 100 °C under constant air flow for 15 h. After cooling down to rt, the mixture was filtered through celite with AcOEt washes (20 mL). The organic phase was further washed with water (20 mL) and subsequently dried over Na₂SO₄, filtered off, and the solvent removed under vacuum to give the desired product **8b** as a brown oil, 89% yield. LC-MS (Method B): Purity=88.21%, M+1= 173.6 (ESI+).

iii) ClSO₃H (1.5 mL) was added dropwise to **8** (1.84 mmol) at low temperature (ice bath). The mixture was then heated to 50 °C and stirred for 4-6 h. Next, the mixture was poured over crushed ice and NaCl (sat aq, 30 mL) was added. This aqueous mixture was extracted with DCM (2 x 30 mL), and the organic phase dried over Na₂SO₄, filtered off, and the solvent removed under vacuum to give the desired product.

9a: light-brown solid, 77% isolated yield after chromatography (SiO₂, 30% AcOEt/Hex). 1H NMR (300 MHz, CDCl₃) δ 8.34 (s, 1H), 8.16 (d, J = 9.1 Hz, 1H), 7.54 (d, J = 9.2 Hz, 1H), 6.72 (s, 1H), 4.38 (q, J = 7.2 Hz, 2H), 2.54 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H).

9b: brown solid, 27% isolated yield after chromatography (SiO₂, 50% AcOEt/Hex).

9c: brown solid, 60% isolated yield after chromatography (SiO₂, 30% AcOEt/Hex). LC-MS (Method A): Purity=89.32%, M+1 (acid)=252.2 (ESI+).

iv) To a solution of **9a** or **9c** (0.73 mmol) in DMF (5 mL) was added pyridine (1.1 equiv) and the corresponding benzylamine (1.05 equiv). The resulting mixture was stirred at rt for 1-2 h. The mixture was diluted with water (15 mL) and extracted with AcOEt (20 mL). The organic phase was separated and washed successively with HCl (10%, 10 mL), NaHCO₃ (aq. sat, 10 ml), and NaCl (sat. aq., 10 mL), to be finally dried over Na₂SO₄, filtered off, and the solvent removed under vacuum. The residue was then washed with Et₂O or AcOEt to obtain the desired product.

SB-01: white solid, 16% isolated yield; LC-MS (Method C): Purity=99.16%, M+1=357.1 (ESI+).).1H NMR (300 MHz, CDCl₃) δ 8.19 (s, 1H), 8.01 (d, J = 9.0 Hz, 1H), 7.48 (d, J = 9.0 Hz, 1H), 7.27 (dd, J = 13.3, 7.6 Hz, 5H), 6.73 – 6.66 (m, 1H), 4.92 (t, J = 6.3 Hz, 1H), 4.40 (q, J = 7.1 Hz, 2H), 4.23 (d, J = 6.2 Hz, 2H), 2.50 (s, 3H), 1.45 – 1.34 (m, 3H).

SB-03 white solid, 18% isolated yield; LC-MS (Method C): Purity=96.32%, M+1=357.2 (ESI+).).¹H NMR (300 MHz, CDCl₃) δ 8.14 (s, 1H), 8.01 (dd, *J* = 8.7, 2.0 Hz, 1H), 7.46 (d, *J* = 9.0 Hz, 1H), 7.28 (s, 1H), 7.06 (s, 4H), 6.69 (s, 1H), 4.84 (s, 1H), 4.16 (d, *J* = 5.6 Hz, 2H), 3.75 (s, 3H), 2.48 (s, 3H), 2.29 (s, 3H).

SB-04: beige solid, 9% isolated yield; LC-MS (Method C): Purity=95.12%, M+1=361.0 (ESI+).). ¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, J = 2.3 Hz, 1H), 7.94 (dd, J = 9.0, 2.3 Hz, 1H), 7.37 (d, J = 8.6 Hz, 1H), 7.30 – 7.09 (m, 2H), 7.04 – 6.93 (m, 1H), 6.86 (dd, J = 10.5, 8.0 Hz, 1H), 6.65 (s, 1H), 5.03 (s, 1H), 4.27 (d, J = 6.3 Hz, 2H), 3.70 (d, J = 1.3 Hz, 3H), 2.45 (q, J = 1.3 Hz, 2H).

SB-05: off-white solid, 33% isolated yield; LC-MS (Method C): Purity=97.28%, M+1=377.0 (ESI+).).¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, J = 2.1 Hz, 1H), 7.95 (dd, J = 8.9, 2.1 Hz, 1H), 7.38 (d, J = 8.9 Hz, 1H), 7.31 – 7.24 (m, 2H), 7.21 (d, J = 4.1 Hz, 1H), 7.18 – 7.08 (m, 2H), 6.67 (s, 1H), 5.15 (t, J = 6.4 Hz, 1H), 4.33 (d, J = 6.4 Hz, 2H), 3.72 (s, 3H), 2.47 (s, 3H).

v) A solution of **9b** or **9c** (1.04 mmol) in DCM (10 mL) was cooled down in an ice bath, after which Et_3N (1.1 equiv) and the corresponding benzylamine (1.05 equiv) were added. The reaction mixture was stirred at low temperature for 1-3 h (until completion). The mixture was diluted with water (15 mL) and extracted with DCM (10 mL). The organic phase was separated and washed successively with HCl (10%, 10 mL), NaHCO₃ (sat. aq., 10 mL), and NaCl (sat, 10 mL), to be finally dried over Na₂SO₄, filtered off, and the solvent removed under vacuum. The obtained residue was washed several times with Et_2O and AcOEt. The crude solid was further purified by chromatography to obtain the desired product.

SB-02: white solid, 4% isolated yield after purification by reverse phase chromatography (C18, MeCN/buffer pH7 65% \rightarrow 85%); LC-MS (Method C): Purity=81.25% +18.55%, M+1=369.1 (ESI+). ¹H NMR (300 MHz, CDCl₃) δ 8.11 (s, 1H), 7.95 (s, 2H), 7.30 – 7.16 (m, 6H), 6.57 (s, 1H), 4.87 (s, 1H), 4.19 (d, *J* = 5.9 Hz, 2H) 2.95 (s, 1H), 2.43 (d, *J* = 3.2 Hz, 3H), 1.60 (s, 3H)1.41 (s, 2H), 0.89 (s, 2H).

SB-06: white solid, 8% isolated yield after purification by chromatography (SiO₂, 5%MeOH/DCM); LC-MS (Method C): Purity=96.51%, M+1=359.1 (ESI+). ¹H NMR (300 MHz, DMSO-*d6*) δ 8.10 – 8.03 (m, 1H), 8.00 – 7.90 (m, 1H), 7.65 (d, *J* = 8.9 Hz, 1H), 7.12 (d, *J* = 7.4 Hz, 1H), 6.96 (s, 1H), 6.71 – 6.60 (m, 3H), 3.91 (s, 2H), 3.61 (d, *J* = 4.1 Hz, 3H), 2.42 (s, 2H).

Fig. S1. Summary of the drug-discovery approach and SB identification.

(A) Scheme of the *in silico* and *in vitro* procedure followed for SB discovery. (B) Chemical structure of the five potential ABA agonist molecules identified using *in silico* screening: (1) (6-methyl-7-[2-(4-methylphenyl)-2-oxoethoxy]-1H,2H,3H-cyclopenta[c]chromen-4-one; (2) ({6-methyl-4-oxo-1H,2H,3H-cyclopenta[c]chromen-7-yl}oxy)(phenyl)acetic acid; (3) 5-methoxy-1-(4-methoxyphenyl)-2-methylindole-3-carboxylic acid; (4) butyl 2-({4-methyl-6-oxo-7H,8H,9H,10H-cyclohexa[c]chromen-3-yl}oxy)acetate; and (SB) N-benzyl-1,4-dimethyl-2-oxoquinoline-6-sulfonamide). (C) PP2C assays show that SB was able to inhibit HAB1 activity in the presence of AtPYL5, AtPYL10 and PYL1-like receptors, whereas the other candidate molecules were not effective

Fig. S2. The mutations engineered into CsPYL1^{5m} do not prevent dimer formation.

(A) Amino acid sequence alignment of Arabidopsis, CsPYL1 and SlPYL1 ABA receptors identifies unique changes in PYL10 that were engineered into the synthetic CsPYL1^{5m} receptor. The position of the five amino acid substitutions introduced in CsPYL1^{5m} is indicated. Alignment was generated using GeneDoc and ClustalW software. The predicted secondary structure of the receptors is indicated, taking as a model the crystallographic structure of CsPYL1 (Protein DataBank Code 5MMQ) and using the ESPRIPT program (<u>http://espript.ibcp.fr/ESPript/ESPript</u>) (B) Engineering of the above mutations into CsPYL1^{5m} does not affect the dimeric nature of the receptor. Native Red Elecrophoresis (NRE) analysis was performed using AtPYL10 (monomeric receptor) and dimeric GST as protein markers.

Fig. S3. CsPYL1^{5m} shows lower affinity for ABA binding than CsPYL1.

(A) A comparison of the ABA binding pocket in the CsPYL1^{5m}-ABA-AtHAB1ΔN (left) and CsPYL1-ABA-AtHAB1ΔN (right) complexes. The corresponding sections of the unbiased omit Fo-Fc maps contoured at 3s are also shown. Note a reduction of the water mediated hydrogen bonds to the receptor in the vicinity of the carboxylate group for CsPYL1^{5m} that leads to a looser binding of this moiety as shown by the weaken electron density. (B) PP2C inhibition assays (phosphopeptide as a substrate) show that ABA was less effective in CsPYL1^{5m} than CsPYL1 to inhibit HAB1 and ABI1 phosphatase activity. (C) Lower affinity of ABA for CsPYL1^{5m} than CsPYL1. ITC data were obtained by repeated injections of ABA into a 1:1 mixture of receptor: DNHAB1. (D) Dose response analysis of iSB09 or ABA-dependent inhibition of ABI1 (blue and black lines, respectively) in presence of either AtPYL1 or AtPYR1. Values (average of duplicates) show PP2C activity after incubation with the indicated concentration of ligand and receptor at 1:2 ratio (1 μM phosphatase:2 μM receptor). The IC50 of ABI1 with AtPYL1 was 274 nM and 226 nM, whereas with AtPYR1 was 200 nM and 213 nM, for ABA and iSB09, respectively. Ligands were assayed at 5, 25, 100, 300, 500 and 1000 nM.

Fig. S4. In vitro and in vivo activity of SB derivatives that maintain the sulfonamide arrangement.

(A) PP2C inhibition assays show enhanced inhibition of HAB1 by SB-01 with both CsPYL1^{5m} and CsPYL1 compared to SB. * indicates p<0.05 (Student's t test) compared to SB at the same dosage. (B) Quantification of seedling establishment inhibition by 10 μ M SB derivatives in the CsPYL1^{5m} overexpressing line compared to wildtype Col-0 at 72 h (left) or 7 d (right).

Fig. S5. H-bonds of the sulfonamide linkers and dihedral angles of different ligands.

(A) Schematic representation of the linker moieties of QB, SB and iSB09 showing their hydrogen bond interactions to CsPYL1 in the CsPYL1-ligand-AtHAB1 Δ N ternary complexes (B) Dihedral angles (α = C-C-S-N and β = C-S-N-C) observed for the molecular structure of SB, iSB07 and iSB09 in a small-molecule single crystal (XTAL) and those into the crystals of the complexes HAB1-Ligand-CsPYL1 (WT) and HAB1-Ligand-CsPYL15M (5M).(C) Bar-histograms displaying the a and b torsion angles observed for the structures recorded in the Cambridge Structural Database (CSD). A maximum in the conformer distributions represents the ground energy conformation for a molecule (60, 61). The arrows indicate the corresponding torsion angle as described in (A), black for SB, green for iSB07 and red for iSB09. (D) Molecular structures for the compounds SB, iSB07 and iSB09 showing the displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

С

Fig. S6. QB lacks bioactivity in tomato whereas iSB09 is active and shows long-lasting effect.

(A) Quantification of the leaf temperature difference at 2 and 5 days after spraying tomato plants with 0.1 % DMSO (mock-treated control), 10 µM iSB09 or 10 µM QB. Asterisk indicates p<0.001 (Student's t test). Values show individual points and average \pm SD (n=4 replicates for mock and chemical treatments). (B) IR-images of representative tomato plants at 2 days after being treated with 0.1 % DMSO (mock-treated control), 10 µM iSB09 or 10 µM QB. Photographs were taken with white light (leaf panel) or infrared thermography (right panel) using the camera FLIR E95. (C) iSB09 is more effective than QB in inhibiting HAB1 phosphatase activity in presence of PYL4. IC50 values for iSB09 or QB-dependent inhibition of HAB1 by AtPYL4. Values (average of duplicates) show PP2C activity after incubation with the indicated concentration of ligand and AtPYL4 at 1:2 ratio (1 µM phosphatase:2 µM receptor). The IC50 was 330 nM for iSB09 and 1880 nM for QB. Ligands were assayed at 25, 100, 250, 500, 1000, 2000, 8000 and 16000 nM.

Fig. S7. Enhanced upregulation of *RAB18* and *RD29B* expression by iSB09 in lines overexpressing CsPYL1^{5m}.

(A) RT-qPCR analysis of *RAB18* and *RD29B* expression in response to the indicated concentrations of ABA or iSB09 either in WT plants or lines overexpressing CsPYL1^{5m}. (B) iSB09 requires PYR1 and PYL1 for inhibition of seedling establishment. Effect of iSB09 and ABA either in WT plants or different Arabidopsis mutants lacking the indicated ABA receptors. 112458 is the abbreviation for *pyr1 pyl1 pyl2 pyl4 pyl5 pyl8* sextuple mutant.

Data set (a) CsPYL1-SB-HAB1 CsPYL14SB-F HAB1 CsPYL1-SB-HAB1 CsPYL1-SB-FA F2/2/2/2	Data Collection						
	Data set (a)	CsPYL1-SB-HAB1	CsPYL1 ^{5M} -SB- HAB1	CsPYL1-iSB7- HAB1	CsPYL1 ^{5M} -iSB7- HAB1		
Cell dimensions A (Å) 42.96 42.99 43.12 42.82 A (Å) 62.73 62.91 62.45 62.72 c (Å) 186.93 186.62 187.58 188.95 a,B,Y (°) 90.0 90.0 90.0 90.0 Wavelength (Å) 0.979257 0.979257 0.979260 Total refections 115206 (7733) 275264 (26989) 163542 (15137) 171276 (14725) Rem (%) 6.66 (37.82) 2.32 (28.51) 4.63 (38.56) 5.12 (60.28) 703 (1.25) 18.89 (25.5) 10.18 (1.57) 7.37 (0.92) Completeness 98.4 (86.2) 99.7 (99.5) 98.9 (95.0) 98.9 (93.0) (%) 5.5 (4.4) 6.1 (6.1) 5.4 (5.3) 5.9 (5.6) Refinement Resolution (Å) (44.21-2.37) (44.23-1.84 (41.9-2.1) (42.1-2.13) Refections used 20896 (1773) 44840 (4418) 30200 (2863) 28781 (2636) in refinement 18.04 / 25.52 (29.84) (28.9 / 33.72) (29.16	Crystal system, space Group	Orthorhombic, $P2_12_12_1$	Orthorhombic, P2 ₁ 2 ₁ 2 ₁	Orthorhombic, $P2_12_12_1$	Orthorhombic, $P2_12_12_1$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cell dimensions						
$ b (Å) & 62.73 & 62.91 & 62.45 & 62.72 \\ c (Å) & 166.93 & 186.62 & 187.58 & 186.95 \\ a (Å, Y^{(9)}) & 90.0 & 90.0 & 90.0 & 90.0 \\ Wavelength (Å) & 0.979257 & 0.979257 & 0.979257 & 0.979260 \\ Varuelength (Å) & 0.979257 & 0.979257 & 0.979257 & 0.979260 \\ Total refections 115208 (7733) & 275264 (26989) & 163542 (15137) & 171276 (14725) \\ "Rpm (%) & 8.66 (37.82) & 2.32 (28.51) & 4.63 (38.56) & 5.12 (60.28) \\ "Ctriz (%) & 99.2 (78.4) & 99.9 (88.5) & 99.7 (84.7) & 99.5 (69.5) \\ vitron (%) & 7.93 (1.25) & 118.89 (25.5) & 10.18 (1.57) & 7.37 (0.92) \\ Completeness & 98.4 (86.2) & 99.7 (99.5) & 98.9 (95.0) & 98.9 (93.0) \\ (%) & & & & & & & & & & & & & & & & & & &$	A (Å)	42.96	42.99	43.12	42.82		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	b (Å)	62 73	62.91	62 45	62 72		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	c(A)	186 93	186 62	187 58	186 95		
$\begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	α β y (°)	90.0	90.0	90.0	90.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Wavelength (Å)	0.979257	0 979257	0 979257	0 979260		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total refections	115208 (7733)	275264 (26989)	163542 (15137)	171276 (14725)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$^{\#}$ R _{nim} (%)	6 66 (37 82)	2 32 (28 51)	4 63 (38 56)	5 12 (60 28)		
$\begin{array}{c c c } \hline 0.002 (10) & 0.03 (0.07) & 0.01 (0.17) & 0.03 (0.03) \\ \hline 0.012 (10) & 0.03 (0.01) & 0.01 (0.17) & 0.03 (0.03) \\ \hline 0.012 (10) & 0.012 (1.57) & 7.33 (0.92) \\ \hline 0.012 (1.57) & 7.33 (0.92) & 0.012 (0.92) \\ \hline 0.012 (1.57) & 7.33 (0.92) & 0.012 (0.92) \\ \hline 0.012 (1.57) & 7.33 (0.92) & 0.012 (0.92) \\ \hline 0.012 (1.57) & 7.33 (0.92) & 0.012 (0.92) \\ \hline 0.012 (1.57) & 7.33 (0.92) & 0.012 (0.92) & 0.012 (0.92) \\ \hline 0.012 (1.57) & 7.33 (0.92) & 0.012 (0.92) & 0.012 (0.92) \\ \hline 0.012 (1.57) & 7.33 (1.57) &$	$+CC_{1/2}(\%)$	99 2 (78 4)	99 9 (89 5)	99 7 (84 7)	99 5 (69 5)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		7 93 (1 25)	18 89 (2 55)	10 18 (1 57)	7 37 (0 92)		
Completeness 96.7 (89.3) 96.3 (93.0) 96.9 (93.0) 96.9 (93.0) Wilson B-factor 44.67 29.56 36.89 46.85 Multiplicity 5.5 (4.4) 6.1 (6.1) 5.4 (5.3) 5.9 (5.6) Refinement (2.46-2.37) (1.91-1.84) (2.18-2.1) (2.21-2.13) Reflections used 20896 (1773) 44840 (4418) 30200 (2863) 28781 (2636) In refinement 18.04 / 24.58 (6.80 / 19.87) 18.58 / 24.33 (1.07 / 24.69) Rendertons used 20896 (1773) 44840 (4418) 30200 (2863) 28781 (2636) Nampetric unit content Protein residues 490 496 488 Ligand/GOL 1/3 1/1 1/3 1/4 Manganese/ 4/6 4/5 4/5 4/5 Water 122 250 174 77 Marganese/ 0.009 / 1.10 0.006 / 0.80 0.008/0.92 0.009/1.03 Rmad 0.009 / 1.10 0.006 / 0.80 0.008/0.92	Completeness	(1.23)	10.03(2.00)	0.10(1.07)	(0.32)		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		90.4 (00.2)	99.7 (99.5)	90.9 (95.0)	90.9 (93.0)		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(%) Wilcon P. factor	11 67	20.56	25.90	16.95		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Multiplicity	44.07	29.00	55.69 E 4 (E 2)	40.00		
RemementResolution (Å) $44.21-2.37$ $44.23-1.84$ $44.19-2.1$ $44.21-2.13$ Resolution (Å) $44.21-2.37$ $(1.91-1.84)$ $(2.18-2.1)$ $(2.21-2.13)$ Reflections used 20896 (1773) 44840 (4418) 30200 (2863) 28781 (2636)In refinement $R_{wort/Rree}$ (%) 18.04 / 24.58 16.80 / 19.87 18.58 / 24.53 19.07 / 24.69 Rewort/Rree (%) 18.04 / 24.58 16.80 / 19.87 18.58 / 24.53 19.07 / 24.69 Protein residues 490 496 488 Ligand/GOL $1/3$ $1/1$ $1/3$ $1/4$ Protein residues 490 496 488 Ligand/GOL $1/3$ $1/1$ $1/3$ $1/4$ Marganese/ $4/6$ $4/6$ $4/5$ $4/5$ Water 122 250 174 77 Nearage B factor 6.09 / 1.10 $0.006 / 0.80$ $0.008/0.92$ $0.009/1.03$ Ramachandran 96.0% in favoured 97.7% in favoured 97.1% in favoured 96.2% in favouredplot statistics 0.0% outliers 0.0% outliers 0.2% outliers 0.2% outliersData CollectionCsPYL1-iSB9- HAB1CsPYL1 ^{5M} -iSB9- HAB1CsPYL1 ^{5M} -iSB9- HAB1<	Definement	5.5 (4.4)	0.1 (0.1)	5.4 (5.3)	5.9 (5.0)		
Resolution (A) 44.23-1.84 44.19-2.1 44.21-2.13 (2.46-2.37) (1.91-1.84) (2.18-2.1) (2.21-2.13) Reflections used 2086 (1773) 44840 (4418) 30200 (2863) 28781 (2636) Rwork/Rree (%) 18.04 / 24.5816.80 / 19.87 18.58 / 24.5319.07 / 24.69 (31.73 / 42.12) (25.52 / 29.84) (28.90 / 33.72) (29.16 / 34.17) Asymmetric unit content	Refinement	44.04.0.07	44.00.4.04	44 40 0 4	44.04.0.40		
(2.40-2.37) (1.91-1.84) (2.18-2.1) (2.21-2.13) Reflections used 20896 (1773) 44840 (4418) 30200 (2863) 28781 (2636) Rwork/Riree (%) 18.04 / 24.5816.80 / 19.87 18.58 / 24.5319.07 / 24.69 Asymmetric unit content (25.52 / 29.84) (28.90 / 33.72) (29.16 / 34.17) Asymmetric unit content 1 / 1 1 / 3 1 / 4 molecules 490 496 488 Ligand/GOL 1 / 3 1 / 1 1 / 4 Marganese/ 1 / 6 4 / 6 4 / 5 4 / 5 Average B factor 51.5 / 66.2 38.5 / 40.0 51.3 / 52.5 63.0 / 71.6 Rmsd 51.5 / 66.2 38.5 / 40.0 51.3 / 52.5 63.0 / 71.6 Rmsd 0.009 / 1.10 0.006 / 0.80 0.008/0.92 0.009/1.03 Ramachandran 96.0% in favoured 0.7.% in favoured 0.2% outliers 0.2% outliers Data set (b) CsPYL1-iSB9- HAB1 CsPYL15M-iSB9- HAB1 CsPYL15M-iSB9- HAB1 CsPYL15M-iSB9- HAB1 CsPYL15M-iSB9- HAB1 0.0thorhombic, P212121 P212121 P212121 Cell dimensions	Resolution (A)	44.21-2.37	44.23-1.84	44.19-2.1	44.21-2.13		
Reflections Used 20896 (1773)44840 (4418)30200 (2863)28781 (2636)in refinement30200 (2863)28781 (2636)Rwork/Riree (%)(31.73 / 42.12)(25.52 / 29.84)(28.90 / 33.72)(29.16 / 34.17)Asymmetric unit contentProtein residues490496488Ligand/GOL1/31 / 1Manganese/ Chlorine ions4 / 64 / 54 / 5Varage B factorChorine ions51.5 / 66.238.5 / 40.051.3 / 52.563.0 / 71.6RmsdBond lengths (A) / angles (°)0.009 / 1.100.006 / 0.800.008/0.920.009/1.03Data set (b)CsPYL1-iSB9- HAB1CsPYL15M-ABA- HAB1CsPYL1-iSB9- HAB1CsPYL1-WB-HAB1CsPYL15M-ABA- HAB1CsPYL1-iSB9- HAB1CsPYL1-WB-HAB1CsPYL15M-ABA- HAB1CsPYL1-SPK270 62.2562.70 62.70187.86 187.01A (Å)42.70 62.2542.78 62.7043.34, 62.94 43.34, 62.94 42.76, 62.92, 187.01A (Å)	Deflections	(2.46-2.37)	(1.91-1.84)	(2.18-2.1)	(2.21-2.13)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	in refinement	20896 (1773)	44840 (4418)	30200 (2863)	28781 (2636)		
(31.73 / 42.12)(25.52 / 29.84)(28.90 / 33.72)(29.16 / 34.17)Asymmetric unit contentProtein residues490490496488Ligand/GOL molecules1 / 31 / 11 / 31 / 4Manganese/ Chlorine ions4 / 64 / 64 / 54 / 5Water molecules12225017477Average B factor (Protein / Ligand)51.5 / 66.238.5 / 40.051.3 / 52.563.0 / 71.6Rmsd51.5 / 66.238.5 / 40.051.3 / 52.563.0 / 71.6Rmsd0.009 / 1.100.006 / 0.800.008/0.920.009/1.03Ramachandran plot statistics96.0% in favoured 0.0% outliers97.7% in favoured 0.0% outliers97.1% in favoured 0.2% outliers96.2% in favoured 0.2% outliersData set (b)CsPYL1-iSB9- HB1CsPYL15M-iSB9- HAB1CsPYL1-QB-HAB1 P2/2121CsPYL15M-ABA- HAB1Crystal system, space GroupOrthorhombic, P2/2121Orthorhombic, P2/2121Orthorhombic, P2/2121Orthorhombic, P2/2121Cell dimensions42.70 42.76 42.25 62.7043.34, 43.34, 62.94, 43.34, 42.76, 42.76, 62.92, 187.0142.76 42.76, 62.92, 187.01A (Å) c (Å)42.70 187.0142.77 187.3343.34, 100.0, 90.0,	Rwork/Rfree (%)	18.04 / 24.58	16.80 / 19.87	18.58 / 24.53	19.07 / 24.69		
Asymmetric unit content 490 496 488 Protein residues 490 496 488 Ligand/GOL $1/3$ $1/1$ $1/3$ $1/4$ Manganese/ $4/6$ $4/6$ $4/5$ $4/5$ Manganese/ $4/6$ $4/6$ $4/5$ $4/5$ Water 122 250 174 77 molecules $51.5/66.2$ $38.5/40.0$ $51.3/52.5$ $63.0/71.6$ Rmsd Bond lengths $0.009/1.10$ $0.006/0.80$ $0.008/0.92$ $0.009/1.03$ Ramachandran 96.0% in favoured 97.7% in favoured 97.1% in favoured 0.2% outliers 0.2% outliers Data Collection 0.0% outliers 0.0% outliers 0.2% outliers 0.2% outliers Data set (b) CsPYL1-iSB9- HAB1 CsPYL15M-iSB9- HAB1 CsPYL1-QB-HAB1 CsPYL15M-ABA- HAB1 Crystal system, space Group Orthorhombic, P212121 P		(31.73 / 42.12)	(25.52 / 29.84)	(28.90 / 33.72)	(29.16 / 34.17)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Asymmetric unit co	ontent		· · · · · · · · · · · · · · · · · · ·			
$\begin{array}{c c c c c c c } Ligand/GOL & 1 / 3 & 1 / 1 & 1 / 3 & 1 / 4 \\ \hline \mbox{molecules} & 1 / 3 & 1 / 1 & 1 / 3 & 1 / 4 \\ \hline \mbox{Manganese/} & 4 / 6 & 4 / 6 & 4 / 5 & 4 / 5 \\ \hline \mbox{Water} & 122 & 250 & 174 & 77 \\ \hline \mbox{molecules} & & & & & & & & & & & & & & & & & & &$	Protein residues	490	490	496	488		
molecules 17.3 17.1 Manganese/ Chlorine ions 4 / 6 4 / 6 4 / 5 4 / 5 Water molecules 122 250 174 77 Average B factor (Protein / Ligand) 51.5 / 66.2 38.5 / 40.0 51.3 / 52.5 63.0 / 71.6 Rmsd 5 51.5 / 66.2 38.5 / 40.0 51.3 / 52.5 63.0 / 71.6 Rmsd 0.009 / 1.10 0.006 / 0.80 0.008/0.92 0.009/1.03 Ramachandran plot statistics 96.0% in favoured 0.0% outliers 97.7% in favoured 0.2% outliers 96.2% in favoured 0.2% outliers Data Collection 0.0% outliers 0.0% outliers 0.2% outliers 0.2% outliers Data set (b) CsPYL1-iSB9- HAB1 CsPYL1-QB-HAB1 HAB1 CsPYL1-QB-HAB1 P21212 CsPYL1-QB-HAB1 P21212 P212121 P21212 Crystal system, space Group Orthorhombic, P212121 P212121 P21212 P212121 P212121 Cell dimensions 4 43.34, 62.94, 487.01 42.76, 62.92, 187.01 62.92, 187.01 A (Å) 42.70 42.78 62.70 43.34, 62.94, 187.86 187.01 187	Ligand/GOL	4.10	4.1.4	1/3	1/4		
Manganese/ Chlorine ions4 / 64 / 64 / 54 / 5Water molecules12225017477Average B factor (Protein / Ligand)51.5 / 66.238.5 / 40.051.3 / 52.563.0 / 71.6RmsdBond Bond (Å) / angles (°)0.009 / 1.100.006 / 0.800.008/0.920.009/1.03Ramachandran plot statistics96.0% in favoured 0.0% outliers97.7% in favoured 0.0% outliers97.1% in favoured 0.2% outliers96.2% in favoured 0.2% outliersData CollectionData set (b)CsPYL1-iSB9- HAB1CsPYL15M-iSB9- HAB1CsPYL1-QB-HAB1 P121212CsPYL15M-ABA- HAB1Crystal system, space GroupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Cell dimensions42.70 187.0142.78 187.3343.34, 62.94, 187.8642.76, 62.92, 187.01A (Å) (Å) (Å) (Å)90.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.0Wavelength (Å) (Å) 0.9792570.97930.97926Dotal refections (Å)254498 (24492) 310204 (27754)106878 (10198) 203813 (20268)	molecules	1/3	1/1				
Chlorine ions4 / 64 / 54 / 5Water molecules12225017477Average B factor (Protein / Ligand) $51.5 / 66.2$ $38.5 / 40.0$ $51.3 / 52.5$ $63.0 / 71.6$ RmsdBond lengths (Å) / angles (°) $0.009 / 1.10$ $0.006 / 0.80$ $0.008 / 0.92$ $0.009 / 1.03$ Ramachandran plot statistics96.0% in favoured 0.0% outliers 97.7% in favoured 0.0% outliers 97.2% in favoured 0.2% outliers 96.2% in favoured 0.2% outliersData CollectionCsPYL1-iSB9- HAB1CsPYL15M-iSB9- HAB1CsPYL15M-ABA- HAB1Crystal system, space GroupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Cell dimensions42.70 42.75 42.78 62.70 187.33 43.34 , 62.94 , 42.76 , 62.92 , 187.86 A (Å) b (Å) c (Å) 42.70 62.25 42.78 62.70 187.33 43.34 , 62.94 , 42.76 , 62.92 , 187.86 A (Å) b (Å) c (Å) $9.0, 90.0,$	Manganese/	4.1.0	4.10	A 1 F	A / F		
Water molecules12225017477Average B factor (Protein / Ligand) $51.5 / 66.2$ $38.5 / 40.0$ $51.3 / 52.5$ $63.0 / 71.6$ RmsdBond lengths (Å) / angles (°) $0.009 / 1.10$ $0.006 / 0.80$ $0.008 / 0.92$ $0.009 / 1.03$ Ramachandran plot statistics96.0% in favoured 0.0% outliers 97.7% in favoured 0.0% outliers 97.1% in favoured 0.2% outliers 96.2% in favoured 0.2% outliersData CollectionData set (b)CsPYL1-iSB9- HAB1CsPYL15M-iSB9- HAB1CsPYL1-QB-HAB1 P121212CsPYL15M-ABA- HAB1Crystal system, space GroupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Cell dimensions42.70 42.75 62.25 42.78 62.70 187.33 43.34, 62.94 , $42.76, 62.92$, 187.01 A (Å) $(Å)$ (A) 62.25 62.70 187.33 90.0, 90.0, 90.0, 90.0, 90.0, 90.0, 90.0, $90.0, 90$	Chlorine ions	4/6	4/6	4/5	4/5		
moleculesAverage B factor (Protein / Ligand)51.5 / 66.2 $38.5 / 40.0$ $51.3 / 52.5$ $63.0 / 71.6$ RmsdBond lengths (Å) / angles (°) $0.009 / 1.10$ $0.006 / 0.80$ $0.008 / 0.92$ $0.009 / 1.03$ Ramachandran plot statistics96.0% in favoured 0.0% outliers 97.7% in favoured 0.0% outliers 97.1% in favoured 0.2% outliers 96.2% in favoured 0.2% outliersData CollectionCsPYL1-iSB9- HAB1CsPYL1-iSB9- HAB1CsPYL1-QB-HAB1 P12121CsPYL15M-ABA- HAB1Crystal system, space GroupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Cell dimensions42.70 62.2542.78 62.70 187.3343.34, 62.94, 187.8642.76, 62.92, 187.01A (Å) c (Å)42.70 62.2542.78 62.70 187.3343.34, 62.94, 187.8642.76, 62.92, 187.01 α, β, γ (°) wavelength (Å)0.979257 0.9792570.97933 0.979260.97926 0.97926Total refections Vavelength (Å)254498 (24492)310204 (27754)106878 (10198)203813 (20268)	Water	122	250	174	77		
Average B factor (Protein / Ligand) $51.5 / 66.2$ $38.5 / 40.0$ $51.3 / 52.5$ $63.0 / 71.6$ RmsdBond lengths (Å) / angles (°) $0.009 / 1.10$ $0.006 / 0.80$ $0.008 / 0.92$ $0.009 / 1.03$ Ramachandran plot statistics 96.0% in favoured 0.0% outliers 97.7% in favoured 0.0% outliers 97.1% in favoured 0.2% outliers 96.2% in favoured 0.2% outliersData CollectionCsPYL1-iSB9- HAB1CsPYL1 ^{5M} -iSB9- HAB1CsPYL1-QB-HAB1 P212121CsPYL1 ^{5M} -ABA- HAB1Crystal system, space GroupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Cell dimensions42.70 42.76 62.25 43.34 , 62.94 , 42.76 , 62.92 , 187.01 42.76 , 62.92 , 187.01 α,β,γ (°)90.0, 90.0, 90.0 $90.0, 90.0, 90.0$ 90.0, 90.0, 90.0 $90.0, 90.0, 90.0$ 90.0, 90.0, 90.0 $90.0, 90.0, 90.0$ Wavelength (Å)0.9792570.9792570.97930.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	molecules						
Rmsd Bond (Å) / angles (°)0.009 / 1.100.006 / 0.800.008/0.920.009/1.03Ramachandran plot statistics96.0% in favoured 0.0% outliers97.7% in favoured 0.0% outliers97.1% in favoured 0.2% outliers96.2% in favoured 0.2% outliersData CollectionCsPYL1-iSB9- HAB1CsPYL15M-iSB9- HAB1CsPYL1-QB-HAB1 HAB1CsPYL15M-ABA- HAB1Crystal system, space GroupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Cell dimensions42.70 (Å)42.78 62.2543.34, 62.94, 187.0142.76, 187.02A (Å)42.70 62.2542.70 62.7043.34, 187.8642.76, 187.01α,β,γ (°)90.0, 90.0, 90.090.0, 90.0, 90.0, 90.090.0, 90.0, 90.0, 90.0Wavelength (Å)0.9792570.9792570.97930.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	Average B factor (Protein / Ligand)	51.5 / 66.2	38.5 / 40.0	51.3 / 52.5	63.0 / 71.6		
Bond Bond (Å) / angles (°)0.009 / 1.100.006 / 0.800.008/0.920.009/1.03Ramachandran plot statistics96.0% in favoured 	Rmsd						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bond lengths						
Ramachandran plot statistics96.0% in favoured 0.0% outliers97.7% in favoured 0.0% outliers97.1% in favoured 0.2% outliers96.2% in favoured 0.2% outliersData CollectionCsPYL1-iSB9- HAB1CsPYL15M-iSB9- HAB1CsPYL1-QB-HAB1 HAB1CsPYL15M-ABA- HAB1Crystal system, space GroupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121P212121Cell dimensions42.70 62.2542.78 62.70 187.0143.34, 187.3362.94, 187.8642.76, 187.01α,β,γ (°)90.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.0Wavelength (Å)0.9792570.9792570.97930.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	(Å) / angles (°)	0.009 / 1.10	0.006 / 0.80	0.008/0.92	0.009/1.03		
plot statistics0.0% outliers0.0% outliers0.2% outliers0.2% outliersData CollectionCsPYL1-iSB9- HAB1CsPYL15M-iSB9- HAB1CsPYL1-QB-HAB1 HAB1CsPYL15M-ABA- HAB1Crystal system, space GroupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Cell dimensions42.70 62.2542.78 62.70 187.0143.34, 62.94, 187.8642.76, 62.92, 187.01 α,β,γ (°)90.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.0, 90.0Wavelength (Å)0.9792570.9792570.97930.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	Ramachandran	96.0% in favoured	97.7% in favoured	97.1% in favoured	96.2% in favoured		
Data CollectionData set (b)CsPYL1-iSB9- HAB1CsPYL1 ^{5M} -iSB9- HAB1CsPYL1-QB-HAB1 HAB1CsPYL1 ^{5M} -ABA- HAB1Crystal system, space GroupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Cell dimensions42.70 62.2542.78 62.70 187.0143.34, 62.94, 187.8642.76, 62.92, 187.86α,β,γ (°)90.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.0, 90.090.0, 90.0, 90.0, 90.0, 90.0, 90.0Wavelength (Å)0.9792570.9792570.97930.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	plot statistics	0.0% outliers	0.0% outliers	0.2% outliers	0.2% outliers		
Data set (b)CsPYL1-iSB9- HAB1CsPYL1 ^{5M} -iSB9- HAB1CsPYL1-QB-HAB1 HAB1CsPYL1 ^{5M} -ABA- HAB1Crystal system, space GroupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Cell dimensions42.70 62.2542.78 62.70 187.0143.34, 62.94, 187.8642.76, 62.92, 187.86 α,β,γ (°)90.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.0Wavelength (Å)0.9792570.9792570.97930.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	Data Collection						
Crystalsystem, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121Cell dimensionsA (Å)42.7042.7843.34, 62.2562.7043.34, 187.8662.94, 187.0142.76, 187.0162.92, 187.86 α,β,γ (°)90.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.0Wavelength (Å)0.9792570.9792570.97930.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	Data set (b)	CsPYL1-iSB9- HAB1	CsPYL1 ^{5M} -iSB9- HAB1	CsPYL1-QB-HAB1	CsPYL1 ^{5M} -ABA- HAB1		
space GroupP212121P212121P212121P212121Cell dimensionsA (Å)42.7042.7843.34, 62.94, 42.76, 62.92,b (Å)62.2562.70187.86187.01c (Å)187.01187.33187.86187.01 α,β,γ (°)90.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.0, 90.0Wavelength (Å)0.9792570.979350.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	Crystal system,	Orthorhombic,	Orthorhombic,	Orthorhombic,	Orthorhombic,		
	space Group	P212121	P212121	P212121	P212121		
A (Å)42.7042.7843.34,62.94,42.76,62.92,b (Å)62.2562.70187.86187.01187.01c (Å)187.01187.3390.0, 90.0, 90.0, 90.090.0, 90.0, 90.0, 90.090.0, 90.0, 90.0, 90.0Wavelength (Å)0.9792570.9792570.97930.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	Cell dimensions						
b (Å) c (Å)62.25 187.0162.70 187.3343.34, 187.8662.94, 187.0142.76, 62.92, 187.0162.92, 187.01 α,β,γ (°)90.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.0Wavelength (Å)0.9792570.9792570.97930.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	A (Å)	42.70	42.78		/a =a === ==		
c (Å)187.01187.33187.86187.01 α,β,γ (°)90.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.0Wavelength (Å)0.9792570.9792570.97930.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	b (Å)	62 25	62 70	43.34, 62.94,	42.76, 62.92,		
α,β,γ (°)90.0, 90.0, 90.090.0, 90.0, 90.090.0, 90.0, 90.0Wavelength (Å)0.9792570.9792570.97930.97926Total refections254498 (24492)310204 (27754)106878 (10198)203813 (20268)	\tilde{c} (Å)	187 01	187 33	187.86	187.01		
Wavelength (Å) 0.979257 0.979257 0.979257 0.9793 0.97926 Total refections 254498 (24492) 310204 (27754) 106878 (10198) 203813 (20268)	α β y (°)			900 900 900	900 900 900		
Total refections 254498 (24492) 310204 (27754) 106878 (10198) 203813 (20268)	Wavelength (Å)	0 979257	0 979257	0 9793	0.97926		
	Total refections	254498 (24492)	310204 (27754)	106878 (10198)	203813 (20268)		

#R(%)	1 11 (99 86)	3 11 (61 09)	2 7 (82 06)	5 64 (27 0)			
$+C_{4/2}(%)$	4.11 (55.00) 00 0 (50 2)	00.8 (16.3)	2.7(02.00)	00 3 (01 3)			
(1/2(1))	11 /8 (0.90)	12 87 (1 16)	11 69 (0 81)	7 38 (1 / 9)			
Completeness	08.0 (08.3)	99 1 (92 3)	99.6 (96.6)	95 71 (83 74)			
(%)	90.9 (90.5)	99.1 (92.5 <i>)</i>	33.0 (30.0)	93.71 (03.74)			
(⁷⁰) Wilcon R factor	25.10	22.04	20.06	45.08			
Multiplicity	55.19 6 1 (6 3)	52.04 6 1 (6 2)	29.00	43.00			
Refinement	0.4 (0.3)	0.4 (0.2)	2.0 (2.0)	0.0 (0.0)			
Resolution $(Å)$	11 05-1 9	11 21-1 78	12 23 1 74	14 28 2 28			
Resolution (A)	(1 07_1 0)	(1 85-1 78)	$(1 \ 80 \ 1 \ 74)$	(2 36-2 28)			
Reflections used	30005 (3883)	18565 (1115)	53446 (5108)	22866 (1977)			
in refinement	00000 (0000)	+0000 (+++0)	00440 (0100)	22000 (1011)			
Bwork/Bfrog (%)	1940 / 24.68	17.98 / 21.19	17 72 /	20.33 20.63 / 26.31			
	(36 27 / 39 84)	(33 82 / 35 43)	(3373/3727)	(30.06/39.02)			
Asymmetric unit co	ontent	(00.02 / 00.10)	(00.10701.21	, (00.00 ; 00.02)			
Protein	483	484	487	501			
residues	400	-0-	-07	001			
Ligand/GOI	1/1	1/3	1/1	1/1			
molecules	.,.	.,.	.,.	.,.			
	4/6	3/6	4/3	4/6			
Manganese/Chlo							
rine ions							
Water	166	237	271	44			
molecules							
Average B factor	50.5 / 54.5	42.3 / 50.5	40.7 / 39.1	67.1 / 72.0			
(Protein / Ligand)							
Rmsd							
Bond lengths	0.009 / 0.96	0.008 / 0.94	0.006 / 0.82	0.008 / 1.05			
(Å) / angles (°)							
Ramachandran	98.1% in favoured	97.5% in favoured	97.5% in favo	ured 93.9% in favoured			
plot statistics	0.2 % outliers	0.0 % outliers	0.0 % outliers	0.6 % outliers			
Highest-resolution	shell is shown in par	rentheses.					
${}^{\#}R_{nim} = \sum_{nim} \sqrt{1/n} -$	$\overline{1}\sum_{n=1}^{n} I_{hkl} - \langle I_{hkl} \rangle / \sum_{n=1}^{\infty}$	$\sum I_{hkl,i}$					
$\frac{p_{\text{start}}}{p_{\text{start}}} = \frac{p_{\text{start}}}{p_{\text{start}}} = \frac{p_{\text{start}}}{p_{\text{start}}$							
Data sot (a)	CD.	iSB7		iSB0			
Chemical formula			S				
M	242 44	242.40	30	256 42			
Nir Data Collection	545.41	545.40		550.45			
Crystal system	Orthorhombic	Monoclinic		Monoclinic			
Space group							
	5 233(<i>I</i>)	5 1/70/5)		10 696(4)			
Γ (<u>Γ</u>) h (Δ)	14,766(5)	15 5400(6)		15 619(4)			
	20 790(8)	10 2510(0)		10.7320(14)			
α β ν (°)	90 90 90	90 100 414	5(7) 90	90 105 83(2) 90			
Volume/ $Å^3$	1606 5(14)	806 41(11)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1724 9(8)			
Volumerra	1000.0(14)	000.+1(11)		1127.0(0)			

4.698 to 64.986

2, 0.324

-6≤h≤6

-20 ≤ k ≤ 19

-13 ≤ I ≤ 13

Z , μ (mm⁻¹)

Radiation 2Θ range collection(°)

Index ranges

4, 0.326

for dat 3.934 to 67.882

-6 ≤ h ≤ 6

-19 ≤ k ≤ 19

-26 ≤ I ≤ 26

Synchrotron ($\lambda = 0.82653$)

4.588 to 65.028

-12 ≤ h ≤ 13

-20 ≤ k ≤ 19

-13 ≤ I ≤ 13

4, 0.307

Refl. collecter	21743, 3779	9262, 3396	13450, 6688				
Rint , Rsigma (%)	4.47, 2.74	7.94, 8.38	4.15, 5.05				
Refinement							
Data / restraints / parameters	3779 / 0 / 224	3396 / 1 / 222	6688/1/461				
Goodness-of-fit on F ²	1.048	1.115	1.033				
Final R indexes [I>=2σ (I)] (%)	R ₁ = 3.84, wR ₂ = 10.18	R ₁ = 5.20, wR ₂ = 12.77	R ₁ = 5.65, wR ₂ = 15.08				
Final R indexes [all data] (%)	R ₁ = 4.16, wR ₂ = 10.46	R ₁ = 5.21, wR ₂ = 12.78	R ₁ = 6.06, wR ₂ = 15.59				
Largest diff. peak / hole / e Å ⁻³	0.31 / -0.48	0.47 / -0.83	0.70/-0.79				

Table S1.

Diffraction data collection and refinement statistics for (a) CsPYL1-SB-HAB1, CsPYL1^{5M}-SB-HAB1, CsPYL1-iSB7-HAB1 and CsPYL1^{5M}-iSB7-HAB1, (b) CsPYL1-iSB9-HAB1, CsPYL1^{5M}-iSB9-HAB1, CsPYL1-QB-HAB1 and CsPYL1^{5M}-ABA-HAB1 (output from Phenix generate table) and (c) the ligands, SB, iSB7 and iSB9