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Abstract 17 

 18 

Solar and wind power are called to play a main role in the transition toward decarbonized electricity 19 

systems. However, their integration in the energy mix is highly compromised due to the intermittency 20 

of their production caused by weather and climate variability. To face the challenge, here we present 21 

research about actionable strategies for wind and solar photovoltaic facilities deployment that exploit 22 

their complementarity in order to minimize the volatility of their combined production while 23 

guaranteeing a certain supply. The developed methodology has been implemented in an open-access 24 

step-wise model called CLIMAX. It first identifies regions with homogeneous temporal variability 25 

of the resources, and then determines the optimal shares of each technology over such regions. In the 26 

simplistic application performed here, we customize the model to narrow the monthly deviations of 27 

the total wind-plus-solar electricity production from a given curve (here, the mean annual cycle of 28 

the total production) across five European regions. For the current shares of both technologies, the 29 

results show that an optimal siting of the power units would reduce the standard deviation of the 30 

monthly anomalies of the total wind-plus-solar power generation by up to 20% without loss in the 31 

mean capacity factor as compared to a baseline scenario with an evenly spatial distribution of the 32 

installations. This reduction further improves (up to 60% in specific regions) if the total shares of 33 
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each technology are also optimized, thus providing actionable information for the deployment of new 34 

installations in energy policy decision-making. These results encourage the use of CLIMAX for 35 

practical guidance of next-generation renewable energy scenarios. 36 

 37 

Key points 38 

 39 

• CLIMAX is a climate-informed open source tool to assist energy transition with actionable 40 

strategies for wind and solar power deployment. 41 

• It allows leveraging climate-driven wind-solar complementarity to minimize the variability of 42 

their combined production. 43 

• In all European regions, optimal siting or sharing of wind and solar technologies would 44 

considerably increase the stability of the supply. 45 

 46 

1 – Introduction 47 

 48 

The transition toward a decarbonized electricity system, powered by renewables, is urgently needed 49 

to achieve net greenhouse gas neutrality and so mitigate climate change, among other reasons (IPCC 50 

2018, 2021). However, most renewable energies, as far as they depend on weather and climate, 51 

presents an inherent uncontrollable intermittency or temporal variability that hinders their integration 52 

in the energy mix. It makes necessary large investments on backup and storage systems, because the 53 

electricity production should be stable in time following the demand without much fluctuations. This 54 

issue led Antonini et al. (2022) to come up with the term "quantity-quality transition" to highlight that 55 

the optimal siting of the renewable generation facilities in a distributed network has to do not only 56 

with high capacity factors, but also with a high correlation between these and electricity demand (or 57 

residual demand), particularly under strict carbon emission constraints.  58 

 59 

In order to face the challenge of the stability of a clean-energy supply system, here we focus on two 60 

variable renewable energies, wind and solar photovoltaic power, which should be key in the future 61 

energy deployment plans (European Commission 2019). Moreover, they present a certain degree of 62 

spatio-temporal complementarity that could be exploited to reduce the variability of the combined 63 

wind-plus-solar production and mitigate the so-called power droughts (Brown et al. 2021; Jerez et al. 64 

2013a; Solomon et al. 2020). For instance, the daily and annual cycles of the wind and solar resources 65 

are typically negatively correlated (Couto & Estanqueiro 2021; Jerez et al. 2019; Schindler et al. 66 
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2020). Spatially, for a given energy, weather regimes and large-scale modes of climate variability 67 

have opposite fingerprints at different locations. The opposite effects of the North Atlantic Oscillation 68 

on the renewable resources over southern and northern Europe represent a good example of this (e.g. 69 

Garrido-Pérez et al. 2020; Jerez et al. 2013b; Jerez & Trigo 2013; van der Wiel et al. 2019). 70 

 71 

Although wind and solar powers are mature technologies, and lots of production units are already 72 

supplying large portions of the demand in many countries (IRENA 2020), an explosion of new 73 

installations is still to happen worldwide (e.g. European Commission 2019). As the penetration of the 74 

variable renewables into the energy mix grows, it turns more vulnerable to climate variability. Hence, 75 

advances in the understanding and characterization of the climatic behavior of these resources, their 76 

complementarity and their optimal balance can be critical for the success of the upcoming facility 77 

deployment plans and, in the long-term, to accomplish with the Paris Agreement (IPCC 2022).  78 

 79 

Previous studies have already investigated the potential of the wind-solar complementarity to reduce 80 

the volatility of their combined production. Some of them assessed the advantages of hybrid (wind-81 

solar) energy systems or explored local anticorrelations between these resources, focusing on their 82 

temporal-alone complementarity at a given location (e.g. Costoya et al. 2022; Couto & Estanqueiro 83 

2021; Jánosi et al. 2021; Liu et al. 2020). Others have dealt with the spatial-alone complementarity 84 

of a single resource (e.g. Mühlemann et al. 2022). Yet, a number of works did investigate the full 85 

potential of the spatio-temporal complementarity between wind and solar power for enlarging the 86 

stability of the supply, particularly over Europe (Frank et al. 2021; Santos-Alamillos et al. 2017; 87 

Grams et al. 2017; Wohland et al. 2021). Using national aggregate capacity factors, they explored the 88 

potential of a well-planed interconnected European power system to reduce the day-to-day, multi-day 89 

or multi-decadal supply variability of the combined wind and solar power generation. However, the 90 

literature has overlooked this issue at the monthly time-scale, even though the monthly anomalies of 91 

the wind and solar capacity factor series account for up to 20% of the whole variability in the series 92 

(Jerez et al. 2019). Besides, this time-scale is important to cope with climate extremes that can lead 93 

to prolonged peaks in demand, such as long-lasting cold-spells and heat waves, and low production 94 

in other renewable alternatives (e.g. hydropower), such as droughts. It is also relevant to address the 95 

growing demand from the energy sector of accurate seasonal predictions allowing risk anticipation 96 

and so the design of long-term action plans (Lledó et al. 2019). 97 

 98 

Here we first deepen our understanding about the complementarity of the wind and solar capacity 99 

factors over Europe at the monthly time-scale with a climate-driven approach, uncovering links with 100 
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the large-scale atmospheric circulation and its degree of influence. Then we present an action-oriented 101 

approach to quantify the benefits of a smart deployment of wind and solar facilities for pan-European 102 

regions, and the path to reach them. The originality of this climate-to-action solution relies on a 103 

powerful hybrid methodology which, in first place, identifies regions with homogeneous temporal 104 

variability of the resources, and then determines the optimal shares of each technology over such 105 

regions. Full details on the method, including the open-source codes and an on-line interactive tool 106 

version, are available at http://climax.inf.um.es/ for its application beyond the limits of the illustrative 107 

academic exercise presented here, including different regions, time-scales and goals. 108 

 109 

2 – Data and methods 110 

 111 

2.1 – Monthly series of wind and solar capacity factors 112 

 113 

We used here monthly series of wind and solar (photovoltaic) power potential (or capacity factors). 114 

These were constructed from hourly data of surface downward solar radiation, surface air 115 

temperature, 10-m height wind speed and 100-m height wind speed for the period 1979-2020 116 

retrieved from the ERA5 reanalysis (Hersbach et al. 2020) with a spatial resolution of 0.25 degrees 117 

(~30 km at the latitudes and longitudes considered here). Although ERA5 reanalysis may mask finer 118 

resolution terrain effects, particularly on the wind field over regions with complex topography 119 

(Jourdier 2020), it has been proven reliable for both solar radiation (Urraca et al. 2018) and wind 120 

power modeling (Olauson 2018). First we constructed hourly series of wind and solar capacity factors 121 

using simple relationships and power curves, as in Jerez & Trigo (2013) for the wind (considering 122 

turbines with 100-m hub height and 4, 12 and 24 m/s as cut-in, rated and cut-off speeds, respectively) 123 

and Jerez et al. (2015) for the solar power (including the effects of temperature and wind in the 124 

horizontal panel outputs). Then we computed accumulated monthly sums. The resulting monthly 125 

series were detrended and the monthly anomalies were obtained by subtracting the mean annual cycle. 126 

The analysis based on these series is restricted here to the European continent. In the case of the wind 127 

capacity factor series, the first grid cells off the coastline are also included in the analysis in order to 128 

consider offshore wind power installations. 129 

 130 

2.2 – Recurrent atmospheric patterns 131 

 132 

Synoptic recurrent patterns were identified by performing a k-means clustering (e.g. Wilks 2006) of 133 

the ERA5 monthly mean 500 hPa geopotential height (Z500) anomaly fields over the Euro-Atlantic 134 

http://climax.inf.um.es/
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sector [60W-40E, 25-75N] for the 1979-2020 period. The k-means method was applied to the three 135 

months of each season separately (i.e. a sample of 126 maps for each season). The approach assigns 136 

each month to one cluster based on the Euclidean distance (sum of squared differences) of the monthly 137 

Z500 anomalies with respect to the cluster's centroids. Clusters are determined iteratively by 138 

maximizing the distance between their centroids (inter-cluster distance) and minimizing the intra-139 

cluster variance (the dispersion of maps within the same cluster). The method is applied with 1000 140 

iterations, thus allowing enough evolution of the centroids from the random initial seeds, but it 141 

requires predefining the number of clusters. The choice of four clusters was supported by the number 142 

of daily weather regimes employed in previous studies all-year round (e.g. Michelangeli et al. 1995; 143 

Cassou et al. 2005; Cortesi et al. 2021). This also provides a good compromise between a manageable 144 

number of clusters and their frequency of occurrence (five or more partitions yield low populated 145 

clusters). 146 

 147 

2.3 – Sub-regions with homogeneous temporal variability of the capacity factor series 148 

 149 

The user-oriented product presented here first clusters grid cells with similar temporal variability of 150 

the resources. For that we applied the methodology described in Lorente-Plazas et al. (2014) to the 151 

series of monthly anomalies of the wind and solar capacity factors, separately. First, a S-mode 152 

(spatial-mode) principal component analysis (PCA; von Storch & Zwiers, 1999) is performed. The 153 

correlation matrix is used to avoid the domination of locations with stronger variance. The number of 154 

retained components is chosen by means of a scree plot test (Cattell, 1966). A clustering is 155 

subsequently performed on the basis of the Euclidean distance between the retained eigenvectors 156 

from the PCA through a two-steps classification combining hierarchical and non-hierarchical 157 

algorithms. First, the hierarchical clustering, based on the Ward’s minimum variance method (Ward 158 

1963), provides a first-guess classification. The resulting centroids then become the initial seeds for 159 

the non-hierarchical method applied here through the k-means algorithm (Hartigan & Wong 1979). 160 

 161 

2.4 – Optimization methods 162 

 163 

The final objective of the CLIMAX tool is to identify optimal spatial distributions and shares of wind 164 

and solar photovoltaic power installations across a selected region. The optimization process pursues 165 

to minimize the deviations of the total wind-plus-solar production with respect to a given user-defined 166 

reference series or curve (e.g. a time series of electricity demand), while guaranteeing a certain 167 

minimum production. This is done under two frameworks that we call Optimal Distributions (OD) 168 
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and Optimal Distributions and Shares (ODS). In the OD approach, the regional shares of wind and 169 

solar power are fixed values, so we worked only on their optimal spatial distribution across the sub-170 

regions (i.e. which sub-regions and energy should be prioritized given the total regional shares). 171 

Differently, the ODS experiment is designed without constraints on the relative penetration (or share) 172 

of these energies. 173 

 174 

Two algorithms, OD and ODS, were implemented in two python codes that work on minimizing the 175 

following function: 176 

 177 

���𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 + �𝑆𝑆𝑊𝑊𝑊𝑊

𝑁𝑁𝑁𝑁

𝑗𝑗=1

𝐴𝐴𝑊𝑊𝑊𝑊𝑊𝑊 − 𝐵𝐵𝑘𝑘�

2𝑁𝑁𝑁𝑁𝑁𝑁

𝑘𝑘=1

 178 

 179 

where ASik/AWjk are the input data of solar/wind power capacity factors corresponding to the sub-180 

region i/j at time k, being NS/NW the number of sub-regions with homogeneous temporal variability 181 

and NTT the time-steps in the series, and Bk constitutes a reference time series of desired supply. The 182 

minimization of this function, hereafter optimization process, will provide the optimal values of 183 

SSi/SWj, these being the shares of solar/wind power in the sub-region i/j that yield the best fit of the 184 

wind-plus-solar production – as given by the product of shares and the input capacity factors – to the 185 

provided reference series. In the application presented here, we aim to minimize the deviations with 186 

respect to the mean annual cycle of total production, and hence Bk is null at all k time-steps, since the 187 

capacity factors ASik/AWjk are expressed as monthly anomalies. 188 

 189 

For the optimization process, we impose the following restrictions: 190 

 191 

i) Positive share values, so: 192 

 193 

𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 0∀𝑖𝑖 = 1, . . ,𝑁𝑁𝑠𝑠 194 

𝑆𝑆𝑊𝑊𝑊𝑊 ≥ 0∀𝑗𝑗 = 1, . . ,𝑁𝑁𝑤𝑤 195 

 196 

ii) Total share = 1, i.e.: 197 

 198 

�𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝑁𝑁

𝑖𝑖=1

+ �𝑆𝑆𝑊𝑊𝑊𝑊

𝑁𝑁𝑁𝑁

𝑗𝑗=1

= 1 199 
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 200 

iii) Guarantee of a minimum production, given by: 201 

 202 

�𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 + �𝑆𝑆𝑊𝑊𝑊𝑊

𝑁𝑁𝑁𝑁

𝑗𝑗=1

𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊 ≥ 𝑀𝑀𝑘𝑘∀𝑘𝑘 = 1, . . . ,𝑁𝑁𝑁𝑁𝑁𝑁 203 

 204 

where CSik/CWjk refers to the absolute solar/wind power capacity factors (with the mean annual cycle 205 

included) for the sub-region i/j at time k, and Mk is user-defined. The implementation of this last 206 

condition allows guaranteeing a minimum production. In the examples of the main text, the CS/CW 207 

series contains the monthly annual cycle of the solar/wind power capacity factor data of each sub-208 

region, and the M series the monthly annual cycle of the total (wind-plus-solar) power capacity factor 209 

in the whole target region according to a baseline scenario (further details in Section 3.2). Note that 210 

the number of time steps of the CS, CW and M series (NMP) should be the same (here is 12). 211 

 212 

In the OD exercise, the total shares of each technology in the target region should be kept at pre-fixed 213 

values, SSC for solar power and SWC for wind power (Table 1 provides the values considered here). 214 

This adds the following conditions: 215 

 216 

�𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝑁𝑁

𝑖𝑖=1

= 𝑆𝑆𝑆𝑆𝑆𝑆 217 

�𝑆𝑆𝑊𝑊𝑊𝑊

𝑁𝑁𝑁𝑁

𝑗𝑗=1

= 𝑆𝑆𝑊𝑊𝑊𝑊 218 

 219 

For the ODS approach, we imposed here that the total share of solar power in the target region must 220 

be greater than the total share of wind power if the mean solar capacity factor is greater than the mean 221 

wind capacity factor in the region, and vice versa. This adds the following condition: 222 

 223 

�𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝑁𝑁

𝑖𝑖=1

≥�𝑆𝑆𝑊𝑊𝑊𝑊

𝑁𝑁𝑁𝑁

𝑗𝑗=1

 if 𝑟𝑟𝑟𝑟2𝑤𝑤 > 1 224 

�𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁𝑁𝑁

𝑖𝑖=1

≤�𝑆𝑆𝑊𝑊𝑊𝑊

𝑁𝑁𝑁𝑁

𝑗𝑗=1

 if 𝑟𝑟𝑟𝑟2𝑤𝑤 < 1 225 

 226 
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where rs2w is the ratio between the regional means of the solar power and the wind power capacity 227 

factors (see Table 1). 228 

 229 

This later restriction to the solution space in the ODS approach can be overseen, if preferred. Also, 230 

additional restrictions - not imposed in the CLIMAX applications presented here - can be activated. 231 

Both OD and ODS codes admit minimum and maximum thresholds for the sub-regional shares of 232 

each energy, and also for the total regional shares in the case of ODS. 233 

 234 

Both codes can be downloaded from http://climax.inf.um.es and further details are given there. We 235 

also provide there an additional couple of codes (OL, for Optimal Locations, and OLS, for Optimal 236 

Locations and Shares) which, unlike OD and ODS, work with amounts of installed capacity instead 237 

of shares of each energy. 238 

 239 

3 – Results 240 

 241 

3.1 – Understanding complementarity: a climatic characterization with an academic approach 242 

 243 

First we characterize the climatic behavior of the monthly anomalies of the wind and solar power 244 

capacity factors by assessing their responses to a portfolio of recurrent atmospheric patterns, a kind 245 

of monthly-extended weather regimes (see Section 2.2). Their centroids (i.e. the composites of Z500 246 

anomalies for the months assigned to each cluster) are depicted in Figure 1 (labels C1 to C4) for all 247 

seasons (December-to-February, DJF; March-to-May, MAM; June-to-August, JJA; and September-248 

to-November, SON), where their frequency of occurrence (in % of total months) is also indicated. 249 

These patterns bear resemblance to the well-established daily weather regimes of the Euro-Atlantic 250 

sector (e.g. Michelangeli et al. 1995). In the overall, C1 captures the so-called Greenland Anticyclone 251 

(or negative phase of the North Atlantic Oscillation, NAO), C2 is a zonal flow or positive NAO-like 252 

pattern, C3 depicts European Blocking and C4 corresponds to the Atlantic Ridge configuration. Some 253 

patterns are identified in different seasons (e.g. Atlantic Ridge and European Blocking), but there are 254 

also seasonal variations, including the dominance of the canonical NAO pattern during the cold half 255 

of the year, and its transition to the summer NAO (top row; Folland et al. 2009). The zonal pattern 256 

(or NAO+, second row) is less stable across seasons, likely reflecting seasonal variations of the eddy-257 

driven jet or a tendency for this cluster to agglutinate monthly fields that are loosely classified (e.g. 258 

close to climatology). 259 

 260 

http://climax.inf.um.es/
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Figures 2 and 3 (second to fifth rows) show the seasonal anomalies in the solar and wind power 261 

monthly capacity factors, respectively, associated with each atmospheric pattern. Departures are 262 

expressed in percentage with respect to the climatological mean solar and wind power capacity factors 263 

of each season (top rows in Figures 2 and 3). The results are consistent with the documented behavior 264 

of wind- and solar-related fields under specific atmospheric circulation constraints (Garrido-Pérez et 265 

al. 2020; Jerez et al. 2013a; Jerez & Trigo 2013; van der Wiel et al. 2019; Wohland et al. 2021). 266 

Although significant signals can be restricted to small regions of Europe, for both energies and all 267 

seasons, we do find recurrent situations (typically more than one atmospheric pattern) with negative 268 

and positive signals over different areas. Although these opposite responses typically occur in far 269 

away regions, from a spatially aggregated perspective, positive departures in power capacity factors 270 

can compensate the negative ones, and this is what we call spatial complementarity. Therefore, one 271 

can think on an effective spatial balance of energy resources at continental or regional scale. On the 272 

other hand, comparison of the individual maps of Figure 2 and Figure 3 confirm that, in general terms, 273 

deficit in one energy turns in surplus in the other. Therefore, locally, wind and solar power tend to 274 

show opposite responses to a given atmospheric configuration (in agreement with the documented 275 

behavior on shorter temporal scales; see e.g. the references above). Accordingly, there is also a solid 276 

basis for the so-called temporal complementarity on monthly scales. 277 

 278 

If we directly look at the temporal correlations between the series of monthly anomalies in the wind 279 

and solar power capacity factors (Figure 4, first row), forgetting about the particular influence of 280 

atmospheric conditions, negative signals (largely in the range -0.4 to -0.6, eventually up to -0.8) 281 

dominate, albeit accompanied by positive values of similar magnitude over some regions, mostly 282 

Mediterranean. Ultimately, the variability of these times series is largely the result of the temporal 283 

sequence of atmospheric patterns with distinctive spatial signatures in wind and solar energies. Hence, 284 

their complementarity should be, to a large extent, an intrinsic feature of wind and solar energies, 285 

regardless of the dominant atmospheric pattern. To show this, Figure 4 (second to fifth rows) shows 286 

the percentage of time (months in the season) over the analyzed period when a negative anomaly in 287 

wind power coincides with a positive anomaly in the solar one, and vice versa, under the influence of 288 

each atmospheric configuration. The predominance of yellows and reds in these maps means a 289 

generalized tendency for local compensation of wind and solar energy across Europe in more than 290 

50% of the time. However, there are regions (e.g. Mediterranean areas) where the signals indicate 291 

low synchronicity of power anomalies, as denoted by the bluish tones. Similarly, the degree of local 292 

complementarity is modulated by the atmospheric pattern: in some regions wind and solar powers 293 

can either add or oppose each other depending on the atmospheric configuration (e.g. winter power 294 
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in Scandinavia under C1 and C4 patterns). Therefore, we can only be moderately confident on the 295 

local temporal complementarity of both energies, at least on the monthly time-scale assessed here.  296 

 297 

In summary, these analyses come to confirm an overall complementarity, both spatially and 298 

temporally, between both powers. However, the balance varies seasonally, from region to region and 299 

with the dominant atmospheric pattern, encouraging further research efforts to take a transferable 300 

advantage of it. While this prevents universal solutions, actionable strategies are still possible on 301 

regional scales by combining knowledge on spatial and temporal complementarity. Below we explore 302 

new avenues through a hybrid (statistical-climate) approach that exploits this climate-driven 303 

complementarity to yield optimal balances of wind and solar energies on regional scales. 304 

 305 

3.2 – Leveraging complementarity with CLIMAX: an action-oriented approach 306 

 307 

On view of the above results, we adopted a statistical approach to provide practical guidance to reduce 308 

the temporal variability of the joint wind-plus-solar power production at the regional level.  Based on 309 

climatological arguments (see previous section), we considered 5 contiguous (geographically 310 

connected) regions, namely south-west (R1, Iberia), south-east (R2, Italy and the Balkans), central 311 

(R3), north-west (R4, the UK) and north-east (R5, Scandinavia) Europe (see Figure 5). For each 312 

region, the spatial distributions of the installations are optimized, making the most from the two 313 

concepts above (spatial and temporal complementarity) in an underlying way. Actually, the goal is to 314 

reduce the variance of the differences between production and demand, or between actual 315 

(fluctuating) and desired (stable) production. For the illustrative academic application performed 316 

here, the reference time series of desired production is simply set to the mean annual cycle of total 317 

(wind-plus-solar) production, rather than to the electricity usage in each region. Thus, this approach 318 

ultimately involves minimizing the variance of the monthly anomalies of the total (wind-plus-solar) 319 

power output in order to guarantee a stabilized production based on optimal balance of energies. The 320 

optimization is done so that a certain minimum production should be assured at the same time. As 321 

indicated in Section 2.4, this condition was imposed here to guarantee that the mean annual cycle of 322 

production under the optimized solutions is equal to or better than that obtained from the ERA5-based 323 

capacity factor series under a baseline (BASE) scenario in which the current regional shares of both 324 

energies, as informed in IRENA (2020) and provided here in Table 1, are evenly distributed across 325 

the regions. 326 

 327 
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In a first step, sub-regions with homogeneous temporal variability in the time series of monthly 328 

capacity factor anomalies are identified for each energy and each target region separately (Figure 5, 329 

first and third columns). These sub-regions are to a large extent dictated by the atmospheric conditions 330 

(i.e. the mixed influences of the atmospheric patterns considered above), therefore accounting for the 331 

climate-driven spatial heterogeneity in the assessed fields. Sub-regional mean series of solar and wind 332 

capacity factors are then generated by simply taking the average of the local series over all grid points 333 

embedded in the sub-region. In that way, this first step also reduces the dimensionality (number of 334 

degrees of freedom) of the optimization problem to be solved in the next step. Moreover, this 335 

approach ensures the viability of the optimal scenarios of installations that will be generated with the 336 

optimization process: as long as the identified sub-regions are large enough, there is no need to take 337 

into account the feasibility of individual projects at particular locations. 338 

 339 

In a second step, standard optimization techniques are applied to exploit the full potential of the 340 

spatio-temporal complementarity of the resources and throw the optimal shares of each technology 341 

in each sub-region. The aim is to identify the sub-regional shares that minimize the variance of the 342 

monthly anomalies of the resulting wind-plus-solar power production (per unit of installed power 343 

capacity) at regional level, without losses in the mean regional capacity factor. This is done under the 344 

two frameworks described above, OD and ODS. In the OD approach, the regional shares of wind and 345 

solar power remain at their current values, as in the BASE scenario (note that BASE is included in 346 

the solution space sampled by OD). In the ODS experiment, the regional shares of wind and solar 347 

power come also into the optimization game with the only restriction that the most profitable of these 348 

two energies, in regional average terms, should have a larger penetration than the other in the region. 349 

That way here we adopted the sound assumption that if a region is richer in sun than in wind, energy 350 

policies will allocate more resources for deploying solar installations than for investing in wind 351 

generation (as it actually occurs in all regions but R1; see Table 1). Therefore, this experiment further 352 

informs on the sub-regional and regional shares of each energy that should be pursued to guarantee 353 

the most stable production. By working on optimal distributions and shares simultaneously, the ODS 354 

can yield a different spatial distribution of the resources as compared to OD, even for those regions 355 

where the OD scenario is in the solution space of ODS (R2-to-R5, see Table 1). 356 

 357 

The results of these two optimization exercises are provided in Figure 5 for each region (rows). Bars 358 

in the second/fourth column display the optimal shares of solar/wind power in each sub-region, using 359 

the same color code as the one in the accompanying map (first/third column). For each exercise, the 360 

sum of the total regional share of solar power plus the total regional share of wind power must be 361 
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100%. For instance, in R1 (Iberia), the current regional share of solar power is 24% and that of wind 362 

power is 76%, and so the OD bars in Figures 5b and 5d reach exactly these values. In the ODS 363 

exercise, these values can be modified during the optimization process. Following with R1, the 364 

optimal total regional share of solar power grows above 70% and so the optimal total regional share 365 

of wind power falls below 30% (Figures 5b and 5d), meaning a radical transformation of the current 366 

energy mix, with substantial investments towards solar facilities. This increase of the optimal solar 367 

power share at the expense of the optimal wind power share as compared to current values occurs 368 

similarly, although less pronounced, in all the studied regions. The results of the ODS exercise must 369 

be interpreted taking into account that the solution space is restricted by the imposed constraint on 370 

the level of penetration, which benefits the most profitable resource. Accordingly, the solar power 371 

share must be greater than the wind power share in those regions where the solar resource is more 372 

abundant (R1 and R2), whereas the opposite applies for the remaining regions (R3, R4 and R5; see 373 

Table 1). Hence, the growth of the solar power share was actually forced to exceed 50% in R1 (from 374 

its current 24%), but limited to remain below 50% in R3, R4 and R5 (note that the ODS scenario for 375 

R3 reaches this limit). 376 

 377 

Finally, we evaluate the benefits of the optimized scenarios depicted in Figure 5 by comparison with 378 

the BASE scenario mentioned above. For the three scenarios (BASE, OD and ODS), Figure 6 (first, 379 

second and third columns, respectively) provides the mean annual cycles (with thick lines) of the 380 

solar (in yellow), wind (in blue), and total wind-plus-solar (in green) capacity factor (i.e. production 381 

per installed watt). Shading represents the maximum range of variation of all the monthly records in 382 

the series (the period 1979-2020 here). Note that the optimization looks for a reduction of the width 383 

of the green shadow, importantly without losses in the mean capacity factor. The latter means that the 384 

green thick line in the optimized scenarios should always be above that of the BASE scenario, while 385 

reducing, at the same time, the green shaded interval, as it does. Given the current regional shares, all 386 

regions have room for improvement through a redistribution of their sub-regional shares (compare 387 

BASE with OD). Some regions, in particular R3 and R5, are actually on their path towards the optimal 388 

balance of wind and solar resources (i.e. with similar OD and ODS scenarios). Others, mainly those 389 

of southern Europe and the UK, still have a long way ahead, but also the unique opportunity to 390 

experience the largest growth in stability of their power potential. Sunny southern areas are among 391 

the regions with the largest solar capacity factors in summer (the season with overall lower 392 

production), which, in fact, grow substantially in the optimized solutions (compare the thick green 393 

line in panels a and c and panels e and g in Figure 6). Besides, from a pan-European strategy 394 

perspective, they seems key to guarantee a stabilized power. 395 
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 396 

To quantify the benefits of the optimized scenarios in terms of stabilized production, the last column 397 

of Figure 6 (gray shaded bar) depicts the distribution of the monthly anomalies in wind-plus-solar 398 

production series for each scenario (BASE, OD and ODS). With the OD approach, the range of these 399 

anomalies, as measured by their variance, is reduced by 15-20% in all the studied regions. This is 400 

achieved just by an optimal distribution of the current regional shares of each technology. This 401 

reduction grows up to 60% in R1, 20-25% in the other regions, with the ODS approach, i.e. if these 402 

regional shares come also into the optimization process. Note that the optimization has been applied 403 

considering all monthly records in the series. Hence, the reported improvements would not 404 

necessarily have to happen equally for the four seasons. However, if seasonal subsets of the regional 405 

series are assessed separately (hatched bars in the last column of Figure 6), all regions do attain 406 

reduced variances through almost all the year. 407 

 408 

4 – Conclusions and discussion 409 

 410 

Renewable energies, in particular wind and solar power, are at the forefront of the fight against climate 411 

change and energy threats. Their integration in the energy mix enlarges its vulnerability to climate 412 

variability and change, and thus requires smart strategies to hamper undesired fluctuations and 413 

blackout episodes. Here we present a novel climate-informed methodology aimed to help planning 414 

the deployment of new renewables units with the goal of reducing the intermittency of the joint 415 

production from solar photovoltaic and wind power. It takes advantage of their spatio-temporal 416 

complementarity, which, at monthly scales, is largely determined by well-known recurrent 417 

atmospheric patterns, as we showed here. The method, implemented in an open-access user-friendly 418 

and customizable tool called CLIMAX (http://climax.inf.um.es/), has been proven here in an 419 

illustrative pilot study over pan-European regions for which the temporal variability of the monthly 420 

wind-plus-solar production is to be reduced. However, it has been designed so that actual needs and 421 

circumstances can be taken into account for practical applications and guidance. The target spatial 422 

domain and temporal scale (at which the temporal variability of the production is to be reduced) are 423 

eligible fields, the total shares of each technology can be fixed, forced to stay above/below certain 424 

thresholds or let free to find their optimum, and the minimum production to be guaranteed can be 425 

modified. It can also be employed to minimize the variability of the residual load, not necessarily that 426 

of the total production, as we did here. According to the specifications, the tool provides optimum 427 

shares of each technology over a number of sub-regions in which the target domain has previously 428 

http://climax.inf.um.es/
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been divided automatically, which should constitute a guide for long-term planning. Also, an 429 

additional code is made available at the webpage to find optimum locations for new installations 430 

given that the current spatial distribution of installations is known (see Section 2.4), which might be 431 

the most useful application of the tool for the short-term decision making. 432 

 433 

Despite the experimental and pilot nature of the CLIMAX application presented here, our results 434 

indicate that all European regions considered should make efforts in their energy policies towards the 435 

deployment of more solar facilities in order to reduce the month-to-month volatility of the combined 436 

wind-solar production. The benefits would be huge, particularly for southern European regions and 437 

at pan-European level. Still, there are a number of caveats to keep in mind. First of all, regarding the 438 

particular solutions presented here, having a large percentage of production based on solar power 439 

means low production rates at nighttime, which would require the use of energy storage systems with 440 

large capacities. In fact, the optimal shares and units distribution at a certain time-scale is likely to be 441 

non-optimal for others time-scales (Wohland et al. 2021), and so recursive applications of the method 442 

might need to be performed over prioritized time-scales, for instance. It would be likewise worth 443 

addressing solutions accommodating the variability of the renewable production to the peak net load 444 

hours or to the seasons when hydropower is unavailable. Besides, although previous works 445 

determined a small impact of climate change on the statistics of the wind and solar powers for the 446 

coming decades, specifically over some European regions (Jerez et al. 2015, 2019; Tobin et al. 2015, 447 

2016), it cannot be assured that the CLIMAX-optimal scenario under current climate conditions will 448 

still hold under a changed climate. On the other side, altered climates can infer shifts in the demand 449 

curves and so in the grid supply requirements (Bloomfield et al. 2021; Garrido-Pérez et al. 2021; Van 450 

Ruijven et al. 2019), which may also compromise strategies made upon the business-as-usual 451 

assumption. Moreover, short and medium range climate variability, such as that characterized through 452 

weather regimes, affects both the renewable capacity factors and the electricity demand 453 

simultaneously (e.g. Bloomfield et al. 2020; van der Wiel et al. 2019). In this sense, it may not be 454 

sufficient to ensure a mean production (e.g. that a certain percentage of the mean annual cycle of the 455 

demand will be satisfied, as we impose here) but a minimum production at every time step in the 456 

series (the codes do allow for so) or under the various foreseeable weather situations. More generally, 457 

mean climate conditions could suffer changes over the period used to design the scenarios (here the 458 

last 42 years), which could affect the stability of the solutions. The issue of the stability of the wind-459 

solar complementarity over long periods remains largely unexplored so far, and also out of the scope 460 

of this contribution. In another vein, it is clear that the wider the target domain, the better the spatio-461 

temporal complementarity among the resources works (e.g. Jerez et al. 2019). However, it comes at 462 
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the expense of transmission and energy-market issues that need to be carefully considered in practical 463 

applications.  464 

 465 

With its limitations, this contribution poses a substantial step forward over previous works that 466 

provided strictly academic research about the spatio-temporal complementarity of both powers (e.g. 467 

Garrido-Pérez et al. 2020; Jerez et al. 2013b; Jerez & Trigo 2013; van der Wiel et al. 2019), focused 468 

on a single attribute of their compound complementarity (e.g. Costoya et al. 2022; Couto & 469 

Estanqueiro 2021; Jánosi et al. 2021; Liu et al. 2020; Mühlemann et al. 2022), or used national 470 

aggregate capacity factors in their analysis, thus masking the richness of spatial climatic variability 471 

over such predefined regions (Frank et al. 2021; Santos-Alamillos et al. 2017; Grams et al. 2017; 472 

Wohland et al. 2021). Making use of this previous knowledge, CLIMAX has been designed to take a 473 

transferable advantage of the full spatio-temporal complementarity between wind and solar powers, 474 

with practical applications beyond the limits of the illustrative exercise presented here. 475 

 476 

  477 
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Table 1. Values of SSC, SWC and rs2w used in the CLIMAX applications presented here. 681 

Region SSC SWC rs2w 

R1 0.24 0.76 1.70 
R2 0.57 0.43 1.90 
R3 0.44 0.56 0.77 
R4 0.32 0.68 0.34 
R5 0.07 0.93 0.60 
  682 
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Figure captions 683 

 684 

Figure 1. Recurrent atmospheric patterns. Seasonal climatologies (DJF, MAM, JJA and SON 685 

averages for 1979-2020) of the monthly anomalies of geopotential height at 500 hPa (Z500, units: m) 686 

for different recurrent atmospheric patterns (C1 to C4 from top to bottom). In percentage, the 687 

frequency of occurrence of each configuration. 688 

 689 

Figure 2. Solar power under recurrent atmospheric patterns. First row shows the seasonal 690 

climatologies (DJF, MAM, JJA and SON averages for 1979-2020) of the solar (photovoltaic) power 691 

capacity factor (SP, dimensionless). Second to fifth rows show the composites of SP anomalies 692 

(units: % deviation from the mean state) for recurrent atmospheric patterns (C1 to C4 from top to 693 

bottom). Only statistically significant differences at p<0.05 are shown. The statistical significance of 694 

the anomalies was assessed using the R t.test function 695 

(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/t.test; two-sided). The studied 696 

area is restricted to the shadowed areas in panels a to d. 697 

 698 

Figure 3. Wind power under recurrent atmospheric patterns. As Figure 2 for the wind power 699 

capacity factor (WP). The studied area includes the first line of grid points off-shore. 700 

 701 

Figure 4. Synchronicity of the solar and wind power anomalies. First row shows the temporal 702 

correlation (when statistically significant, p<0.05) between the time series of monthly anomalies in 703 

the solar and wind power capacity factor for each season (DJF, MAM, JJA or SON months of 1979-704 

2020). The statistical significance of the correlations was assessed using the R cor.test function 705 

(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cor.test; two-sided). Second to 706 

fifth rows show the synchronicity index, defined as the percentage of time within each season when 707 

the anomalies of solar and wind power capacity factors have different sign under the influence of 708 

different recurrent atmospheric patterns (C1 to C4 from top to bottom). The studied area is restricted 709 

here to that of Figure 2. 710 

 711 

Figure 5. Optimal sub-regional shares. For each region (R1 to R5; rows), colored maps show the 712 

sub-regions (clusters of grid points) with homogeneous temporal variability in the monthly anomalies 713 

series of the solar (first column) and wind power (third column) capacity factor. Boxes to the right of 714 

each map panel indicate the sub-regional shares (in %) that minimize the variance of the total wind-715 

plus-solar regional production under the OD (second column) and ODS (fourth column) criteria. The 716 

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/t.test
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cor.test
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sum of the total solar power share and the total wind power share should be 100% for each scenario 717 

(OD and ODS). 718 

 719 

Figure 6. Evaluation of the optimized scenarios. Per regions (R1 to R5; rows), colored plots show 720 

the 1979-2020 mean annual cycles of production (thick lines) from solar power (SP, orange), wind 721 

power (WP, blue) and total (wind-plus-solar) power (TP, green) per installed watt (units: Wh) under 722 

three different scenarios: BASE, OD and ODS (first to third column, respectively). Shadows in these 723 

plots represent the maximum range of variation of the individual records in the series. Black and 724 

white plots (fourth column) show boxplots with the distributions of the TP monthly anomalies (units: 725 

Wh) for 1979-2020 under each scenario (BASE, OD and ODS) considering all the records in the 726 

series (shaded boxplots) or only the records corresponding to each season (hatched boxplots, DJF, 727 

MAM, JJA or SON months). Box limits represent one standard deviation of the series above and 728 

below its mean value (shown with thick horizontal lines, null here). Whisker limits represent the 729 

maximum deviation of the individual records in the TP monthly anomaly series. Numbers above the 730 

OD and ODS boxplots indicate the associated reduction in the standard deviation of the TP monthly 731 

anomaly series (considering all the records in the series and expressed in relative terms, in % with 732 

respect to the BASE scenario). 733 


