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a Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain 
b Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain   
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A B S T R A C T   

Perturbations in lipid homeostasis combined with conditions favoring oxidative stress constitute a hallmark of 
the inflammatory response. In this review we focus on the most recent results concerning lipid signaling in 
various oxidative stress-mediated responses and inflammation. These include phagocytosis and ferroptosis. The 
best characterized event, common to these responses, is the synthesis of oxygenated metabolites of arachidonic 
acid and other polyunsaturated fatty acids. Major developments in this area have highlighted the importance of 
compartmentalization of the enzymes and lipid substrates in shaping the appropriate response. In parallel, other 
relevant lipid metabolic pathways are also activated and, until recently, there has been a general lack of 
knowledge on the enzyme regulation and molecular mechanisms operating in these pathways. Specifically, data 
accumulated in recent years on the regulation and biological significance of plasmalogens and oxidized phos
pholipids have expanded our knowledge on the involvement of lipid metabolism in the progression of disease 
and the return to homeostasis. These recent major developments have helped to establish the concept of 
membrane phospholipids as cellular repositories for the compartmentalized production of bioactive lipids 
involved in cellular regulation. Importantly, an enzyme classically described as being involved in regulating the 
homeostatic turnover of phospholipids, namely the group VIA Ca2+-independent phospholipase A2 (iPLA2β), has 
taken center stage in oxidative stress and inflammation research owing to its key involvement in regulating 
metabolic and ferroptotic signals arising from membrane phospholipids. Understanding the role of iPLA2β in 
ferroptosis and metabolism not only broadens our knowledge of disease but also opens possible new horizons for 
this enzyme as a target for therapeutic intervention.   

1. Introduction 

The innate immune system is the major contributor to acute 
inflammation induced by microbial infection or tissue damage, and is 
also essential for the activation of acquired immunity [1,2]. Innate im
mune cells include professional phagocytic cells such as neutrophils, 

macrophages and dendritic cells, and also non-professional phagocytic 
cells such as epithelial cells, endothelial cells, and fibroblasts. Germline- 
encoded pattern recognition receptors (PRRs) present in all of these cell 
types sense the presence of microorganisms by recognizing structures 
conserved among microbial species, the so called pathogen-associated 
molecular patterns (PAMPs). PRRs are also able to recognize 
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endogenous molecules released from damaged cells, termed damage 
associated molecular patterns (DAMPs). Currently, four different classes 
of PRR families have been identified; Toll-like receptors (TLRs), C-type 
lectin receptors (CLRs), retinoic acid-inducible gene (RIG)-I-like re
ceptors (RLRs), and NOD-like receptors (NLRs). The sensing of PAMPs or 
DAMPs upregulates the transcription of genes involved in inflammatory 
responses, such as cytokines, type I interferons, chemokines, and other 
antimicrobial proteins. In this scenario, the amplification of the in
flammatory response is made possible to a large extent by the continued 
production of lipid mediators. Together, proteins and lipid mediators 
favor the recruitment of additional immune cells and the initiation of the 
acquired immunity [3–8]. In addition, equally important is the resolu
tion of inflammation and adequate limitation of the response to avoid 
excessive inflammatory responses. Lipid mediators actively participate 
in the execution of resolution events, where phagocytosis and apoptosis 
play key roles [9–11]. Thus, during the development of pro- and anti- 
inflammatory processes, substantial rearrangement of lipid metabolic 
pathways and energetic programs take place, which participate deci
sively in the different polarization states of phagocytic cells [12,13]. 
Such is the importance of bioactive lipids that an imbalance in lipid 
biosynthesis or metabolic regulation is key for the development of a 
large number of chronic inflammation diseases, ranging from heart 
disease, to stroke, arthritis, diabetes and Alzheimer disease [14,15]. 

Adequate reorganization and reprogramming of lipid metabolism 
thus appears as an indispensable event for achieving an effective in
flammatory response. However, there still exists a significant lack of 
knowledge on the enzymatic regulation, synthesis, release, remodeling 
and mechanisms of action of bioactive lipid mediators that cooperate 
along the course of the immune response. It is important to note in this 
regard that the cellular lipid metabolism is very complex and involves a 
large number of pathways and molecules with very little or no structural 
similarity at all. Further, changes in lipid metabolism are strikingly 
dependent on the time frame at which they occur. On the one hand, 
rapid lipid turnover and production of lipid mediators occurs immedi
ately upon stimulus recognition. Cells achieve this by activating a 
limited set of pre-existing enzymes, and by reshaping their lipid pools to 
trigger an optimal response. On the other hand, prolonged exposure to 
stimuli leads to lipid reprogramming that involves not only pre-existing 
enzymes but also transcriptionally-regulated events that culminate in 
the expression of certain protein effectors [13,16–19]. In the following 
sections we discuss some relevant examples of processes occurring in 
both time scales which involve the turnover of discrete lipid classes 
primarily under inflammatory conditions. 

2. Phospholipid compartmentalization 

Alterations in the lipid metabolism represent one of the acute re
sponses of cells to receptor stimulation. In innate immune cells, a 
common feature of ligand recognition is the spatial organization of PRRs 
and their downstream effectors, which involves electrostatic in
teractions with membrane lipids that are critical for their localization 
and functions. Lipid remodeling takes place at the very first level of 
pattern recognition. This metabolic rearrangement ensures the appro
priate cellular response to the pathogens and their ligand components 
[20]. A key attribute that determines how, when, and to what extent 
lipid remodeling occurs is the specific localization of the lipids within 
the cell. A number of studies have shown that, compared to membrane 
models, phospholipid diffusion processes across the cell membrane are 
reduced because the cell membrane is compartmentalized [21]. It has 
been suggested that the confinement of phospholipids depends on 
transmembrane proteins anchored to the actin membrane skeleton 
network that, acting as picket rows, temporarily confine phospholipids. 
These phospholipids would be necessary to localize the intracellular 
signals to the point where the extracellular signal was received [21]. 

Substrate specificities for lipid-metabolizing enzymes, as obtained 
from in vitro assays, may not necessarily reflect the situation in live cells. 

The compartmentalization of substrates and products and the presence 
of competing enzymes may dramatically modify the specificities re
ported. Among the phospholipase A2 (PLA2) enzymes, the group VIA 
calcium-independent phospholipase A2 (iPLA2β) provides a good 
example of this. Most membrane phospholipids contain two fatty acids 
esterified at the sn-1 and sn-2 positions of the glycerol backbone (1,2- 
diacylglycerophospholipids). However there are phospholipids that 
contain an ether bond at the sn-1 positions instead of an ester bond (1- 
alkyl-2-acyl-glycerophospholipids), and there are some that also contain 
a cis-double bond conjugated with the ether oxygen (1-alkenyl-2-acyl- 
glycerophospholipids) (Fig. 1). The latter are called plasmalogens. A 
recent study by Hayashi et al. [22] demonstrated that iPLA2β shows no 
preference for the sn-1 linkage in the phospholipid substrate (i.e. ester, 
alkyl or alkenyl); yet, in cells the enzyme preferentially hydrolyzes 
phospholipid substrates which contain a palmitoyl moiety esterified at 
the sn-1 position [23,24]. This clearly suggests that, under physiologi
cally relevant settings, the iPLA2β works on membrane compartments 
enriched in sn-1-palmitoyl-containing phospholipids, a feature that 
cannot be ascertained in an in vitro assay system. Further support to this 
view was provided by the studies of Chamulitrat and co-workers uti
lizing iPLA2β knockout mice in models of obesity and non-alcoholic fatty 
liver disease and steatohepatitis [25–28]. In these studies, iPLA2β was 
found to be associated with a decreased hydrolysis of sn-1-palmitoyl- 
containing PC and PE [25–28]. Interestingly, in these studies some 
preference of the enzyme for sn-1-stearoyl phospholipids was appreci
ated as well, suggesting a more widespread role for iPLA2β in the hy
drolysis of phospholipids with saturated fatty acyl chains at the sn-1 
position [25–28]. 

In the aforementioned study of Hayashi et al. [22] it was also 
demonstrated that group IVA cytosolic Ca2+-dependent PLA2α (cPLA2α) 
shows selectivity for plasmalogen substrates in vitro. However, mass 
spectrometry-based lipidomic analyses of cPLA2α substrates in activated 
macrophages did not reveal striking differences between the hydrolysis 
of plasmalogens and diacylphospholipids by cPLA2α [23]. Also, it has 
been shown that the cPLA2α-dependent AA mobilization of macrophage 
cell lines is independent of their cellular plasmalogen content [29,30]. 
Thus the substrate specificity of cPLA2α may also be primarily dictated 
by the phospholipid composition of the subcellular compartment where 
it acts. 

Fig. 1. Diversity of sn-1 bonds in membrane glycerophospholipids. Phospho
lipids containing an ester bond at the sn-1 position are the most common (blue, 
top). However, phospholipids containing an ether bond (1-O-Alkyl; red, middle) 
or vinyl ether bond (1-O-Alkenyl; red, bottom) bond are also found at signifi
cant levels in many cell types. 1-Alkenyl glycerophospholipids are called 
plasmalogens. 
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Another remarkable example of phospholipid compartmentalization 
was provided by studies carried out in neurons by Kuge et al. [31]. The 
authors showed that 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine 
is concentrated at the protrusion tips of neuronal culture cells and the 
presynaptic area of neuronal synapses of the mouse brain. This location 
is highly specific for this particular species, which undergoes hydrolysis 
at the sn-1 linkage by phospholipase A1, and is considered a mechanism 
for protein confinement at the synapse [31]. In immune cells, the role of 
particular phospholipid species in TLR-mediated responses has been 
suggested from studies where exogenous lipids were added to the cells. 
One example is the phosphatidylserine species PS(38:4), which reduced 
the bacterial lipopolysaccharide-induced release of CXCL8 and CXCL10 
in activated THP-1 cells [32]. These effects were later confirmed by the 
work of Köberlin et al. [33] investigating how the membrane lipid 
composition affects receptor-mediated signaling processes. In this study, 
the diverse steps of TLR signaling were compared with lipidomic 
network changes, and a negative correlation was found between the 
content of endogenous PS species associated with the plasma membrane 
and the presence of TLR4 at the plasma membrane level and inflam
matory cytokine release [33]. 

Polyunsaturated phospholipid species have also been reported to be 
important for the induction of plasma membrane bending and fission. 
This is due to the capacity of these species to adapt their conformation to 
membrane curvature, thus reducing the energetic cost of these processes 
[34]. By facilitating endocytic events driven by endophilin and dyna
min, polyunsaturated phospholipids participate in the endocytosis pro
cesses that occur during TLR activation or phagocytosis [34]. 

The turnover of inositol phospholipids at the plasma membrane of 
activated cells, in particular the species 1-stearoyl-2-arachidonoyl-sn- 
glycero-3-phosphoinositol (PI(18:0/20:4)), constitutes another mean
ingful instance of phospholipid compartmentalization. The role of 
inositol phospholipids in the signaling events following receptor acti
vation during a phagocytic process has been extensively characterized 
[35]. PI(18:0/20:4) is the most abundant PI species in cells [36–38]. It is 
synthesized in the ER/trans Golgi and then transported to the plasma 
membrane, where phosphorylation of the inositol ring at the 4 and 5 
positions occurs. After the release of inositol 1,4,5-trisphosphate by 
receptor-activated phospholipase C enzymes, the diacylglycerol species 
DG(18:0/20:4) is transported back to the ER/trans Golgi [39], and 
phosphorylated to form the phosphatidic acid molecular species that is 
subsequently converted to CDP-DG(18:0/20:4) and then to PI, thus 
completing the arachidonate PI cell cycle. The presence of AA in this 
species is the result of the intersection of this pathway with the Lands 
pathway of phospholipid remodeling, residing also at the ER [40,41] 
(Fig. 2; see Section 3). As noted above, extensive lipidomic studies 
demonstrated that the subcellular localization of PI(18:0/20:4) is not 
uniform, being divided mostly between the ER and the plasma mem
brane [42]. The very high level of this species at the plasma membrane is 
likely due to it being necessary for the resynthesis of 
phosphatidylinositol-4,5-bisphosphate, which is hydrolyzed at this 
location following receptor occupancy. In this context, the parallel 
mobilization of AA, not only from PI but also from other phospholipid 
classes, constitutes another interesting case of phospholipid compart
mentalization involving the translocation of multiple effectors. The 
disparate distribution of AA among different cellular pools [43] and the 
translocation responses of the enzymes that metabolize AA [44–48] are 
being increasingly recognized as two key limiting factors for eicosanoid 
biosynthesis. These aspects are further commented on in Section 3. 

3. Phospholipid remodeling via fatty acid transacylation 
reactions. Role of plasmalogens 

A major lipid metabolic event that follows from receptor occupancy 
in many cell types is the loss of polyunsaturated fatty acids (PUFA) from 
membrane glycerophospholipids as a consequence of the activation of 
cellular PLA2 enzymes [49,50]. Free PUFAs released in this way can be 

oxygenated to form a wide variety of metabolites with pro- or anti- 
inflammatory activity, namely the AA-derived eicosanoids and the n-3 
PUFA-derived specialized pro-resolving mediators, respectively [11,51]. 
In addition to this ‘classic’ metabolic fate, unmetabolized free PUFAs can 
also interact with a number of receptors [52,53], or undergo uncon
trolled nitration [54], sulfation [55] and oxidation [56,57], thereby 
generating a wide array of biologically active compounds. Furthermore, 
the other products of the PLA2 reaction, the 2-lysophospholipids, can be 
released and act as secondary paracrine mediators [58]. 

Among the many PLA2s expressed in cells and tissues, cPLA2α has 
emerged as the fundamental enzyme regulating PUFA release during cell 
activation [59–62]. The mechanism of activation of cPLA2α has been 
shown to involve the concerted action of mitogen-activated protein 
kinase-driven phosphorylation cascades and transient elevations of the 
intracellular Ca2+ concentration [59–62]. In addition, the bioactive 
lipids phosphatidylinositol-4,5-bisphosphate and ceramide-1-phosphate 
regulate the subcellular localization and activation of cPLA2α [63,64]. 

Most PUFAs, including AA, preferentially localize at the sn-2 position 
of membrane glycerophospholipids, and this asymmetric PUFA distri
bution constitutes a key regulatory aspect of membrane phospholipid 
homeostasis [65]. Once a PUFA is obtained from the diet or synthesized 
from its essential precursors, inflammatory cells use select pathways to 
distribute the fatty acids into specific glycerolipid pools. Unless avail
able at high micromolar levels, PUFAs, in particular AA, are not 
generally incorporated into cellular phospholipids via the de novo 
biosynthetic pathway (i.e acylation of glycerol 3-phosphate or acyl- 
glycero-3-phosphate to form phosphatidic acid). Instead AA does it so 
at a later stage, via the so-called Lands pathway, which involves the 
direct acylation of pre-existing lysophospholipids, particularly lysoPC 
and lysoPI, with the fatty acid [66] (Fig. 2). Given the preference of 
PUFAs for the sn-2 position of phospholipids, the lysophospholipid ac
ceptors required for fatty acid incorporation within the Lands cycle are 

LysoPC
LysoPE

PLA2

Deacylation

De novo

LysoPI

LANDS CYCLE
Reacylation

ACSL
LPLAT

PI PC,PE

LysoPA

GP/DHAP

PA DG

Fig. 2. De novo biosynthesis of phospholipids and the Lands pathway. Briefly, 
by the sequential action of CoA-dependent acyltransferases, lysophosphatidic 
acid (lysoPA) and phosphatidic acid (PA) are formed from glycerol phosphate 
(GP) or dihydroxyacetone phosphate (DHAP). PA is the precursor of phospha
tidylinositol (PI). PC and PE are synthesized from diacylglycerol (DAG), which 
comes from the dephosphorylation of PA. The de novo pathway typically results 
in glycerophospholipids primarily containing saturated or monounsaturated 
fatty acyl chains. Major changes in phospholipid fatty acid composition occur 
via a subsequent deacylation/reacylation cycle known as the Lands cycle (blue 
box). Briefly, a PLA2 removes the acyl chain present at the sn-2 position, 
generating a 2-lysophospholipid. The sequential action of long chain acyl-CoA 
synthetase (ACSL) and CoA-dependent acyl transferases (LPLAT) leads to the 
incorporation of another fatty acid, thus forming a phospholipid with a 
different acyl chain composition. The Lands pathway represents the major route 
for the incorporation of PUFAs into glycerophospholipids. 
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those produced by PLA2s [67,68]. On the other hand, two families of 
lysophospholipid acyltransferase enzymes have been recognized, 
namely the membrane bound O-acyltransferase (MBOAT) family and 
the 1-acyl-glycerol-3-phosphate O-acyltransferase (AGPAT) family [69]. 
MBOAT7 (also known as lysoPI acyl transferase, LPIAT) in the ER/trans 
Golgi specifically binds arachidonoyl-CoA ester to lysoPI(18:0) to form 
the abundant molecular species PI(18:0/20:4). MBOAT5 (also known as 
lysoPC acyl transferase 3, LPCAT3) is responsible for the incorporation 
of AA moieties into various species of PC and PE [69]. 

For the asymmetrical distribution of PUFAs in phospholipids to be 
fully achieved, a further remodeling step is required, whereby the 
phospholipid-bound fatty acid is directly transferred to other phospho
lipids without the formation of an acyl-CoA intermediate [43,70,71]. 
This reaction is catalyzed by CoA-independent transacylase (CoA-IT), 
which directly transfers the fatty acyl moiety of a phospholipid donor 
(usually diacyl-PC) to a lysophospholipid acceptor (usually diacyl-PE 
and alkenyl-PE) [43,70,71] (Fig. 3). Thus, globally, remodeling of AA 
and other PUFAs is governed by acyl-CoA synthetases, which activate 
the fatty acid through thioesterification with CoA, CoA-dependent 
acyltransferases, which bind the fatty acid to a lysophospholipid 
acceptor, and the CoA-independent transacylase (CoA-IT), which moves 
the AA between phospholipid classes. 

Phospholipid fatty acid remodeling is necessary for cells of the innate 
immune system to distribute AA and other PUFA acid within the 
appropriate cellular pools for its subsequent mobilization by PLA2 en
zymes. This is a key aspect in eicosanoid regulation because the nature 
and amount of eicosanoids produced under activation conditions may 
ultimately depend on compartmentalization, i.e. the composition and 
subcellular localization of the phospholipid pool where the AA- 
hydrolyzing PLA2 acts [44,49]. In innate immune cells, ether 

phospholipids, particularly the ethanolamine plasmalogens, are strik
ingly enriched with AA. This appears to be a consequence of the strong 
preference of CoA-IT for ethanolamine lysoplasmalogens as acceptors in 
the AA transacylation reaction [43,72]. Yamashita and co-workers first 
proposed that CoA-independent transacylation reactions leading to AA 
remodeling are mediated by (an) enzyme(s) of the PLA2 family and thus 
could represent an undescribed activity of an otherwise known enzyme 
[72–76]. Based on the biochemical properties of the transacylation re
action, the group IVC cytosolic phospholipase A2γ (cPLA2γ) was sug
gested as a possible candidate. This proposal obtained experimental 
support by later work of Lebrero et al. [29] showing that cells deficient in 
cPLA2γ transfer AA from PC to PE at a significantly lower rate than cells 
containing normal levels of the enzyme. Importantly however, the latter 
study also noted that cPLA2γ is likely not the only enzyme acting as a 
CoA-IT in cells [29]. Clearly, these additional effectors acting as CoA-IT 
in activated cells will need to be identified and characterized before a 
full understanding of the regulatory features of phospholipid AA 
remodeling is obtained. 

Intriguingly, cPLA2γ has been shown to contribute to lipid droplet 
accumulation in hepatocytes [77,78], and there is a sizeable body of 
literature implicating diverse PLA2 enzymes in lipid droplet structure 
and dynamics [79–81]. Whether the CoA-IT transacylase activity of 
cPLA2γ plays a role in these processes is currently unknown but, as 
discussed by Su and co-workers [78], the possibility exists that trans
acylation of AA moieties from PC stores to ethanolamine plasmalogens 
may entail the location of AA moieties into PL pools more accessible to 
enzymes, thus favoring intracellular signaling leading to lipid droplet 
formation. It is also possible that the enrichment of plasmalogens with 
AA within the lipid droplet improves biophysical properties –i.e. charge, 
fluidity– that support the optimal assembly of the organelle. 

While the enrichment of ethanolamine plasmalogens with AA clearly 
suggests a central role for these species in AA homeostasis, their function 
still remains obscure. In fact, receptor stimulation of AA mobilization in 
plasmalogen-deficient cells is similar to that of normal cells, suggesting 
that plasmalogens are not essential for the cells to effect a full AA release 
response [30,82]. Moreover, no differences have been found either in 
the rate of CoA-IT-dependent phospholipid AA remodeling between 
plasmalogen-deficient and otherwise normal cells, suggesting that 
cellular plasmalogen status also has no influence on phospholipid AA 
remodeling [29]. 

Importantly, recent data have suggested that the CoA-IT-mediated 
remodeling reaction may represent an important point of control of 
the amount of AA available for eicosanoid biosynthesis. This is based on 
the dual role that AA-containing PC species appear to serve during 
cellular activation. On the one hand, AA-containing PC is the major 
donor of the fatty acid moieties that are used in the CoA-IT-catalyzed 
reaction. On the other hand, the synthesis of select eicosanoids by 
activated innate immune cells appears to be specifically linked to the 
mobilization of free AA from PC [23,84–89] (Fig. 3). Thus, competition 
between these two pathways for utilization of AA-containing PC may 
determine the amount of free AA available to feed the cyclooxygenases 
and/or lipoxygenases under activation conditions, this representing an 
effective means to regulate the overall eicosanoid response. In support of 
this view, studies with activated macrophages recently unveiled an in
verse relationship between the extent of CoA-IT-mediated phospholipid 
AA remodeling from PC to PE and the amount of eicosanoids produced 
in response to receptor stimulation [90]. Similarly, the well described 
enhancing effect of bacterial lipopolysaccharide on macrophage AA 
release and eicosanoid production [91] was also found to correlate with 
reduced usage of AA for CoA-IT-mediated remodeling [30]. 

Another striking outcome of the CoA-IT-driven AA remodeling is that 
the transfer of AA moieties from AA-containing PC to PE prevents a 
decline in the cellular amount of the latter during cellular stimulation. 
The net result is that AA levels in PE species change little as a conse
quence of cell activation, at the expense of stronger decreases in PC 
[23,36,83,87,88]. This, together with the finding that AA-containing PE 

CoA-IT

Membrane
fluidity Phagocytosis

Peroxidation
(Ferroptosis)

HOO

HOO

AA release

cPLA2�

1-acyl-PE
1-alkenyl-PE

Eicosanoids

1-acyl-PC

AA-containing PE

AA-containing PC

1-alkyl-PC

Fig. 3. Dual role of AA-containing PC in lipid signaling. During cellular stim
ulation, AA-containing PC is acted upon by cPLA2α, and this reaction represents 
the major source of free AA for the synthesis of select eicosanoids. In addition, 
the AA moiety of AA-containing PC (mostly the 1-acyl-2-AA-PC species) can be 
transferred directly to lysoPE (both acyl- and alkenyl-PE species) by CoA-IT to 
generate 1-acyl-2-AA-PE and 1-alkenyl-2-AA-PE. The CoA-IT reaction controls 
the cellular levels of AA-containing PE, which serves important roles, such as 
the control of membrane fluidity, modulation of phagocytosis, and the initia
tion of ferroptosis when the AA chain becomes oxidized. 
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does not appreciably contribute to acute prostaglandin and leukotriene 
production in activated inflammatory cells [23,84–89], raises the 
intriguing possibility that the enrichment of ethanolamine plasmalogens 
with AA may not be necessarily related to regulatory aspects of AA 
homeostasis and eicosanoid metabolism. Instead, it could be related to 
biophysical effects and interactions of AA-containing PE molecules with 
other membrane components to sustain different biological responses 
[92,93]. Enrichment of newly formed plasmalogens with AA may pro
vide a counteracting force for finer regulation of changes of the bio
physical properties of the membrane. In this regard, recent studies have 
demonstrated that the cellular ethanolamine plasmalogen pool in mac
rophages determines characteristics of the plasma membrane such as 
fluidity and the formation of microdomains that are essential for effi
cient signal transduction leading to optimal phagocytosis [37,94]. Other 
studies have demonstrated a decrease of plasmalogen levels in sepsis in 
rodents and SARS-CoV-2 infection in humans, suggesting a protective 
role for these phospholipids during oxidative stress associated with in
fectious diseases [95]. Furthermore, in accordance with the growing 
data regarding the phenomenon of ferroptosis and the pivotal role that 
oxidized PE plays in this process [96,97] (see Section 5), it is certainly 
possible that the presence of high levels of AA and other easily oxidized 
PUFAs in ethanolamine plasmalogens [49] is related to the ability of 
cells to mount a proper and efficient ferroptotic response. 

The CoA-IT-mediated phospholipid remodeling pathway is not 
confined to ‘traditional’ immune cells, but has also been recognized in 
other cell types, most notably platelets. It is in these cells that some of 
the first indications on the importance of this route to shaping the dis
tribution of AA between phospholipids were made [98,99]. While hav
ing primary roles as mediators of hemostasis and thrombin generation, 
platelets also serve multiple functions related to inflammation and im
munity. These cellular fragments express and secrete several pro- and 
anti-inflammatory molecules that participate in immune functions, such 
as the expression of Toll-like receptors or the secretion of many immu
nomodulatory cytokines and chemokines [100]. 

In addition to AA and related PUFAs, other phospholipid-bound fatty 
acids also undergo remodeling. This process may substantially modify 
the distribution of such fatty acids among the various cellular phos
pholipid molecular species, with potentially important pathophysio
logical consequences. This is the case of palmitoleic acid (16:1n-7) and 
its positional isomer hypogeic acid (16:1n-9). These two fatty acids 
exhibit marked anti-inflammatory activity and are becoming increas
ingly considered as metabolic markers with key biological functions in 
health and disease [101–105]. A striking feature of the distribution of 
palmitoleic acid and hypogeic acid in macrophages is that more than 
80% of the cellular content of both fatty acids is present in a single 
phospholipid molecular species, namely 1-palmitoyl-2-palmitoleoyl/ 
hypogeoyl-sn-glycero-3-phosphocholine, PC(16:0/16:1) [105,106]. 
Activation of the cells by pro-inflammatory stimuli such as bacterial 
lipopolysaccharide or yeast-derived zymosan results in the two fatty 
acids being transferred from PC(16:0/16:1) to the minor species 1- 
stearoyl-2-palmitoleoyl/hypogeoyl-sn-glycero-3-phosphoinositol, PI 
(18:0/16:1). It appears that this remodeling reaction involves the 
liberation of palmitoleic acid and hypogeic acid from PC by iPLA2β 
[106], its coupling to coenzyme A and subsequent reaction with the 
abundant lysoPI generated in monocytes/macrophages as a conse
quence of cell activation [23,107,108]. By modifying the distribution of 
hexadecenoic fatty acids among the various cellular species, this 
remodeling reaction may give rise to novel phospholipid signatures that 
identify specific activation states. More importantly, the significant in
crease of a particular PI species, PI(18:0/16:1), may endow the cells 
with novel or improved functions. Indeed, PI(18:0/16:1) has previously 
been suggested to mediate the proliferative response of fibroblasts to 
growth factors [109]. 

4. Oxidized phospholipids 

Circulating blood cells (neutrophils, platelets, eosinophils) and 
resident murine peritoneal macrophages generate enzymatically 
oxidized phospholipids (eoxPL) in a controlled manner as part of the 
innate immune response [110–115]. Canonical eoxPL formation com
prises the following steps: (i) PL hydrolysis by PLA2s to release a fatty 
acid, (ii) formation of the oxidized fatty acid via cyclooxygenase (COX) 
or lipoxygenase (LOX), and (iii) re-esterification of the oxylipin to a 
lysophospholipid to form the eoxPL by the sequential action of fatty 
acyl-CoA synthetase and CoA-dependent acyl transferases [110–115]. It 
is important to note that COX and LOX can also oxygenate the fatty acid 
without it being in free form but still bound to the phospholipid, thus 
generating an eoxPL in a single step. The pathophysiological relevance 
and contribution of this alternative pathway of eoxPL formation may 
depend on cell type and stimulation conditions [116–118]. 

Human platelets can rapidly form >100 unique eoxPL species 
through 12-LOX and/or COX-1 after thrombin activation [119]. The 
most abundant are PEs, although PC forms are also abundant, and are 
produced preferentially with 12-HETE (either as plasmalogens or diacyl 
species). HETE-PI forms are also produced although to a lesser extent 
[120]. 14-Hydroxydocosahexaenoic acid (HDOHE)-PEs are also detec
ted in platelets, which arise from DHA oxidation by 12-LOX [110]. Low 
amounts of eoxPL derived from adrenic acid (22:4n-6), docosapentae
noic acid (22:5n-3), and dihomo-γ-linolenic acid (20:3n-6) are also 
formed, as well as rarer oxidized AA species containing two or more 
oxygen atoms [119]. Epoxyeicosatetraenoic acids (EET), generated by 
the cytochrome P450 family of enzymes [121,122], may also be found 
esterified in phospholipids. EET-PLs alter membrane microdomain 
properties or may act as a releasable pool of oxylipins [121]. 

The very rapid formation of eoxPLs after cell stimulation suggests 
that the synthetic enzymes are localized at proximal sites and work 
cooperatively [115]. A key difference between eoxPLs and their eicos
anoid precursors is that the former reside preferentially within mem
branes. For example, HETE-PLs mainly exert their effects through low- 
affinity interactions with proteins and/or altering membrane electro
negativity and structurally forming what is called the whisker model 
[123]. Interestingly, whereas 5-LOX and 12-LOX generate HETE-PEs 
through fatty acid recycling in human innate immune cells [112], 
when direct PL oxidation occurs, it is mediated by 15-LOX in humans 
and its ortholog 12/15-LOX in mice, suggesting that compartmentali
zation of enzymes plays an important role in the synthesis of eoxPL and 
in their cellular functions [124,125]. 

The production of reactive oxygen species (ROS) by different types of 
cells constitutes a key defensive response in innate immunity, but also 
leads to the oxidation of biomolecules in a non-enzymatic manner, e.g. 
under oxidative stress or inflammatory conditions. Double bounds of 
polyunsaturated fatty acids esterified in PL are a frequent target for this 
kind of reactions, leading to the formation of non-enzymatically 
oxidized phospholipids (oxPLs) [116]. It is now well established that 
the formation of oxPLs is not just a side-effect or consequence of in
flammatory conditions or oxidative stress, but that oxPLs elicit biolog
ical responses on their own. Thus they actively contribute to the 
inflammatory process [126,127] even in the absence of infection 
[128,129]. 

oxPLs interact with multiple PRRs, which may help to explain their 
strong pro- or anti-inflammatory character [130–134]. Some relevant 
species are 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine 
(POVPC), and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine 
(PGPC). These two oxPLs can inhibit bacterial phagocytosis in alveolar 
macrophages, hence impairing bacterial clearance in vivo [135]. High 
concentrations of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3- 
phosphocholine (oxPAPC) mixtures trigger the intracellular inflamma
some pathway [136]. In contrast, 1-palmitoyl-2-(5,6-epoxy isoprostane 
E2)-sn-glycero-3-phosphocholine (PEICP) and 1-palmitoyl-2-(5,6-epoxy 
isoprostane A2)-sn-glycero-3-phosphocholine (PECPC) blunt the 
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proinflammatory cytokine responses induced via multiple TLRs in den
dritic cells and macrophages [137–139]. Freigang et al. [140] high
lighted the role of the non-enzymatic cyclopentenone-containing oxPLs 
as class of potent anti-inflammatory lipid mediators with therapeutic 
potential. Most, if not all, of the anti-inflammatory activities of cyclo
pentenone oxPLs have been shown to be mediated via Nrf2 (transcrip
tional regulator of the antioxidant response, NF-E2-related factor 2) 
[140]. 

Recently, a novel defense mechanism has been identified in activated 
neutrophils, the so-called NETosis, a type of cell death that is associated 
with the extracellular release of histone and protease-coated chromo
somal DNA, forming web-like structures [141]. These structures are 
named neutrophil extracellular traps (NETs), and play critical roles in 
the efficient elimination of bacteria by helping immobilize them. NETs 
are generated in response to a variety of stimuli that produce ROS in an 
NADPH oxidase-dependent manner [142–144]. Recent work by Yotsu
moto et al. [145] showed that NET formation is promoted by the non- 
enzymatic oxidation of ether-containing phospholipids. The release of 
these oxidized phospholipids induced the sequential activation of NET 
formation and NETosis in neighboring neutrophils. This study also 
showed that sulfasalazine, a compound used to ameliorate bowel 
inflammation or rheumatoid arthritis, promoted NET formation by iso
lated neutrophils by mechanisms related with the increased generation 
of oxidized ether-containing phospholipids, such as PE(O-18:1/15- 
HETE) and PC(O-16:0/13-HODE). These findings, together with recent 
studies on ferroptosis, discussed in Section 5, shed light into the role of 
oxidized phospholipids as executioners or modulators of specific types of 
cell death. NETosis does not share the common mechanisms of ferrop
tosis nor does it require the enzymatic activity of 12/15-LOX, which is 
involved in the induction of ferroptosis in glutation peroxidase 4 
(GPX4)-deficient cells [146,147]. Thus, NETosis is essentially different 
from ferroptosis, although both types of cell death involve lipid 
oxidation. 

In other studies, Shimanaka et al. [148] described a new class of lipid 
mediators that enhance mast cell activation and anaphylaxis, namely 
17,18-epoxyeicosatetraenoic acid (17,18-EpETE) and 19,20-epoxydoco
sapentaenoic acid (19,20-EpDPE). These mediators were released from 
their esterified precursors, that is, n-3 epoxide–containing phospho
lipids, by platelet activating factor acetylhydrolase-2 (also known as 
group VIIB phospholipase A2). It was not clarified, however, whether the 
n-3 fatty acids esterified in phospholipids were directly oxygenated or 
the n-3 fatty acids were first oxygenated in the form of free fatty acids 
and then esterified into phospholipids. Having bioactive oxygenated 
fatty acids in the form of their esterified precursors ensures stable res
ervoirs of otherwise fragile n-3 epoxides to hydrolases to support certain 
cell functions. In fact, in a model of IgE-mediated mast cell activation, it 
was found that both 17,18-EpETE and 19,20-EpDPE blunted FcεRI 
signaling by inhibiting PPARγ [148]. 

In spite of all the recent advances, the mechanisms underlying the 
immunomodulatory properties of oxPLs and eoxPLs still remain largely 
unexplored. Depending on cell type, the site of generation, and the na
ture and amount of the individual phospholipid species, the mechanisms 
and actions may substantially vary [114,139,149–152]. What is gaining 
strong support however, is the central role that the phospholipase 
iPLA2β plays in the clearance of oxidized phospholipids under a wide 
variety of conditions. This aspect is discussed in detail in Section 5. 

5. Ferroptosis 

Ferroptosis is a regulated form of necrosis that is implicated in 
numerous processes including cell death during tissue turnover, cancer 
cell death, and aggravation of tissue injury [153,154]. Ferroptosis in
volves the rapid and massive generation of oxidized PLs in an iron- 
dependent manner. It has been extensively described in cellular set
tings where antioxidant mechanisms based on glutation, such as GPX4, 
are reduced [125,146,155]. The presence of PLs with long 

polyunsaturated n-6 fatty acids in cellular membranes is a prerequisite 
for the formation of oxidized PLs during ferroptosis. Recent redox lip
idomic analyses have revealed that, out of all classes of PLs, oxidized 
arachidonoyl (AA)- or adrenoyl (AdA)-containing PE species act as the 
main executioners of ferroptotic death, and they are present in ER- 
associated compartments [125,156]. AdA is the 2-carbon elongation 
product of AA. The two fatty acids share many biochemical common
alities, but also striking differences. Both fatty acids are distributed 
similarly among cellular phospholipid species in immunoinflammatory 
cells, but they do not compete with each other, i.e. incorporation of AA 
into phospholipids does not displace AdA, nor AdA incorporation dis
places AA [157,158]. While both fatty acids are mobilized at significant 
amounts during innate immune cell activation, the effectors involved 
vary; AA release proceeds almost exclusively via cPLA2α, but AdA 
mobilization also involves iPLA2β acting primarily on PC [158]. Of note, 
AdA mobilization has been linked to the execution of anti-inflammatory 
responses by innate immune cells [159]. As previously discussed in 
Section 2, other fatty acid products of iPLA2β-cleavage of membrane 
phospholipids, namely the hexadecenoic fatty acids palmitoleic acid and 
hypogeic acid, also display strong anti-inflammatory activity. Further
more, previous work had also identified iPLA2β as the major mediator of 
docosahexaenoic acid (22:6n-3) metabolism and signaling in brain 
[160,161]. The anti-inflammatory effects of docosahexaenoic acid and 
its oxygenated metabolites are well documented [11]. Together, these 
data raise the intriguing suggestion that an important role for iPLA2β in 
pathophysiology is to function as a master regulator of lipid signaling 
pathways that lead to the generation of protective anti-inflammatory 
responses (Fig. 4). The central role that this phospholipase also plays 
in clearing oxidized membrane phospholipids (see below), is in full 
agreement with this view. 

It should be indicated, however, that pro-inflammatory roles for 
iPLA2β have been described as well. These include studies showing that 
iPLA2β-deficient mice exhibit protection against steatosis, inflammation, 
fibrosis, and hepatocellular carcinoma [162,163]; and the failure of 
iPLA2β-deficient macrophages to kill Trypanosoma cruzi [164] and to up- 
regulate markers of M1 polarization [164–166]. It was anticipated some 
20 years ago [167,168], and it is now becoming evident, that iPLA2β is a 
multifaceted enzyme which, depending on conditions, may exert mul
tiple functions in different cells and tissues. 

The chemical nature of AA and AdA as long-chain n-6 fatty acids and 
the necessity for their oxidized forms to be esterified into phospholipids 

Oxidation

AA-OOH- or AdA-OOH-
containing PE

free AA-OOH

Clearance of 
toxic species

iPLA2�

iPLA2�

DHA
release

AdA
release

PE PC

free AdA-OOH

Antiinflammatory bioactive lipids

16:1
release

Fig. 4. New insights into the pathophysiological role of iPLA2β-regulated 
pathways. iPLA2β regulates a number of lipid signaling pathways leading to 
protective anti-inflammatory actions. These include clearance of oxidized PE 
species during ferroptosis, and mobilization of docosahexaenoic acid (DHA, 
22:6n-3), palmitoleic and hypogeic acids (hexadecenoic fatty acids, 16:1) and 
adrenic acid (AdA) from PC pools upon macrophage stimulation. 
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to participate in ferroptosis explains the relevance of the enzymes of the 
Lands cycle in regulating ferroptotic lipid signaling, including in addi
tion to cPLA2α and iPLA2β, the acyl-CoA synthetase forms -1, -3, and -4, 
and the acyl transferase LPCAT3 [155,169]. LOX, but not COX or cy
tochrome P450, is also involved in generating peroxidation signals 
[125,156] (Fig. 5). 

In studies dealing with phagocytosis of ferroptotic leukemic cell 
lines, Luo et al. [170] found that the process occurred simultaneously 
with the accumulation of oxidized PLs, especially PE hydroperoxides. 
Extensive phospholipidomic analyses of the plasma membrane of fer
roptotic cells led to the identification of the species 1-stearoyl-2-15- 
HPETE-sn-glycero-3-phosphoethanolamine (SAPE-OOH) as the pri
mary signal in ferroptotic cells that promoted phagocytic clearance, and 
TLR2 as the receptor responsible for directly recognizing SAPE-OOH 
[170]. 

An intriguing question in ferroptotic lipid signaling is why the pro
cess preferentially involves the ethanolamine phospholipid class over all 
other classes. Using live cell imaging, it was demonstrated that 
hydroperoxide-containing PE species (PE-OOH) predominantly accu
mulate in the extra-mitochondrial ER-associated compartments, in the 
vicinity of the LOX enzymes responsible for their synthesis [125,171]. 
Model biochemical experiments and computer simulations indicated 
that nonbilayer (possibly hexagonal) arrangements of AA- and AdA-PE, 
in contrast to the highly ordered bilayer organization of AA-PC, facilitate 
the availability of these phospholipid substrates for binding and enzy
matic attack by 15-LOX. Regarding the plasma membrane, it is also 
possible that the prevalence of PE in the inner leaflet [172,173] con
tributes to the preferential oxidation by LOX, whereas confinement of PC 
to the outer membrane monolayer is not conducive to its interactions 

with the intracellular oxidizing machinery. 
The importance of oxidizedAA-containing PE to ferroptosis may 

suggest that the cells possess mechanisms to maintain the cellular levels 
of AA-containing PE at relatively stable levels to ensure an appropriate 
ferroptotic response when necessary. This should be so even under 
conditions of receptor activation, where large amounts of AA (and also 
AdA) are lost from membrane phospholipids. Interestingly, extensive 
lipidomic analyses have demonstrated that, when innate immune cells 
are activated by phagocytic stimuli, little AA is mobilized from PE, in 
contrast with the high amounts of fatty acid being liberated from PC and 
PI [23,36,83,87,88]. The AA liberated from PE is rapidly and effectively 
replenished by the action of the enzyme CoA-IT at the expense of AA- 
containing PC [43,70,72]. Thus it may be reasoned that AA-containing 
PE constitutes a relatively stable reservoir which is ready to be 
oxidized in critical moments to exert other functions than merely 
providing free AA substrate for eicosanoid synthesis. 

In turn, removal of oxidized fatty acyl chains from membrane 
phospholipids by PLA2s constitutes a major regulatory point for the 
control of ferroptosis. While cells express multiple PLA2 enzymes 
potentially capable of removing oxidized fatty acids from membranes, 
iPLA2β plays a significant role in this regard [59]. As such, this enzyme 
has been found to mediate the detoxification of peroxidized lipids and, 
consequently, the suppression of ferroptosis under a number of experi
mental conditions [174–176]. 

The involvement of iPLA2β in the removal of oxidized fatty acyl 
chains was described well before the concept of ferroptosis came into 
place, as a special case of the originally proposed function of the enzyme 
in phospholipid fatty acid recycling [68,177,178]. Oxidative stress ac
celerates the iPLA2β-catalyzed fatty acid release from membrane phos
pholipids, including mitochondrial cardiolipin, by mechanisms 
involving disturbance of the membrane structure, which in turn in
creases susceptibility/accessibility of the enzyme to its substrate 
[179–183]. Consistent with these early observations, a recent study 
demonstrated that ferroptosis in human trophoblasts, occurring after 
inhibition or depletion of either GPX4 or iPLA2β, is accompanied by 
dramatic changes in the trophoblast plasma membrane, with macro- 
blebbing and vesiculation [184]. Molecular modeling showed that the 
accumulation of peroxidized PE was directly associated with the struc
tural changes observed [184]. 

iPLA2β-mediated phospholipid hydrolysis during oxidant injury was 
also long known to be involved in the apoptotic process itself, and also in 
providing accessory attraction signals such as the production of lysoPC, 
which are necessary for the efficient elimination of dead cells and debris 
by the macrophages [185–190]. Thus a key concept that emerges from 
all these studies is the multiplicity of roles that iPLA2β may play during 
apoptotic cell death. In addition to participating in apoptosis as indi
cated above, the enzyme may also assist in repairing oxidized mito
chondrial membrane components (e.g. cardiolipin), thus preventing 
cytochrome c release [191]. 

Significant accumulations of peroxidized PE have been detected in 
mice with deficiency or function-perturbing mutations of iPLA2β related 
to mitochondrial dysfunction [192,193]. It has also been shown that 
spontaneous preterm birth in humans is associated with injured pla
centas exhibiting high levels of peroxidized PE, consistent with placental 
ferroptosis. iPLA2β-deficient mouse trophoblasts exhibit enhanced 
sensitivity to ferroptosis, consequently increasing placental damage, and 
risk of fetal demise [176]. Other studies have demonstrated that genetic 
abatement of iPLA2β in SH-SY5Y neuronal cells, H109 fibroblasts and 
BeWo trophoblasts or fibroblasts from a patient with Parkinson Disease 
with a naturally occurring mutation in the PNPLA9 gene (encoding for 
iPLA2β) resulted in diminished hydrolytic activity toward 15-HPETE-PE 
[175]. This led to increased intracellular levels of 15-HPETE-PE and 
enhanced sensitivity to RSL3-induced ferroptosis, as compared to wild- 
type controls. Besides, the Pnpla9R748W/R748W mice exhibited progres
sive parkinsonian motor deficits along with 15-HPETE-PE accumulation 
[175]. Overall, these data have provided support for a pivotal role of 

LysoPE

AA- or AdA-
containing PE

LOX AA-OOH- or AdA-OOH-
containing PE

(ferroptotic signal)

iPLA2�

(detoxification)

free AA
free AdA

AA-OOH
AdA-OOH

ACSL4CoA

AA-OOH-CoA
AdA-OOH-CoA

LPCAT3

LOX

AA-OOH
AdA-OOH

Fig. 5. Generation of oxidized PE during ferroptosis. Lipoxygenase (LOX) ox
idizes free AA and AdA (AA-OOH and AdA-OOH, respectively) and these 
oxidized fatty acids are incorporated into membrane PE by the concerted action 
of acyl-CoA synthetase and CoA-dependent acyl transferase (ACSL-4 and 
LPCAT3). Alternatively, AA- or AdA-containing PE species can be acted upon by 
LOX, directly generating oxidized PE species. Accumulation of oxidized PE 
constitutes a bona fide ferroptotic signal that is “cleaned up” from membranes 
by the action of iPLA2β, which removes the oxidized fatty acid. The resulting 
lysoPE can then re-esterified with another fatty acid to form new PE. 
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iPLA2β in eliminating ferroptotic signals via clearance of oxidized 
phospholipids, and paralleling in this manner the GPX4-mediated de
fense mechanisms. 

The tumor suppressor p53 is known to sensitize cancer cells to fer
roptosis in a GPX4-independent manner by repressing the expression of 
SLC7A11, a component of the cystine/glutamate antiporter which also 
binds to 12-LOX and inhibits its lipid peroxide activity [194,195]. By 
increasing SLC7A11, cancer cells can protect themselves from p53- 
induced ferroptosis. It was recently shown that depletion of endoge
nous iPLA2β sensitized tumor cells to ferroptosis, consequently 
enhancing p53-dependent tumor growth suppression. Both oxPE(18:0/ 
22:4) and oxPC(18:0/20:4) levels were significantly induced upon 12- 
LOX overexpression in tumor cells [174]. As these elevated levels 
were effectively reduced upon co-expression of iPLA2β, it was concluded 
that iPLA2β can block ferroptosis by abrogating 12-LOX-induced lipid 
peroxidation [174]. Thus these results unveil an alternative route for 
p53-driven ferroptosis upon ROS-induced stress where iPLA2β-mediated 
detoxification of peroxidized lipids acts as a critical and sufficient 
regulator of the process in a GPX4-independent manner. 

Two recent studies have identified the flavoprotein FSP1 (ferroptosis 
suppressor protein 1, also known as apoptosis-inducing factor 
mitochondria-associated 2, AIFM2) as another important regulator of 
ferroptosis [196,197]. The antiferroptotic role of FSP1 was found to be 
independent of canonical ferroptosis regulators such as cellular gluta
thione levels, GPX4 activity, and oxidizable fatty acid content. Due to 
the well known NADH:ubiquinone oxidoreductase activity of AIF pro
teins, it was suggested that FSP1 mediates, in a NAD(P)H-dependent 
manner, the transference of reducing equivalents from CoQ10 or 
α-tocopherol into lipid bilayers to ameliorate the propagation of lipid 
peroxidation. Thus, FSP-1 is part of another alternate protective system 
that co-operates with glutathione and GPX to suppress phospholipid 
peroxidation and ferroptosis [196,197]. Interestingly, the anti- 
ferroptotic role of iPLA2β is not only independent of GPX4, as indi
cated above [174], but also seems to be independent of FSP1, as p53- 
mediated ferroptosis in FSP1-null cells was suppressed by over
expression of iPLA2β [174]. 

Recently, another protective mechanism against ferroptosis has been 
described, involving dihydroorotate dehydrogenease (DHODH). 
DHODH inhibits ferroptosis in the mitochondrial inner membrane, 
acting in parallel to mitochondrial GPX4 (but separately of cytosolic 
GPX4 or FSP1), through the reduction of ubiquinone to ubiquinol. 
DHODH and mitochondrial GPX4 thus constitute two major mechanisms 
for mitochondrial lipid detoxification [198]. Whether iPLA2β is involved 
in this process remains to be investigated. 

In addition to the actions of iPLA2β, it is worth mentioning that 
another system for the detoxification of phospholipid hydroperoxides 
has been described in activated macrophages, namely the iNOS/NO•

system [199]. This is an intriguing subject, as nitro-oxidative stress in 
inflammatory conditions yields nitro-fatty acids, including nitro-AA, 
which are novel anti-inflammatory signaling mediators [200–202]. It 
is also intriguing to speculate with the possibility that not only the 
cellular localization but also the chemical composition of the oxidized 
phospholipid, in particular the presence or absence of an ether bond at 
the sn-1 position, may have differential effects on the overall process of 
ferroptosis [203]. 

Cells express another member of the group VI family of lipases, 
namely the group VIB phospholipase A2 – PNPLA8, commonly called 
Ca2+-independent phospholipase A2γ, iPLA2γ – which may also be 
involved in the clearance of oxidized phospholipids. This enzyme has 
been found to participate in the removal of peroxidized cardiolipin from 
the mitochondrial membrane, thereby preserving membrane integrity 
[204]. Studies with iPLA2γ knock-out mice revealed mitochondrial 
dysfunction and increased oxidative stress leading to lipid peroxidation 
and the loss of skeletal muscle structure and function [204]. Whether 
this enzyme – or other members of the group VI family – play also a role 
in ferroptosis is unknown at present. 

Other enzymes of the Lands pathway of phospholipid fatty acid 
recycling have also been implicated in ferroptosis. This is the case of 
LPCAT3, an enzyme that reacylates lysoPC and lysoPE primarily with 
AA [205,206]. LPCAT3 was initially identified to play a role in ferrop
tosis induced by GPX4 inhibitors by using a haploid chronic myeloid 
leukemia cell line (KBM7 cell) where massive insertional mutagenesis 
was induced by gene-trap retroviral infection [169]. The result was later 
confirmed in mouse lung epithelial cells and embryonic fibroblasts 
silenced for the enzyme [175]. The decrease in LPCAT3 expression was 
accompanied by an increased resistance to ferroptosis and, as expected, 
elevated levels of 1-stearoyl-2-lyso-PE and 1-stearoyl-2-lyso-PC [175]. 
Importantly, the levels of pro-ferroptotic signals such as peroxidized PE 
or 1-stearoyl-2-HPETE-PC, that increased upon exposure to the GPX4 
inhibitor RSL3, were significantly reduced in LPCAT3-deficient cells 
treated with RSL3 [175]. In keeping with these data, recent studies 
utilizing selective small-molecule inhibitors of LPCAT3 also demon
strated protection against ferroptosis induced by GPX4 inhibition [207]. 
Overall, these results support the involvement of LPCAT3 in ferroptosis 
by regulating the amount of esterified PUFAs whose oxidation generates 
ferroptotic signals. Interestingly, suppression of ACSL-4 (acyl-CoA 
synthetase-4) expression, the enzyme that acts upstream of LPCAT3 for 
the incorporation of polyunsaturated fatty acids into phospholipids via 
the Lands cycle, has also been found to blunt ferroptosis induced by 
GPX4 inhibition [138]. 

6. Concluding remarks 

One of the key features of the initiation of the innate immune 
response is the reorganization of lipid metabolic routes, aimed to ensure 
the production of bioactive compounds and the reprogramming of en
ergetic pathways that are necessary to support the process. Many 
bioactive lipids promote inflammation, acting in most cases as paracrine 
mediators, and helping as well in the initiation of the adaptive response. 
The cells effectively accomplish these tasks by strictly controlling the 
lipid metabolic routes leading to the production of functionally active 
lipids. One example is the tight cellular control of the level and 
composition of phospholipid molecular species, which is subjected to 
multiple remodeling reactions. This ensures multiple goals, e.g. the 
sustained availability of phospholipids enriched in polyunsaturated 
fatty acids for efficient eicosanoid/docosanoid synthesis; the mainte
nance of phospholipid species that are critical for phagocytosis, as is the 
case of the phosphoinositides; the existence of phospholipid pools of 
species with still undefined roles such as the ethanolamine plasmal
ogens. These can assist phagocytosis or affect membrane fluidity or, in 
their oxidized form, be involved in important functions such as ferrop
tosis. Thus, orchestration of a full innate immune response could be 
contemplated as a miscellany of lipid molecules, pathways and chemical 
interactions, in which many single molecular species have a role in the 
promotion and/or resolution of inflammation. Much of this recently 
unveiled lipid signaling involves the modulatory action of iPLA2β. Thus 
this enzyme has emerged as a common regulatory link between ho
meostatic lipid metabolism, redox biology and disease, and as such, it 
may be of great interest for inflammatory drug development and 
therapeutics. 
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[33] Köberlin MS, Snijder B, Heinz LX, Baumann CL, Fauster A, Vladimer GI, et al. 
A conserved circular network of coregulated lipids modulates innate immune 
responses. Cell 2015;162:170–83. 

[34] Pinot M, Vanni S, Pagnotta S, Lacas-Gervais S, Payet LA, Ferreira T, et al. Lipid 
cell biology. Polyunsaturated phospholipids facilitate membrane deformation and 
fission by endocytic proteins. Science 2014;345:693–7. 

[35] Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. 
Physiol Rev 2013;93:1019–137. 
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