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Abstract: Dramatic climate change has led to an increase in the intensity and frequency of drought
episodes and, together with the high light conditions of the Mediterranean area, detrimentally
influences crop production. Salicylic acid (SA) has been shown to supress phototoxicity, offering
photosystem II (PSII) photoprotection. In the current study, we attempted to reveal the mechanism by
which SA is improving PSII efficiency in oregano seedlings under moderate drought stress (MoDS).
Foliar application of SA decreased chlorophyll content under normal growth conditions, but under
MoDS increased chlorophyll content, compared to H2O-sprayed oregano seedlings. SA improved the
PSII efficiency of oregano seedlings under normal growth conditions at high light (HL), and under
MoDS, at both low light (LL) and HL. The mechanism by which, under normal growth conditions
and HL, SA sprayed oregano seedlings compared to H2O-sprayed exhibited a more efficient PSII
photochemistry, was the increased (17%) fraction of open PSII reaction centers (qp), and the increased
(7%) efficiency of these open reaction centers (Fv′/Fm′), which resulted in an enhanced (24%) electron
transport rate (ETR). SA application under MoDS, by modulating chlorophyll content, resulted in
optimized antenna size and enhanced effective quantum yield of PSII photochemistry (ΦPSII) under
both LL (7%) and HL (25%), compared to non-SA-sprayed oregano seedlings. This increased effective
quantum yield of PSII photochemistry (ΦPSII) was due to the enhanced efficiency of the oxygen
evolving complex (OEC), and the increased fraction of open PSII reaction centers (qp), which resulted
in an increased electron transport rate (ETR) and a lower amount of singlet oxygen (1O2) production
with less excess excitation energy (EXC).

Keywords: chlorophyll fluorescence; photosynthetic efficiency; light reactions; excess excitation
energy; Origanum vulgare; reactive oxygen species; photoinhibition; photochemistry; photoprotection

1. Introduction

Drought is the prevailing environmental factor affecting several physiological and
biochemical processes of plants that detrimentally influences global crop production [1–4].
Drought stress (DS) episodes are expected to increase in frequency, intensity, and duration
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as a result of climate change [5,6]. Drought affects plant performance at practically every
stage, from seed germination up to the growth and development of the adult plant [7].
DS hampers plants’ cell division, elongation, and differentiation, disturbs osmotic home-
ostasis, initiating turgor loss, impairs photosynthetic function, disturbing light energy
balance, and eventually decreases plant productivity [7–10]. Plants must maintain an equi-
librium between light energy capture and its use in photochemistry, which is altered under
DS [2,6,11,12]. Under DS, plants close their stomata to decrease H2O loss, which results
in lesser CO2 entrance into the leaf and lower CO2 fixation [13–15]. Consequently, under
DS, the absorbed light energy exceeds chloroplasts’ capabilities’ use, and thus the photo-
synthetic apparatus, and particularly photosystem II (PSII), is exposed to this overdose of
absorbed light energy [16–19]. This overdose of absorbed light energy, due to the reduction
in photochemical energy use, must be dissipated as heat in order to prevent the formation
of reactive oxygen species (ROS) [20–22]. The photoprotective mechanism that prevents
ROS formation is the process of non-photochemical quenching (NPQ) [22–27], which leads
to a decrease in the electron transport rate (ETR) [28,29].

Sunlight absorption by light-harvesting pigment-protein complexes (LHCs) results
in singlet-state excitation of a chlorophyll a molecule (1Chl*), which can be de-excited
and return to the ground state by several pathways; it can be re-emitted as chlorophyll
fluorescence, it can be transferred to reaction centres to drive photosynthetic electron
transport (photochemistry), it can be de-excited by thermal dissipation, which results in
NPQ of chlorophyll fluorescence, or it can decay via the triplet state (3Chl*), the basal
dissipation. Triplet-state chlorophylls (3Chl*) are created from 1Chl* through intersystem
crossing [23,25,27,30,31]. With increasing light intensity, there is a decrease in the efficiency
of use of excitons in photochemistry, and an increase in NPQ [23,25,27,30,31].

In the light reactions of photosynthesis, ROS, such as superoxide anion radical (O2
•−),

hydrogen peroxide (H2O2), and singlet oxygen (1O2), are constantly formed at basal levels,
but retained in homeostasis by non-enzymatic and enzymatic antioxidants [30–33]. Drought
stress breaks the equilibrium between the formation and removal of ROS in plants [6], and
ROS formation increases exceptionally [34], triggering oxidative stress that causes mem-
brane damage, degradation of proteins and inactivation of enzymes, resulting in damaged
cellular components [35–37]. Thus, during DS, despite the existence of photoprotective
mechanisms, the increased production of ROS leads to photooxidative damage in plant
tissues [38–42]. ROS-induced damage in plant tissues is one of the major factors that limit
plant growth under drought stress [43,44].

Stomatal closure under DS limits CO2 availability, which results in reduced photo-
chemical light energy use with the consequence of diverging electrons from the electron
transport chain to molecular oxygen, generating the superoxide anion radical (O2

•–) at
the end of PS I [34]. Simultaneously, energy transfer from the excited triplet state of PSII
reaction centre chlorophyll a (3P680*), and even from antenna chlorophylls in their triplet
states (3Chl*), to molecular oxygen generates 1O2 which harms thylakoid membranes and
can further produce the other ROS, O2

•− and H2O2 [20,33,38,45,46].
Drought stress, with the concurrent action of high sunlight irradiance under

natural conditions in the Mediterranean area, may become a severe threat to crop
production [28,47–50]. Under such conditions of DS and high light irradiance, enormous
ROS production happens [49–52]. However, in DS seedlings, there is the possibility of
down-regulating chlorophyll synthesis and downscaling the light-harvesting complexes of
PSII; this will thus adapt plants not to absorb excess light, thereby reducing ROS produc-
tion [53]. Plants with a smaller antenna size and lower chlorophyll conte absorb less light
energy, which results in lower ROS generation [54]. Thus, reduced leaf chlorophyll content
has been proposed as a possible method to decrease sunlight absorption and improve
photosynthetic function by reducing photooxidative stress, especially under the high light
conditions of Mediterranean climates [54–60].

Salicylic acid (SA), which belongs to the diverse group of phenolics, is an important
plant hormone interrelated with the other plant hormones and performs a significant role
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in plant stress defense against biotic or abiotic stresses [61,62]. An amplified SA production
occurs through induction of plant defense responses with a simultaneous decrease in auxin
biosynthesis, and their concurrent action orchestrates synchronized defense and plant
growth responses [61,62]. SA has been reported to ameliorate the unfavorable consequences
of DS and salinity, acting as a growth regulator and an antioxidant, improving the osmotic
potential, transpiration rate, stomatal conductance, biochemical parameters, repairing
membrane injury and restoring photosynthetic function and nutrient uptake [63–65].

Salicylic acid’s impact on plants cannot be globalized, as the influence may vary not
only with the concentration and the method of application, but also with the plant species
and the exposure duration [60,66]. Foliar application of SA in tomato plants suppressed
phototoxicity by decreasing chlorophyll content and offering photoprotection of PSII [60].
Thus, SA application was suggested to improve PSII function by reducing photoinhibition
and photodamage [60,67]. Plant productivity is described by the photochemical efficacy
of the absorbed amount of light energy [68]. Breeding for improved photosynthesis and
light energy use in crops is a manageable and a useful shorter-term addition to genetic
engineering to enhance crop potential [69].

Origanum vulgare L. is a perennial flowering species in the family Lamiaceae, native
to the Mediterranean region and Central Asia and widely used both as a medicinal and
culinary herb, especially in the Greek, Italian, Turkish, Mexican, Spanish, and French
cuisine. The objectives of this study were to characterize the functional differences in
photosystem II (PSII) of oregano (Origanum vulgare L.) seedlings, with or without foliar
application of 1 mM salicylic acid (SA), grown under optimal conditions or under moderate
drought stress (DS). In addition, we aimed to determine the molecular mechanisms in the
allocation of the absorbed light energy in PSII of oregano seedlings sprayed with SA, under
DS and low light (LL), or DS and high light (HL), and to elucidate the mechanism by which
SA improves PSII efficiency under DS.

2. Results
2.1. Chlorophyll Content and Maximum Efficiency of Photosystem II under Normal Growth and
Moderate Drought Stress

Leaves of oregano seedlings grown under optimal conditions were sprayed with
1 mM SA or double distilled H2O (control), and 72 h after spraying, the chlorophyll content
was assessed. While chlorophyll content decreased significantly in the SA-sprayed oregano
leaves under optimal growth conditions, compared to control (H2O-sprayed) (Figure 1a),
the maximum efficiency of PSII photochemistry (Fv/Fm) remained unchanged after SA
treatment (Figure 1b).
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Figure 1. Chlorophyll content (a); and maximum efficiency of PSII photochemistry (Fv/Fm) (b); of
oregano seedlings grown under optimal conditions (control) or moderate drought stress (MoDS), and
sprayed by 1 mM SA or H2O. Error bars represent standard deviations (n = 4). Different lowercase
letters represent statistical difference (p < 0.05).
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Under moderate drought stress (MoDS) chlorophyll content, decreased significantly
in both H2O-sprayed (−47%) and SA-sprayed leaves (−32%), compared to H2O-sprayed
non-stressed leaves (control). Thus, chlorophyll content remained higher in SA-sprayed
leaves compared to H2O-sprayed leaves (Figure 1a). Fv/Fm decreased significantly in
MoDS H2O-sprayed oregano leaves compared to both non-stressed H2O-sprayed (−4%)
and SA-sprayed leaves (−4%) (Figure 1b). Under MoDS, SA-sprayed leaves exhibited
higher Fv/Fm values (2%) compared to H2O-sprayed MoDS leaves, but significantly lower
values (−3%) compared to non-stressed SA-sprayed leaves.

2.2. Allocation of Absorbed Light Energy in Photosystem II under Normal Growth and Moderate
Drought Stress

The light energy distribution to photochemistry (ΦPSII), photoprotective heat dissipa-
tion (ΦNPQ), and non-regulated energy loss (ΦNO), was estimated under optimal growth
conditions and MoDS, in both H2O-sprayed and SA-sprayed leaves.

The effective quantum yield of PSII photochemistry (ΦPSII), under optimal growth
conditions, did not differ between H2O-sprayed and SA-sprayed leaves at low light in-
tensity (LL, 205 µmol photons m−2 s−1, equal to the growth light intensity) (Figure 2a).
Under MoDS and LL, SA-sprayed leaves displayed significantly higher (7%) effective
quantum yield of PSII photochemistry (ΦPSII), compared to H2O-sprayed leaves (Figure 2a).
However, under high light intensity (HL, 1000 µmol photons m−2 s−1), SA-sprayed leaves
of oregano seedlings presented a significantly higher quantum yield of PSII photochem-
istry (ΦPSII) under both optimal conditions (25%) and under MoDS (25%) compared to
H2O-sprayed leaves (Figure 2a).
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Figure 2. The effective quantum yield of PSII photochemistry (ΦPSII) (a); and the quantum yield
of regulated non-photochemical energy loss in PSII (ΦNPQ) (b); of oregano seedlings grown under
optimal conditions (control) or moderate drought stress (MoDS), and sprayed by 1 mM SA or H2O.
ΦPSII and ΦNPQ were estimated at 205 (LL) or 1000 (HL) µmol photons m–2 s–1. Error bars represent
standard deviations (n = 4). Different lowercase letters, within the same light treatment, represent
statistical difference (p < 0.05).

The quantum yield of regulated non-photochemical energy loss (ΦNPQ), under normal
growth conditions or MoDS, did not differ between H2O-sprayed and SA-sprayed leaves,
at LL (Figure 2b). However, under HL, SA-sprayed leaves of oregano seedlings had
significantly lower heat dissipation (ΦNPQ), under both optimal conditions (−11%) and
under MoDS (−3%), compared to H2O-sprayed leaves (Figure 2b).

The quantum yield of non-regulated energy loss (ΦNO), under optimal growth con-
ditions, did not differ between H2O-sprayed and SA-sprayed leaves, at both LL and HL
(Figure 3a), while under MoDS, SA-sprayed leaves displayed significantly lower ΦNO at
both LL (−15%) and HL (−8%) compared to H2O-sprayed leaves (Figure 3a).
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Figure 3. The quantum yield of non-regulated energy loss (ΦNO) (a); and fraction of open PSII
reaction centers (qp) (b); of oregano seedlings grown under optimal conditions (control) or moderate
drought stress (MoDS), and sprayed by 1 mM SA or H2O. ΦNO and qp were estimated at 205 (LL) or
1000 (HL) µmol photons m–2 s–1 actinic light (AL) intensity. Error bars represent standard deviations
(n = 4). Different lowercase letters, within the same light treatment, represent statistical difference
(p < 0.05).

2.3. Changes in the Redox State of the Plastoquinone Pool, the Electron Transport Rate, and the
Efficiency of Open Photosystem II Reaction Centers under Normal Growth and Moderate
Drought Stress

The fraction of open PSII reaction centers (qp), representing the redox state of quinone
A (QA) under optimal growth conditions at LL, did not differ between H2O-sprayed and
SA-sprayed leaves; however, at HL, SA-sprayed leaves had a higher fraction of open PSII
reaction centers (17%) (Figure 3b). Under MoDS, SA-sprayed leaves retained a higher
fraction of open PSII reaction centers, at both LL (9%) and HL (23%) (Figure 3b).

The electron transport rate (ETR), under optimal growth conditions, did not differ
between H2O-sprayed and SA-sprayed leaves at LL (Figure 4a), while under MoDS, SA-
sprayed leaves displayed a significantly higher ETR (7%) compared to H2O-sprayed leaves
(Figure 4a). Under HL, SA-sprayed leaves of oregano seedlings presented a significantly
higher ETR, under both optimal conditions (24%) or under MoDS (25%), compared to
H2O-sprayed leaves (Figure 4a).
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Figure 4. The electron transport rate (ETR) (a); and the efficiency of excitation energy capture by
the open PSII rection centers (Fv′/Fm′) (b); of oregano seedlings grown under optimal conditions
(control) or moderate drought stress (MoDS), and sprayed by 1 mM SA or H2O. ETR and Fv′/Fm′

were estimated at 205 (LL) or 1000 (HL) µmol photons m–2 s–1 actinic light (AL) intensity. Error bars
represent standard deviations (n = 4). Different lowercase letters, within the same light treatment,
represent statistical difference (p < 0.05).

The efficiency of excitation energy capture by the open PSII rection centers (Fv′/Fm′)
under optimal growth conditions at LL did not differ in H2O-sprayed and SA-sprayed
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leaves (Figure 4b); however, at HL, SA-sprayed leaves exhibited increased (7%) efficiency
of excitation energy capture by the open PSII rection centers (Fv′/Fm′) (Figure 4b). Under
MoDS at LL, Fv′/Fm′ did not differ in H2O-sprayed and SA-sprayed leaves, but at HL,
SA-sprayed leaves showed increased (2%) efficiency of excitation energy capture by the
open PSII rection centers (Fv′/Fm′) (Figure 4b).

2.4. Changes in the Efficiency of the Oxygen Evolving Complex under Normal Growth and
Moderate Drought Stress

Under optimal growth conditions, the efficiency of the oxygen evolving complex (OEC,
Fv/Fo) did not differ in H2O-sprayed and SA-sprayed leaves (Figure 5). However, under
MoDS, SA-sprayed leaves showed enhanced efficiency (8%) of the OEC (Fv/Fo) (Figure 5).
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2.5. Changes in the Fraction of Closed Photosystem II Reaction Centers, and the Excess Excitation
Energy in Photosystem II under Normal Growth and Moderate Drought Stress

The fraction of closed PSII reaction centers (1-qL), based on the “lake” model for the
photosynthetic unit, under optimal growth conditions (control) did not differ in H2O-
sprayed and SA-sprayed leaves at LL (Figure 6a); however, at HL, SA-sprayed leaves
exhibited a smaller (−9%) fraction of closed PSII reaction centers (1-qL) (Figure 6a). Yet,
under MoDS, SA-sprayed leaves had a smaller fraction of closed PSII reaction centers (1-qL)
at both LL (−9%) and HL (−5%) (Figure 6a).
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Figure 6. The fraction of closed PSII reaction centers (1-qL), based on the “lake” model for the
photosynthetic unit (a); and the excess excitation energy (EXC) (b); of oregano seedlings grown
under optimal conditions (control) or moderate drought stress (MoDS) and sprayed with 1 mM SA
or H2O. 1-qL and EXC were estimated at 205 (LL) or 1000 (HL) µmol photons m–2 s–1 actinic light
(AL) intensity. Error bars represent standard deviations (n = 4). Different lowercase letters, within the
same light treatment, represent statistical difference (p < 0.05).
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The excess excitation energy (EXC), calculated as (Fv/Fm − ΦPSII)/Fv/Fm, under
optimal growth conditions (control), did not differ in H2O-sprayed and SA-sprayed leaves
at LL (Figure 6b); however, at HL, SA-sprayed leaves exhibited significantly less (−10%)
EXC (Figure 6b). Moreover, under MoDS, SA-sprayed leaves presented significantly less
EXC at both LL (−5%), and HL (−5%) (Figure 6b).

3. Discussion

Climate change’s impacts on agriculture and the increasing world population both
threaten global food security [70]. Drought is the main global threat that affects agricultural
production [71]. Photosynthesis is the main process in plants that can be intensely disturbed
by environmental parameters [72]. Thus, the challenge of improving crop performance
by increasing the photosynthetic efficiency of crop plants is a crucial and significant re-
search issue [56,67]. Enhanced photosynthetic efficiency can be accomplished via improved
distribution of the absorbed light energy [12]. Absorbed light energy can be used via
photochemistry or dissipated via various thermal processes at the light reactions of photo-
synthesis; these comprise a set of redox reactions which are the basis of energy production
in plant cells [23,29,73,74]. When the absorbed light energy exceeds the amount that can
be used for photochemistry, increased formation of reactive oxygen species (ROS), such
as hydrogen peroxide (H2O2), superoxide anion radical (O2

•−), and singlet oxygen (1O2),
occurs [24,31,75–77]. Later, 1O2, is produced from the triplet chlorophyll excited-state
(3Chl*) which is formed through an intersystem crossing of the singlet excited-state chloro-
phyl (1Chl*) [2,20,31]. Under DS, there is an overexcitation of PSII, because the absorbed
light energy exceeds chloroplasts’ capabilities to use it, and the excess photons increase
the amount of 1Chl* and thus the probability of 3Chl* and 1O2 formation, prompting
subsequent photoinhibition [31,38,42,78]. Chlorophyll molecules are the key pigments for
capturing light energy and transferring it to the reaction centres and the consequential
electron transport in light reactions [20,79–81].

The decline in chlorophyll content under MoDS in oregano seedlings (Figure 1a) might
be attributed to the possible oxidation of chlorophyll molecules [82,83]. However, this
reduction in the chlorophyll content under MoDS was partially reversed by the foliar
application of SA, which is known to ameliorate oxidative stress and serve as an antioxi-
dant [60,84]. It seems that under MoDS, the application of SA, which acted as an antioxidant,
decreased the oxidation of chlorophyll molecules and modulated the chlorophyll content,
resulted in improving antenna size. Optimizing antenna size can maximize photosynthetic
efficiency [55]. Thus, in SA-sprayed oregano seedlings, the improved antenna size under
MoDS growth conditions was followed by an enhancement of PSII photochemistry under
both LL and HL. This was evident in the increased ΦPSII (Figure 2a), the increased qp
(Figure 3b), the increased ETR (Figure 4a), but also the decreased ΦNO (Figure 3a) and the
decreased EXC (Figure 6b). Using ΦNO, the probability of 3Chl* and 1O2 formation can
be calculated [60,85]. Thus, a decreased ΦNO reflects the ability of a plant to protect itself
against excess light energy that leads to photoinhibition and photodamage [60,86–88].

The decreased chlorophyll content in oregano leaves under MoDS, compared to
no stress, results in the downsizing of their light-harvesting capacity to prevent photo-
oxidative stress [53,55,89]. The modulation of antenna size, through foliar application of
SA that decreased chlorophyll content (Figure 1a) and enhanced photosynthetic efficiency,
was verified under non-stressed conditions and HL. Foliar application of SA, under non-
stressed conditions and HL, increased ΦPSII (Figure 2a), qp (Figure 3b), ETR (Figure 4a), and
Fv′/Fm′ (Figure 4b), and also resulted in less EXC (Figure 6b), a smaller fraction of closed
PSII reaction centers (1-qL) based on the “lake” model for the photosynthetic unit (Figure 6a),
and a significantly lower heat dissipation (ΦNPQ) (Figure 2b). The significantly lower ΦNPQ,
under non-stressed conditions and HL, after SA application, indicates the photoprotective
quality of SA in oregano seedlings against damage by excess illumination [60]. Reducing
the size of the light-harvesting antenna has been recognised as an effective approach to
mitigate photosynthetic inadequacy related to over-absorption of light energy [90,91].
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Limitation of photoprotection under DS subsequently leads to photooxidative damage,
indicated by an increase in ΦNO as well as a decrease in the maximum quantum efficiency
of PSII (Fv/Fm) [12,39,42,92,93]. Chlorophyll a fluorescence analysis revealed a higher
value of minimum fluorescence (Fo) (data not shown), and a significant decrease in Fv/Fm
(Figure 1b) in both H2O-sprayed and SA-sprayed oregano leaves under MoDS. Thus, a
higher fraction of absorbed light energy was lost as fluorescence under MoDS compared to
optimal growth conditions. Yet, lower Fv/Fm values under MoDS (Figure 1b) indicate a
higher degree of photoinhibition [94,95]. Nevertheless, SA-sprayed oregano leaves under
MoDS had a higher Fv/Fm ratio compared to the H2O-sprayed leaves (Figure 1b).

PSII photodamage can appear through photooxidative stress, either at the acceptor
side through 3Chl*, which by exchanging energy and spinning with O2 in the triplet state
(molecular oxygen) results in 1O2 formation, or at the donor side through inactivation
of the oxygen-evolving complex (OEC) [60,96–98]. Under MoDS, both H2O-sprayed and
SA-sprayed oregano leaves exhibited a reduced efficiency of the OEC at the donor side
(Figure 5). However, SA-sprayed leaves presented enhanced efficiency of the OEC (Fv/Fo)
compared to those H2O-sprayed (Figure 5). The decreased efficiency of the OEC in H2O-
sprayed oregano seedlings under MoDS (Figure 5) corresponded with a lower Fv/Fm ratio
(Figure 1b). Drought stress limits the availability of H2O for water oxidation, affecting the
efficiency of the OEC [99,100]. The higher Fv/Fm ratio of SA-sprayed oregano leaves under
MoDS compared to that of the H2O-sprayed leaves (Figure 1b) was possible due to the
amelioration of the oxidative stress, and the decreased quantum yield of non-regulated
energy loss (ΦNO) (Figure 3a), which resulted in decreased 1O2 formation. Yet, the increased
efficiency of the OEC at the donor side (Figure 5), resulted in a significantly lower EXC
(Figure 6b), indicating improvements related to PSII efficiency.

The chlorophyll fluorescence parameter 1−qL [101] has been shown to act as a signal
to stomatal guard cells [102]. Accordingly, the lower fraction of closed reaction centres, or
alternatively, the more oxidized QA pool in SA-sprayed leaves under MoDS (Figure 6a), cor-
responds to a lower stomatal opening, which was accompanied by a lower EXC (Figure 6b),
indicating improved PSII efficiency. The fraction of open PSII reaction centers (qp) decreases
during DS, and this leads to decreases in ΦPSII and increases in ΦNPQ [12,92,93,103,104].
However, in SA-sprayed leaves, compared to H2O-sprayed, under HL and normal growth
conditions or HL and MoDS, the captured light energy was preferentially converted into
photochemical energy (ΦPSII) (Figure 2a), rather than dissipated as heat (ΦNPQ) (Figure 2b).
The enhanced ETR in SA-sprayed leaves compared to H2O-sprayed, under MoDS at
both LL and HL(Figure 4a) was due to an increased qp (Figure 3b) and an increased
Fv′/Fm′ (Figure 4b). However, SA has been shown to slow down ETR in tobacco [66]
but enhance ETR in tomatoes at both LL and HL [60]. In Hordeum vulgare, SA triggered a
concentration-related decreased efficiency of the OEC, resulting also in a decreased fraction
of open PSII centres [105]. It appears that SA’s mode of action depends considerably on
several characteristics, such as the plant species, exposure duration, the concentration
used, and the environmental conditions [60,61,106,107]. Thus, data on the effects of SA
on plant physiological processes under stressed or non-stressed conditions remain de-
batable [106], but generally it can be recognized that SA has a positive effect on plant
responses to many abiotic stresses such as heat, chilling, salinity, drought, and heavy metal
toxicity [60,84,108–116]. The diverse impact of SA on different plant species may be due to
the diversification of the SA signaling and biosynthesis pathways in plants [117].

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Seedlings of oregano (Origanum vulgare L.) were obtained from a plant nursery
and transported to a growth chamber with 21 ± 1/19 ± 1 oC day/night temperature,
60 ± 5/70 ± 5% relative humidity day/night, and a 14 h photoperiod, with photosynthetic
photon flux density (PPFD) 200 ± 10 µmol photons m−2 s−1 [60].
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4.2. Salycilic Acid Treatment

Oregano seedlings under normal growth conditions were sprayed with 1 mM salicylic
acid (SA) or double distilled H2O, and after 72h the chlorophyll content and PSII function
were evaluated [60]. In addition, chlorophyll content and PSII function were evaluated in
oregano seedlings that were sprayed with 1 mM SA or double distilled H2O, and exposed
to moderate drought stress (MoDS). Each plant received 10 mL of 1 mM SA or double
distilled H2O, applied by a hand sprayer only once during the experiment at 72 h before the
measurements. All treatments were performed with four independent biological replicates.

4.3. Drought Stress Treatment and Soil Water Status

Moderate drought stress (MoDS) was induced by withholding irrigation of oregano
seedlings until a 60% soil volumetric H2O content (SWC) was maintained in the control
seedlings. SWC was measured with ProCheck device coupled with the soil moisture sensor
5TE (Decagon Devices, Pullman, WA, USA), as described previously [118].

4.4. Chlorophyll Content

Chlorophyll content was measured photometrically usinga dual wavelength optical
absorbance (620 and 920 nm) portable chlorophyll content meter (Model Cl-01, Hansatech
Instruments Ltd., Norfolk, UK) [119].

4.5. Chlorophyll Fluorescence Analysis

Chlorophyll fluorescence analysis of dark-adapted oregano plants was performed as
described in detail previously [120], using an Imaging-PAM Fluorometer M-Series MINI-
Version (Heinz Walz GmbH, Effeltrich, Germany). The minimum (Fo) and the maximum
(Fm) chlorophyll a fluorescence in the dark was measured after 20 min dark adaptation.
The maximum chlorophyll a fluorescence in the light (Fm′) was measured after a saturation
pulse, while the minimum chlorophyll a fluorescence in the light (Fo′) was computed by
Win software (Heinz Walz GmbH, Effeltrich, Germany) as Fo′ = Fo/(Fv/Fm + Fo/Fm′) [121].
Steady-state photosynthesis (Fs) was measured after 5 min of illumination time with either
205 µmol photons m−2 s−1, actinic light (AL) low light intensity (LL), which corresponds
to the growth light intensity, or with 1000 µmol photons m−2 s−1, high light intensity
(HL). The following chlorophyll fluorescence parameters (Table 1) were estimated by Win
software (Heinz Walz GmbH, Effeltrich, Germany).

Table 1. The estimated chlorophyll fluorescence parameters with their definitions and their calculation
formulae [adopted from 6].

Parameter Definition Calculation

Fv/Fm Maximum efficiency of PSII photochemistry (Fm − Fo)/Fm
ΦPSII Effective quantum yield of PSII photochemistry (Fm′ − Fs)/Fm′

ΦNPQ
Quantum yield of regulated non-photochemical

energy loss in PSII Fs/Fm′ − Fs/Fm

ΦNO Quantum yield of nonregulated energy loss in PSII Fs/Fm
Fv′/Fm′ Efficiency of open PSII centers (Fm′ − Fo′)/Fm′

Fv/Fo Efficiency of the oxygen evolving complex (OEC) on
the donor side of PSII (Fm − Fo)/Fo

ETR Electron transport rate
ΦPSII × PAR × c × abs, where PAR is the

photosynthetically active radiation, c is 0.5, and abs
is the total light absorption of the leaf taken as 0.84

qp Photochemical quenching, representing the fraction of
PSII reaction centers in open state (puddle model) (Fm′ − Fs)/(Fm′ − Fo′)

NPQ Non-photochemical quenching reflecting the
dissipation of excitation energy as heat (Fm − Fm′)/Fm′

EXC Excess excitation energy (Fv/Fm − ΦPSII)/Fv/Fm

1-qL The fraction of PSII reaction centers in closed state
(based on a “lake” model for the photosynthetic unit) qp × Fo′/Fs
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4.6. Statistics

All data were tested for normality with a Shapiro–Wilk test, and for homogeneity of
variance with Levene’s test prior to statistical analysis [122]. The populations of variances
were not equal, so we performed a Welch’s ANOVA to compare the four treatments,
followed by a post hoc analysis with a Games–Howell test [60]. All the analyses were
performed in SPSS version 28.0 (IBM, Chicago, IL, United States) for Windows. The data
are presented as means ± SD (n ≥ 4).

5. Conclusions

Salicylic acid application increased the effective quantum yield of PSII photochemistry
(ΦPSII) by enhancing the efficiency of the oxygen evolving complex (OEC) and increasing
the fraction of open PSII reaction centers (qp), which resulted in an increased electron
transport rate (ETR). We can conclude that SA application may reduce the excess excitation
energy by reducing 1O2 formation, and may also enhance the photosynthetic function
of oregano seedlings to challenge DS; thus, SA can be regarded as a promising tool for
improving the ability of crop plants to face drought episodes in combination with the high
light conditions of the Mediterranean area that influence crop production detrimentally.
However, since the impact of SA application on different crop plants is diverse, possibly
due to the diversification of the SA signaling and biosynthesis pathways in plants, more
experiments must be executed in different crop species to establish the large-scale use of
SA in agriculture in order to achieve sustainable crop production to confront the challenge
of climate change.
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