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ABSTRACT:    

Antiviral signaling, immune response and cell metabolism in human body are 

dysregulated by SARS-CoV-2, the causative agent of the COVID-19. Here, we show that 

SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a 

significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. 

While all four ORFs caused mitochondrial fragmentation and altered mitochondrial 

function, only ORF3a and ORF9c induced a marked structural alteration in mitochondrial 

cristae. ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes. In 

contrast, ORF3a induced a distinct transcriptome, including the downregulation of 

numerous genes for proteins with critical mitochondrial functions and morphology. 

Genome-Scale Metabolic Models predicted common and private metabolic flux 

reprogramming, notably a depressed amino acid metabolism, and an enhanced 

metabolism of specific lipids distinctly induced by ORF3a. These findings reveal 

metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory 

proteins that may be exploited to identify new targets for intervention. 

 

One-Sentence Summary: Mitochondria and metabolic alterations induced by SARS-

CoV-2 accessory proteins ORF3a, ORF9b, ORF9c, ORF10 in pulmonary cells unravel 

new targets of intervention.  
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INTRODUCTION   

 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible 

for over 750 million cases of coronavirus disease 2019 (COVID-19) and over 7 million 

deaths since its emergence in 2019/20201. Upon infecting susceptible cells, SARS-CoV-

2 subverts and disables innate immune responses and, at the same time, hijacks metabolic 

pathways to favor viral replication and production at the expense of the infected cell. As 

such, metabolic reprogramming is the most consistent molecular change in SARS-CoV-

2 infection2. Affected metabolic pathways including lipid metabolism, glucose 

metabolism, and oxidative phosphorylation have been observed in human patient 

samples, lung airway and alveolar organoids and metabolic models2, 3, 4, 5. Although a 

complete mechanism explaining the development of all the aforementioned metabolic 

alterations in COVID-19 is yet to be proposed, viral-host protein interactions and the 

specific subcellular localization of various SARS-CoV-2 components help to identify 

potential sites and pathways leading to COVID-19 pathogenicity.  

In particular, mitochondrion, an organelle which plays an important role in 

maintenance of multiple metabolic functions, such as energy metabolism and reactive 

oxygen species (ROS) production, has been recognized as a relevant organelle for the life 

cycle and cytopathic effects of SARS-CoV-2, as indicated by an enrichment of viral 

dsRNA signal in mitochondria, coupled with mitochondrial lesions caused by SARS-

CoV-2 infection 6, 7. Furthermore, changes in mitochondrial shape and structure, cristae 

reorganization and membrane potential disruption have been observed in SARS-CoV-2-

infected cells 6, as well as inhibition of mitophagy with consequent accumulation of 

damaged mitochondria and augmented stress signaling by inhibiting LC3 binding 7. By 

contrast, other study suggests that ORF10 interacts with mitophagy receptor Nip3-like 

protein X (NIX) and LC3, in turn triggering mitophagy which hinders membrane-

anchored anti-viral signaling protein (MAVS)-mediated antiviral signalling 17. In addition 

to their metabolic and bioenergetic functions, mitochondria play an integral role in host 

innate immune responses and interferon signaling. In particular, recognition of viral RNA 

by cytoplasmic sensors is followed by interaction with, and activation of MAVS 8,9. 

In addition to 4 main structural and 16 nonstructural proteins, the SARS-CoV-2 

genome encodes 11 accessory proteins10, 11. Although accessory proteins were initially 

thought as minor contributors to the survival and pathogenesis of the virus, multiple 

studies point out their roles in immune response evasion strategies, interactions with 
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metabolic pathways and induction of host cell apoptosis10, 12, 13. ORF3a, a membrane-

associated protein and the largest SARS-CoV-2 accessory protein, has been reported to 

induce apoptosis in cell culture models14 and to modulate host innate immune responses15, 

notably a suppression of IFN-I signaling via impeding signal transducer and activator of 

transcription 1 (STAT1) activation and nuclear translocation, resulting in increased 

suppressor of cytokine signaling 1 (SOCS1) levels15; however, its role as a viroporin 

remains controversial16. Other SARS-CoV-2 accessory proteins, such as ORF9b and 

ORF10, also suppress IFN-I responses12, 17. ORF9b inhibits the binding of translocase of 

the outer membrane 70 (TOM70) to heat shock protein 90 (Hsp90), which is crucial for 

Hsp90/TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) complex 

recruitment on mitochondria, resulting in suppression of antiviral gene transcription12. 

ORF9c interacts with Sigma receptors, implicated in lipid remodeling and stress 

responses in the endoplasmic reticulum18. Also, ORF9b and ORF9c have been involved 

in inflammatory and fibrotic processes via IL-1119. 

Prior evidence for SARS-CoV-2-induced metabolic changes and the putative 

functions ascribed to accessory proteins ORF3a, ORF9b, ORF9c and ORF10 prompted 

us to investigate the potential for metabolic reprogramming by these ORFs. To this end, 

A549 human lung carcinoma cells were individually transduced with ORF3a, ORF9b, 

ORF9c and ORF10, analyzed for mitochondrial morphology, mass and function, and 

transcriptomic and metabolomic data generated in order to build genome-scale metabolic 

models (GSSM). We have found that SARS-CoV-2 accessory proteins ORF3a, ORF9b, 

ORF9c and ORF10 induced significant mitochondrial alterations and metabolic 

reprogramming. Further, GSMMs predicted common and private metabolic flux 

reprogramming, notably depressed amino acid metabolism and enhanced lipid 

metabolism distinctly induced by ORF3a. These findings reveal metabolic dependencies 

and vulnerabilities induced by specific SARS-CoV-2 accessory proteins, that might be 

exploited to identify new targets of intervention. 

 

RESULTS   

 

ORF3a and ORF9c induce significant structural alterations in mitochondria 

 

SARS-CoV-2 accessory proteins, ORF3a, ORF9b and ORF9c, have been shown 

to associate with mitochondria20, 21. In order to further understand the consequences of 
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the expression of these proteins on mitochondrial function and cellular metabolism, these 

proteins were individually transduced into A549 lung carcinoma cells (ORF-A549 cells) 

and drug-selected for stable constitutive expression of the viral genes (Fig. S1). As 

controls, non-transduced A549 cells and cells transduced with GFP only-expressing 

lentiviruses were used. Both controls yielded equivalent results in all assays used 

throughout this study (data not shown).  

Ultrastructural analysis by transmission electron microscopy showed a shorter 

mitochondria length in all ORF-A549 cells, except in ORF9b-A549, as compared to 

control cells (Fig. 2A, 2B, Fig. S2 and Fig S3). Moreover, a lower number of ridges were 

observed in most ORF-A549 cells, with a more diffuse appearance (Fig. 2C, Fig. S2 and 

Fig S4), conforming less organized cristae with a loss of parallelism and more hollow 

mitochondria than in control cells (Fig. 2A and Fig. S2). Parallelism in the cristae was 

defined as cristae aligned in the same orientation. All ORF-A549 cells also displayed 

filamentous bundles frequently located around the nucleus, which were not usually 

observed in control cells. 

As mitochondrial morphology, function and motility are coupled22, 23 a study of 

mitochondrial motility was next performed by live-cell imaging (Fig. 2E). Analysis of 

mitochondria motion showed significant differences among the different ORF-expressing 

cells (Fig. 2D). Based on their motility, two subpopulations of motile mitochondria were 

observed in all cell lines, namely low- and high-speed mitochondria, in addition to 

stationary mitochondria. In ORF3a-A549 cells, the number of mitochondria traveling at 

high speed was significantly higher than in control cells (Fig. S5). In the rest of ORF-

A549 cells, the number of mitochondria traveling at low speeds was significantly higher 

than in control cells (Fig. S5).  

It is worth noting that the size of mitochondria was smaller in all ORF-transduced 

cells compared to control cells, being particularly evident in ORF3a-A549 and ORF9b-

A549 cells (Fig. 2F and 2I), indicative of augmented mitochondrial fission. Moreover, 

ORF-A549 cells showed an increased number of mitochondria compared to control cells, 

although in the case of ORF3a-A549 it was not statistically significant (Fig. 2G and 2I), 

and total cell area covered by mitochondria (mitochondrial mass) was smaller in all four 

ORF-A549 cells versus control cells (Fig. 2H, 2I). Given the effect of ORFs on 

mitochondria morphology, mitochondrial membrane potential (m) was analyzed by 

flow cytometry using MitoView 633 (Fig. 2J and Fig. S6). Two populations were defined 

according to their mitochondrial membrane potential: high-activity and low-activity 
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mitochondria. Indeed, ORF3a-A549 cells exhibited a significantly higher number of low-

activity mitochondria in their cytoplasm. ORF10-A549 cells also showed an increase in 

this mitochondrial population, although without reaching statistical significance.  

In summary, ORF3a favors mitochondrial fission and altered cristae architecture, 

coupled to diminished m and enhanced motility in a significant population of 

mitochondria. On the other hand, ORF9c, while causing mitochondrial fission and 

ultrastructural alterations similar to those induced by ORF3a, did not cause loss of m 

or enhanced mitochondrial motility. ORF9b and ORF10 also induced mitochondrial 

fragmentation and structural alterations albeit less significantly than ORF3a or ORF9c. 

 

ORF3a induces a highly divergent transcriptome in A549 cells 

 

In order to shed light on the biochemical pathways and biological processes 

modulated by ORF3a, ORF9b, ORF9c and ORF10, a comparative transcriptomic analysis 

of ORF-A549 cells was performed. Unsupervised hierarchical clustering of all detectable 

transcripts showed that ORF3a-A549 cells displayed a clearly distinct transcriptome from 

control cells and from the rest of ORF-A549 cells (Fig. S7 and S8A). Transcriptomes of 

cells expressing ORF9b, ORF9c or ORF10 were less distinct, overall, from control cells 

or from each other (Fig. S7and S8A), although one-to-one comparisons of each ORF-

A549 to control cell transcriptomes yielded a number of significant differentially 

expressed genes (DEGs) (Supplementary Table 1). Several transcripts significantly 

upregulated in ORF3a-A549 cells, but not in cells expressing the other three ORFs, were 

linked to innate immune functions, including interferon-regulated genes such as IFI44L 

pattern-recognition receptors (PRRs) such as TLR5, or the complement and coagulation 

cascades, including VWA2, F5 or F13B (Supplementary Table 1). Likewise, a number of 

transcripts coding for proteins with metabolic functions were significantly overexpressed 

in these cells, including transporters (e. g., SLC9A9, SLC16A7, SLC16A9 or SLC25A27) 

and enzymatic metabolic regulators (e. g., ADH4 or ACSL5) (Supplementary Table 1). 

On the other hand, we observed a significant overlap of up- or down-regulated DEGs 

among cells expressing ORF9b, ORF9c and ORF10 cells, with over 30% transcripts 

shared by each with the two other gene sets (Supplementary Table 1). Outstanding among 

the downregulated transcripts shared among cells expressing ORF9b, ORF9c and ORF10 

cells, we found Stimulator of Interferon Response cGAMP Interactor 1 (STING1), 

accompanied with IFN signaling pathway genes such as IRF6, IFITM1 or IFITM3 in 
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ORF9c-A549 cells or IFI44 or IFITM1 in ORF10-A549 cells, consistent with known 

functions exerted by these viral proteins as IFN-I and III signaling antagonists24, 25.,  

We next resorted to gene-set expression analysis (GSEA)26, in order to gain a 

broader perspective of biochemical pathways and cellular processes perturbed by the 

expression of these viral accessory proteins (Fig. S8B-E). Focusing on metabolic 

pathways revealed that ORF3a, but not the other ORFs, induced significant changes in 

specific metabolic pathways, including enrichment of the biliary acid pathway and 

underrepresentation of the mTORC1, hypoxia, glycolysis, oxidative phosphorylation 

(OXPHOS) or mitochondrial reactive oxygen species (ROS) pathways (Fig. S8B and 3). 

Interestingly, many of the genes in the biliary acid pathway upregulated by ORF3a code 

for peroxisome biogenesis proteins, such as PEX1, PEX6, PEX7, PEX11A, PEX11G, 

PEX12, PEX13, PEX16 and PEX17 (Fig. 3). This suggests a coordinated upregulation of 

these peroxisomal biogenesis genes and is in line with the increased abundance of 

peroxisomes observed upon infection of lung epithelial cells with SARS-CoV-2 27, 28. The 

inference of enhanced peroxisomal abundance and/or function induced by ORF3a is 

further supported by the additional upregulation of numerous genes for peroxisomal 

enzymes (PIPOX, NUDT12, HAO1, ISOC1, PRDX5, PHYH, GSTK1, AMACR, 

HSD17B4, PAOX, PNPLA8, SCP2, EPHX2, CROT) and transporters (ABCD1, 

ABCD2, ABCG4) involved in sterol and bile acid synthesis. (Fig. 3).  

The underrepresentation of the OXPHOS pathway induced by ORF3a prompted 

us to conduct a more detailed examination of genes coding for mitochondrial electron 

transport chain (ETC) components and cristae morphology and function. GSEA with an 

ETC-focused gene set showed a significant underrepresentation in cells expressing 

ORF3a, but not the other three ORFs (Fig. 4A). This was due to the ORF3a-induced 

downregulation of genes for components of ETC complexes I, III, IV and V (Fig. 4A). 

As such, ORF3a may play a prominent role in the downregulation of mitochondrial genes 

and functions reported upon SARS-CoV-2 infection of lung epithelial cells5. By contrast, 

ORF9b, ORF9c and, particularly, ORF10, induced an upregulation of genes for ETC, 

albeit without reaching significance in terms of pathway representation by GSEA (Fig. 

S9). Expression analysis of genes for mitochondrial cristae morphology and function also 

indicated a downregulation by ORF3a of genes for critical cristae regulators, including 

OPA1, SAMM50, TOMM40 and components of the mitochondrial contact site and 

cristae organizing system (MICOS), MIC60 (IMMT) and MIC13 (MICOS13) (Fig. 4B). 

This is consistent with the abnormal cristae morphologies described above. Once again, 
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ORF9b, ORF9c and ORF10 displayed transcriptional profiles for mitochondrial cristae 

factors components were converse to those induced by ORF3a, with upregulation of 

OPA1, SAMM50 or TOMM40 and downregulation of APOO (MIC26), APOOL 

(MIC27) or ATP5MF, particularly by ORF10 (Fig. 4B), although ATP5MF was not 

downregulated by ORF9c. This is also consistent with the abnormal cristae morphologies 

observed for ORF9b and ORF10, although likely involving mechanisms that may differ 

from those causing the abnormal cristae induced by ORF3a. 

 

ORF9b overexpression causes the strongest mitochondrial function alteration  

 

Mitochondria are a major source of ROS, and excessive production of ROS leads 

to oxidative damage that impairs the ability of mitochondria to make ATP and perform 

metabolic functions29. Given the above evidence of impact of the four accessory proteins 

on mitochondrial morphology and gene expression, ROS levels were measured with the 

cell-permeant H2DCFDA probe. A549 cells expressing ORF9c and ORF10 exhibited a 

significant increase in ROS levels compared to control cells (Fig. 5A) whereas a slight 

increment was detected in cells expressing ORF9b (P= 0.0507). In contrast, a modest 

reduction was observed in ORF3a-A549 cells compared to control (Fig. 5A).  

To determine functional consequences of SARS-CoV-2 accessory proteins on 

cellular bioenergetics, oxygen consumption rate (OCR), which represents the rate of 

oxidative phosphorylation (OXPHOS), was measured (Fig. 5B). Basal respiration, 

maximal respiration and ATP production were significantly impaired by ORF3a, ORF9b 

and ORF9c (Fig. 5C). Moreover, spare respiratory capacity was significantly hampered 

by ORF9b and ORF9c, but not by ORF3a. In addition, maximal respiration and spare 

respiratory capacity were strongly reduced by ORF9b, suggesting that this protein 

compromises the ability of cells to respond to high respiratory demands or to acute stress 

(Fig. 5C), whereas ORF10-A549 cells only showed a significant decrease in maximal and 

spare respiratory capacity. Proton leak, which reflects the mitochondrial oxygen 

consumption not coupled to ATP production, was significantly reduced by ORF3a and 

ORF9b, and increased by ORF10 (Fig. 5C). Additionally, glycolytic rate assays to 

monitor glycolysis as well as compensatory glycolysis of ORF-A549 cells were 

conducted. Fig. 5D shows proton efflux rate (PER) results converted from OCR and 

extracellular acidification rate (ECAR) data. ORF9b and ORF9c significantly reduced 

basal and compensatory glycolysis compared to control cells (Fig. 5E). Moreover, ORF10 
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also induced a decrease in compensatory glycolysis.  Overall, our results indicate that all 

four ORFs were involved in mitochondrial dysfunction, which was particularly severe as 

a consequence of ORF9b expression.  

 

Genome-scale metabolic flux maps unveil common and private metabolic alterations 

induced by ORF3a, ORF9b, ORF9c and ORF10 

 

Subsequently, metabolomics, respiration data and transcriptomics were integrated 

to simulate accessory protein-specific flux maps (genome-scale metabolic models, 

GSMM). The GIM3E30 and the quadratic metabolic transformation algorithms (qMTA)31 

were applied (Supplementary table 2) for the major four metabolic superfamilies. 

Notably, ORF3a had a major impact on cell bioenergetics, carbohydrate metabolism and 

cofactors, and nucleotide metabolic pathways superfamilies (Fig. 6A).  

Detailed individual metabolic pathway analysis (Figure 6B) revealed distinctive 

disruptions caused by ORF3a and ORF10. Pathways uniquely increased in ORF3a-A549 

cells were inositol phosphate, ether lipid, phosphonate-phosphinate, vitamin B6, 

glycerophospholipid metabolism and nicotinate-nicotinamide metabolism, consistent 

with the above-described enrichment in bile acid biosynthetic pathways and peroxisome 

biogenesis, where many of these processes take place 5, as well as essential amino acid 

metabolism (histidine, phenylalanine and tyrosine). Moreover, ORF3a-A549 cells 

displayed a distinctive decrease in fatty acid metabolism and related pathways, glycolysis, 

oxidative phosphorylation, metabolism of steroid hormones, arginine, proline citrate, one 

carbon, pentose phosphate, and purine metabolism. ORF10-A549 cells displayed a strong 

decrease in lysine degradation and histidine metabolism, in contrast to the slight increase 

observed for ORF3a-A549 cells. ORF10 also induced modest but distinctive increase in 

one-carbon and fatty acid metabolism-related pathways, amino acid metabolism 

(phenylalanine, tyrosine, tryptophan, glycine, threonine and arginine), and the citrate 

cycle.   

ORF9b-A549 and ORF9c-A549 cells shared several metabolic communalities, 

including a generalized decrease in several metabolic pathways related to fatty acids, 

ketone bodies and amino acid metabolism, with increased sphingolipid metabolism. 

Interestingly, both ORFs, particularly ORF9b (Fig. 6A), induced a marked decreased in 

amino acid metabolism (Fig. 6B). Similarly, both ORFs had similar effects on lipid 

metabolism-related pathways, ORF9b causing a greater impact (Fig. 6B). Intriguingly, a 
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common feature shared by all ORF-A549 cells was a decrease in steroid biosynthesis 

pathways as compared to control cells. 

 

Identification of putative targets to counteract the metabolic reprogramming 

induced by ORF3a and ORF10  

 

Next, qMTA was used to simulate gene knock downs (KDs) that would have the 

potential to revert the metabolic reprogramming induced by each individual accessory 

protein. For each cell line, two KDs were chosen among the ten best-scoring targets (Fig. 

7) predicted to be the most effective for reverting the observed metabolic phenotypes. 

Each outcome was linked to an existing drug, when possible. Phospholipase D2 (PLD2) 

and phospholipase C beta-1 (PLCB1) were the best predicted targets for reverting 

metabolic perturbations induced by ORF3a. PLD2 catalyzes the hydrolysis of 

glycerophospholipids to produce phosphatidic acid, which can be further converted into 

lysophosphatidic acid (LPA) and diacylglycerol (DAG). PLCB1 catalyzes the hydrolysis 

of 1-phosphatidylinositol 4,5-bisphosphate into DAG and inositol 1,4,5-trisphosphate 

(IP3). DAG and LPA are precursors for the peroxisomal and endoplasmic reticulum 

production of ether phospholipids32. Therefore, this outcome is in consonance with the 

above independent predictions reached by GSEA and GSMMs, indicating an 

upregulation of these pathways. Importantly, coronavirus envelopes are particularly 

enriched in ether phospholipids, along with cholesterol and sphingolipids 33, with a lipid 

composition distinct from the plasma membrane. As such, inhibiting phospholipases that 

catalyze the production of ether phospholipid precursors may impair the formation of 

viral envelopes. Interestingly, PLCB1 physically interacts with SARS-CoV-2 ORF3a34. 

The best inferred targets for reverting the metabolic perturbations induced by 

ORF10 were dihydrolipoamide dehydrogenase (DLD), a component of the oxoglutarate 

dehydrogenase complex, and SLC25A10, a mitochondrion to cytosol transporter of TCA-

cycle metabolites such as succinate, fumarate or malate. (Fig. 7). The inherent design of 

this approach, based on gene loss simulations, only allows to predict pathway perturbation 

reversal in association with drugs with inhibitory functions. As such, as most of the 

metabolic pathways perturbed by ORF9b and ORF9c showed a decreased representation 

(Fig. 6B), no significant drugs were predicted to revert such alterations by in silico 

simulation. 
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DISCUSSION  

 

Insights into mechanisms of SARS-CoV-2 viral life cycle and pathogenic effects 

are facilitated by a large number of studies of viral-host protein-protein interactions 

producing comprehensive interactome maps13, 18, 35, as well as a comprehensive GSMM 

of SARS-CoV-2 infected cells2. However, the impacts of individual accessory proteins 

on host cell metabolic pathways are unknown. In this study, we show that the individual 

expression of the SARS-CoV-2 accessory proteins, ORF3a, ORF9b, ORF9c or ORF10, 

in A549 lung epithelial cells results in significant mitochondrial and metabolic alterations, 

some of which are distinctive of a particular accessory protein. Furthermore, by 

combining transcriptomic analysis with functional and metabolic data in accessory 

protein-specific GSMMs, several alterations were identified that may point to a putative 

targets for investigating novel therapies. A salient outcome of our study is that, despite 

the distinct metabolic reprogramming caused by each of the accessory proteins studied, 

particularly ORF3a, all four proteins caused altered mitochondrial features, including 

ORF10, not known to directly associate with mitochondria.  

Mitochondria are internally organized into cristae, which are fundamental 

structures whose shape changes under different physiological conditions36. The shape of 

the cristae is determined by the interaction of mitochondrial shape proteins37, 38, and 

perturbing such proteins disrupt cristae shape and change cristae-located OXPHOS 

(OXidative PHOSphorylation) system, which affects cellular growth and metabolism. 

Interactions between SARS-CoV-2 accessory proteins and host cell mitochondria have 

been proposed by multiple studies6, 7, 17, 27. Morphological changes in shape, size, cristae 

reorganization and cell location have been shown in mitochondria of SARS-CoV-2-

infected cells6, 27. Our results show that ORF3a, ORF9c and ORF10 induce changes in 

the shape and density of mitochondrial cristae, suggesting that these accessory proteins 

may directly perturb either mitochondrial shape-determining proteins. Genes for 

mitochondrial proteins that determine the shape, length and function of mitochondrial 

cristae37,39, are variously downregulated by the accessory proteins studied here, 

particularly by ORF3a, which caused a significant downregulation of OPA1 and 

SAMM50. The other accessory proteins caused a downregulation of different sets of 

genes for proteins that also play important roles in mitochondrial and cristae morphology, 
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suggesting that different accessory proteins disrupt mitochondrial morphology and 

function through different mechanisms. 

All four accessory proteins induced mitochondria size reduction (mitochondria 

fragmentation), which was compensated by an increase in the total number of 

mitochondria, thus maintaining roughly equal mitochondrial masses in all cell lines.  

Interestingly, although ORF9b induced a significant population of smaller mitochondria 

(mitochondrial fragmentation or fission), the median diameter of mitochondria was 

larger. It is possible that a more rounded shape of the mitochondria may cause them to 

appear artifactually larger in longitudinal sections. Collectively, these observations are in 

agreement with previous studies showing mitochondrial morphological alteration and/or 

destabilization of normal physiological fission–fusion dynamics ensuing SARS-CoV-2 

infection6 and suggest that such perturbations may be caused, at least partly, by these 

accessory proteins. Other processes, such as disruption of mitophagy as reported for 

ORF107, 17, may also contribute to the size and shape changes in mitochondria upon viral 

infection, due either to excessive sequestration of healthy mitochondria or to 

accumulation of damaged mitochondria.   

Whether a cause or a consequence of specific morphological changes in 

mitochondria triggered by SARS-CoV-2 and its accessory proteins studied here, they are 

associated with distinct metabolic and functional perturbations. As such, consistent with 

studies demonstrating an increased production of ROS in SARS-CoV-2 infected cells7, 

we have shown that ORF9c and ORF10 induce increased levels of ROS, which can lead 

to oxidative damage and abnormal energy metabolism40. Other disruptions to 

mitochondrial activity were more prominently associated with ORF9b and ORF9c, 

including decreased basal and maximal respiration, spare respiratory capacity, ATP 

production, and basal and compensatory glycolysis. Reduced basal respiration, maximal 

respiration, ATP production and proton leak were also associated with ORF3a expression. 

On the other hand, ORF10 induced reduced maximal respiration and spare respiratory 

capacity, as well as decreased compensatory glycolysis. Our findings of diminished 

bioenergetics metabolism as a caused by the four accessory proteins are consistent with 

the known loss of cellular energy metabolism caused by SARS-CoV-2 infection 5, 21, 41, 

42, and are in line with the recognized interactions of ORF9b, ORF9c and ORF10 with 

mitochondrial factors, such as TOM70, MAVS or NIX, which may result in disrupted 

mitochondrial functions12, 17. Recently, ORF3c, another SARS-CoV-2 accessory protein, 

has been shown to also alter mitochondrial metabolism, inducing a shift from glucose to 
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fatty acid oxidation and enhanced oxidative phosphorylation. ORF3c also increases ROS 

production and blocks the autophagic flux43. 

The above metabolic reprogramming induced by these individual accessory 

proteins fails to explain the enhanced glycolysis acutely triggered by SARS-CoV-2 

infection 5, which thus calls for a different mechanistic explanation. Applying GSEA and 

GSMM did not solve this issue. For example, while ORF3a-A549 cells were predicted to 

have a downregulation of glycolysis, experimental determination of glycolytic rates failed 

to show such downregulation. We speculate that compensatory mechanisms, yet to be 

unveiled, may regulate this process. Moreover, although our real-time functional 

metabolic assays demonstrated a broader range of disruptions caused by ORF9b, ORF9c 

and ORF10 as compared to ORF3a, GSMM predicted significant changes in energy 

metabolism only in association with ORF3a expression and, to a lesser degree, ORF10. 

In contrast to these apparently inconsistent results, other experimentally observed 

alterations were supported and predicted by transcriptomic and GSMM analysis, notably 

the correlation between altered mitochondrial cristae morphology and the downregulation 

of genes for critical regulators of cristae morphology and function. Morphological 

changes in mitochondria observed in ORF3a-A549 cells are in line with the proposed 

mechanism of SARS-CoV-2 replication, suggesting viral dsRNA subcellular localization 

and enrichment in host cell mitochondrion6, 7, and the alteration of the mitochondrial and 

endoplasmic reticulum network to viral replication organelles formed by clusters of 

double-membrane vesicles (DMVs)27, 44. 

The predicted upregulation of bile acid and ether lipid biosynthesis pathways 

triggered by ORF3a and of one-carbon, fatty acid and amino acid metabolism induced by 

ORF10, led us to infer potential targets for intervention in order to revert these metabolic 

perturbations. A similar approach, relying on the identification of specific KDs to an 

existing drug, has previously revealed candidates for COVID-19 treatment 45, 46. In our 

study, qMTA simulations predicted phospholipase D2 (PLD2) and phospholipase C -1 

(PLCB1) as the best targets for reverting the metabolic phenotype induced by ORF3a in 

A549 cells. Of note, phosphatidic acid, the catalytic product of PLD2, has been described 

as essential for SARS-CoV-2 replication47. On the other hand, dihydrolipoamide 

dehydrogenase (DLD), a component of the oxoglutarate dehydrogenase complex, and 

SLC25A10, a mitochondrial carrier in the mitochondrial inner membrane that transports 

TCA-cycle metabolites such as succinate, fumarate or malate from mitochondria to 

cytosol, were identified as targets for reverting the ORF10-induced metabolic phenotype. 
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In this regard, DLD and other members of the oxoglutarate dehydrogenase complex have 

been reported to be decreased in SARS-CoV-2 infected Vero cells and in a cardiomyocyte 

model of SARS-CoV-2 infection48. Furthermore, in a recent multi-omics analysis in a 

cohort of COVID-19 patients, an essential role of transporters and metabolites of the TCA 

cycle has been identified in association with COVID-19 severity 49. Additionally, 

Metformin treatment, an antidiabetic-safe drug, has been recently reported to reduce the 

incidence of long covid.  Remarkably, Metformin downregulates gene expression of 

SLC25A10 in A549 cells50.  

In summary, we have found that the SARS-CoV-2 accessory proteins, ORF3a, 

ORF9b, ORF9c and ORF10, produce significant mitochondrial alterations and metabolic 

reprogramming in A549 lung epithelial cells. Although SARS-CoV-2 accessory proteins 

are considered non-essential for virus replication, our analyses suggest that, at least 

ORF3a, may have a direct effect on the viral life cycle, by coopting the host cell lipid 

metabolism for DMV formation, hence ultimately impacting viral replication. Finally, we 

have identified putative metabolic targets that could be employed to counteract the effects 

of SARS-CoV-2 accessory proteins ORF3a and ORF10. As such, this study illustrates 

GSMM as a viable tool for investigating the pathobiology of SARS-CoV-2 and as an aid 

to identify novel antiviral strategies. 

 

LIMITATIONS OF THE STUDY  

 

This study relies on a human lung cancer cell line, with features of alveolar type 

2 (AT2) lineage cells, bearing stable integration and displaying constitutive expression of 

a single type of viral transcript and protein per cell. We recognize that this model 

represents a significant departure from a situation of acute infection by SARS-CoV-2, in 

which the entire viral genome and proteome enter susceptible cells. Features induced or 

dampened by one viral protein in our reductionist models should be interpreted with 

caution, as downregulation of cellular transcripts or proteins by one viral protein may be 

compensated by the upregulation of the same transcripts or proteins elicited by a different 

viral protein. An advantage of such models is that it affords to gain knowledge of 

functions pertaining to specific viral genes that may be difficult to unravel in more 

complex scenarios. In recognition of this potential limitation, we have placed particular 

emphasis on the analysis of features upregulated, rather than downregulated by viral 

accessory proteins, as they should contribute to phenotypes and perturbations induced 
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also by complex virions, independent of downregulation by distinct viral factors. A 

further limitation, beyond complex vs. reductionist approaches, stems from the long-term 

expression of viral proteins in our cell models, as opposed to acute viral infections, which 

involve short-term virus-cell interactions. The analysis of prolonged interactions reflects 

indirect cellular adaptations to long-term perturbations, in addition to more direct effects 

by the viral protein under study. However, it could be interested for further investigations 

in long COVID-19 treatments. Finally, we identify metabolic changes observed upon 

ORF transduction, but such alterations do not necessarily need to be beneficial for 

infection and viral replication and might instead be cellular responses which aim to 

protect against ORFs induced cellular damage. For instance, SOD activity might protect 

against SARS-CoV-2 induced oxidative stress51. 

 

FIGURE LEGENDS: 

 

Figure 1. Experimental workflow. Image generated in Biorender. 

 

Figure 2. Mitochondrial morphology and diffusion in ORF-A549 cells. (A) Analysis by 

transmission electron microscopy of mitochondrial appearance in ORF-A549 cells 

ultrathin sections. Scale bar indicates 1µm.  Last panel shows a schematic representation 

of mitochondria with organized and parallel mitochondrial ridges (top), and mitochondria 

with disorganized, non-parallel mitochondrial ridges and hollowed out areas (bottom). 

Median of mitochondria longest diameter (B) and median number of ridges per 

mitochondrion (C) evaluated from TEM micrographs of each cell line. (D) Mean speed 

of the tracked mitochondria measured for each cell line. (E) Representative results of the 

tracking performed on fluorescently labeled mitochondria. Taking the irregular shape of 

mitochondria into account, a mask-based segmentation to separate the different 

organelles was used. Track colors represent the average speed measured in between two 

frames. Scale bars: 10 µm. (F-H) Box and whisker plots showing the distributions of 

mitochondrial size (mitochondria fragmentation) (F), number per cell (G), and area 

covered by mitochondria (mitochondrial mass) (H). (I) Representative images of the 

datasets used to generate the distributions in (F-H). Mitochondria are marked in green 

(TOM20), nuclei in blue (DAPI), and cell membrane in red (Phalloidin). Scale bar: 10 

µm. (J) Quantification of the percentage of low-activity mitochondria in ORF-A549 cells 
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stained with MitoView 633. Data are represented as mean ± SD (n=4). Statistical 

significance is as follows: *p < 0.05, **p < 0.01, ***p<0.001, ****p < 0,0001. 

 

Figure 3. Metabolic enrichment pathways altered by ORF3a expression. The six more 

significant metabolic pathways up-regulated (red) and down-regulated (blue) altered by 

ORF3a expression are represented. Gene expression pattern of each pathway in all A549 

transduced cells and A549 control cells was compared. Color key indicates Log2 FC 

values. 

 

Figure 4. Electron Transport Chain (ETC) and mitochondrial cristae gene expression in 

A549 cells transduced with SARS-CoV-2 ORF3a, ORF9b, ORF9c or ORF10 accessory 

proteins. Heatmaps of DEGs related with mitochondrial complexes (I-V) (A) and 

mitochondria critae (Mito-cristae) (B) in A549 transduced cells compared with A549 

control cells. Color key represents Log2 FC values.  

 

Figure 5. Respiratory and glycolytic profiles of A549 cells expressing SARS-CoV-2 

accessory proteins. (A) ROS production measured by flow cytometry in A549 cells 

expressing SARS-CoV-2 ORF3a, ORF9b, ORF9c or ORF10 and control cells. (B) 

Seahorse XF Mito Stress test profile of oxygen consumption rate (OCR) in control and 

transduced cells. (C) Box and whisker plots showing the normalized basal respiration, 

maximal respiration, spare respiratory capacity, ATP production and proton leak in 

control and transduced cells. (D) Seahorse XF Glycolytic Rate test profile of proton efflux 

rate (PER). (E) Box and whisker plots showing the normalized basal and compensatory 

glycolytic PER. Horizontal line represents the mean and points individual replicates. 

Statistical significance is given as follows: *p < 0.05, **p < 0.01, ***p<0.001 and 

****p<0.0001. 

 

Figure 6. Metabolic flux changes induced by ORF3a, ORF9b, ORF9c, and ORF10 

relative to control cells. (A) Flux variation within metabolic superfamilies. Metabolic 

fluxes were expressed as log2FC of ORF-A549 vs. control cells. (B) Heatmap 

representing flux modulation of ORF-A549 cells for metabolic individual KEGG 

pathways. Color code corresponds to metabolic superfamilies represented in (A). 
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Figure 7. Metabolic pathway analysis representing the two-best metabolic-reversing 

drugs from ORF3a-A549 and ORF10-A549 cells towards the control A549 cells resting 

state. Each graph displays a comparison between the metabolic profile triggered by a 

transduction, and its reversion by in silico chosen drug-gene Kock downs (50% KD) 

selected from GSMM-mediated in silico analysis. Y axis represents log2FC, and the 

dashed-horizontal blue line at each plot represents the control state (i.e., log2FC = 0). 

Each line represents the metabolic change of either an ORF expression, or an ORF 

expression + drug, vs. control cells. PLD2: phospholipase D2; PLCB1: Phospholipase C 

beta-1; DLD: Dihydrolipoamide Dehydrogenase; SLC25A10: Solute Carrier Family 25 

Member 10.  

 

 

MATERIAL & METHODS  

 

Cell culture, lentivirus production and transduction  

 

A549 pulmonary epithelial cells (ATCC CRM-CCL-185; RRID: CVCL_0023) were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, #41966029) 

supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS) (Gibco, 

#1027016), 1% Penicillin-Streptomycin (100U/ml) (Gibco, #15070063) and 

Amphotericin B (Gibco, #15290026). ORF3a, ORF9b, ORF9c or ORF10 accessory 

proteins coding sequences (codon-optimized for mammalian expression) were cloned 

into pLVX-EF1α-IRES-Puro Cloning and Expression Lentivector (Clontech, Takara, 

#631253) to generate pseudotyped lentiviral particles encoding each accessory protein of 

SARS-CoV-2 (Wuhan-Hu-1 isolate) at the CNIC (Centro Nacional de Investigaciones 

Cardiovasculares) Viral Vector Unit (ViVU) as described previously19, 52. Accessory 

proteins were C-terminally 2xStrep-tagged to check viral protein expression. A549 cells 

were transduced by incubating them with lentivirus at a MOI of 10 for 24 h followed by 

2 µg/ml puromycin treatment to start the selection of successfully transduced cells. All 

cells were cultured at 37°C in a 5% CO2, 90% humidity atmosphere. 

 

Strep-tag Immunofluorescence, RNA isolation and sequencing  

 

These methods were performed as previously described19, 52.  
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Mitochondria Analysis 

 

Transmission Electron Microscopy (Ultrastructural Analysis of Cells): Cell 

monolayers were washed with PBS 1x and fixed in situ for 1 hour at room temperature 

(RT) with 3 % glutaraldehyde (EM Grade, Ted Pella INC) in PBS 1x. Fixed cells were 

washed three times with PBS 1x. Cell post-fixation was as follows: 1 hour at 4ºC with 

1% osmium tetroxide (Electron Microscopy Sciences) and 0,8% potassium ferricyanide 

in PBS, washed with PBS three times, and after dehydration in a gradient of 30% to 100% 

in ETOH, cells were embedded in a gradient of  EtOH/ LX 112 epoxy resin to 100% 

epoxy resin  (Ladd Research). The samples were polymerized at 60ºC for two days. 

Ultrathin 70 nm-thick sections were obtained with a Leica EM UC6 ultramicrotome 

(Leica Microsystems GmbH), transferred to collodion/carbon-coated EM grids and 

stained with Uranyl Acetate 5% for 20 min and Reynold´s Lead Citrate for 5 min. 70 nm 

sections were visualized on a FEI Tecnai 12 electron microscope equipped with a LaB6 

filament and operated at 100 kV. Images were recorded with a FEI Ceta digital camera at 

various magnifications. Median of mitochondria longest diameter was measured with 

ImageJ program, and median of ridges was counted in high resolution ME images. In 

both cases, at least 50 mitochondria were analyzed. 

 

TOM20 immunofluorescence: 12,000 cells per well were seeded on a chamber slide 

with a removable 12 well chamber (ibidi, #81201). Cells were fixed with 4% PFA in PBS 

for 5 min, washed three times in PBS, and then permeabilized for 10 min with 0.1% Triton 

X-100 in PBS. TOM20 (abcam, ab186735) incubation was carried out for 1h in PBS 

containing 3% BSA and 0.1% Triton X-100 at 1:100 dilution. Chamber slides were 

washed three times with PBS before Alexa 488 secondary anti-mouse antibody (Jackson, 

#155-546-062) incubation (1:1000 dilution). Texas Red-X phalloidin (Invitrogen, 

#T7471) was used as a cytoplasmic marker at 1:400, and DAPI (4’6-diamidino-2-

phenylindole) (Thermo Fisher Scientific, #62248) was used as a nuclear marker at a final 

concentration of 1µg/ml. After removing the chamber, the slides were mounted with 

FluorSaveTM Reagent (Merck, #345789) and coverslips of 1.5H thickness were used.  

 

Optical microscopy: Images were acquired with a Thunder Imager Microscope (Leica 

Microsystems). To ensure reliable cell comparisons, only single cells were acquired; this 
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avoids differences due to cell-cell adhesion and reduces segmentation errors. To identify 

single cells, we used a custom-made program named AIMS. This program uses, first, a 

fast-low-resolution scan (5X) to detect cells (Phalloidin - Actin) and nuclei (DAPI-DNA), 

and, then, an image analysis macro runs discarding objects bigger or smaller than a single 

cell. After this, all the coordinates for single cells localized in AIMS are loaded and 

acquired automatically in Thunder imager (40X HC PL APO 0,95 NA dry objective).  

 

Image analysis: To identify mitochondrial size (mitochondria fragmentation), number 

per cell, and area covered by mitochondria (mitochondrial mass), at least 200 cells were 

analyzed. Images were processed by using Cell profiler53. Statistical analysis was 

performed with SPSS v19.0 (IBM). 

 

Tracking analysis: To estimate the motility of mitochondria, 50.000 or 75.000 cells per 

well were seeded on a chamber slide (ibidi, #80826) and stained with MitoTracker Red. 

The emitted fluorescence was imaged using Thunder imager (40X HC PL APO 0,95 NA 

dry objective), time lapse data were recorded at 33 frame per second and field of views 

were randomly selected from the imaging software (Leica) across the sample. The 

tracking analysis was performed with TrackMate 754. Due to their non-circular shape, 

mitochondria were identified using a mask detector. The masks were generated for each 

frame using a custom script. Here, we subtracted the background light in each frame via 

top hat filtering and evened out the fluorescence signal with a high-pass filter to avoid the 

misdetection of dimmer organelles at the cell borders. Finally, to reject possible lingering 

background signal, we generated the masks using an adaptive threshold calculated 

considering the local background levels. Afterwards, mitochondria motion and speed 

were estimated using a sparse LAP tracker55. To obtain more robust estimate of the 

average speed of each detected track, we only considered tracks with at least 20 time 

points.  

 

Flow cytometry: Cells were seeded at 3 x 105 cells/well in 6-well plates 24 h prior to 

staining. For quantitative analysis of membrane potential, cells were stained in DMEM 

1% penicillin/streptomycin with 5 nM MitoView 533 (Biotium, #70055). Plates were 

incubated at 37ºC for 30 min protected from light. Cells were then harvested, washed with 

PBS 1X and resuspended in PBS. For these experiments, 10.000 events were analysed 
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using a CytoFLEX flow cytometer (Beckman Coulter) and FlowJo v10 software (BD 

Biosciences). 

 

Differential gene expression 

 

The R/Bioconductor package DESeq2 v.1.40.256 was used to evaluate the differential 

expression among the experimental groups (control vs ORF). Genes for which the sum 

of raw counts across all of the samples was < 10 were discarded. Genes with an adjusted 

p-value ≤ 0.05 and an absolute log2 fold change ≥ 1 were considered differentially 

expressed. The R package pheatmap v.1.0.12 (pheatmap: Pretty Heatmaps_. R package 

version 1.0.12) was used to generate the heatmaps of gene expression values obtained 

with DESeq2, normalized by variance stabilizing transformation (vst) and by rows. 

 

Gene Set Enrichment Analysis 26 

 

GSEAPreranked was used to assess gene enrichment compared to gene sets from the 

MSigDB collection (Hallmark gene sets57). A separate GSEA was performed with gene 

sets for electron transport chain components5 and mitochondria cristae morphology and 

function58. GSEA was performed with 1,000 random permutations to yield FDR q-values 

and normalized enrichment scores (NES). Genes were ranked following the Wald statistic 

obtained with DESeq2.  

 

Reactive oxygen species (ROS) production analysis 

 

ROS production was evaluated using the ROS Detection Assay Kit (Canvax Biotec S.L, 

Cordoba, Spain) which contains the cell-permeant reagent dichlorodihydrofluorescein 

diacetate (H2DCFDA), an indicator of reactive oxygen intermediates, that becomes 

fluorescent when oxidized, following the manufacturer's instructions.  Cells were seeded 

on a 24 well plates at 7,5x104 cells per well 2-day prior assay. Cells were incubated with 

H2DCFDA (25 mM) for 45 minutes at 37°C. Positive control cells were treated with 

100 µM H2O2. ROS were measured by flow cytometry (BD Accuri C6 Plus Flow 

Cytometer). 
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Seahorse extracellular flux analysis 

 

Agilent Seahorse XF Cell Mito Stress Test was applied, and oxygen consumption rate 

(OCR) and extracellular acidification rate (ECAR) were determined using Agilent 

Seahorse XF24 Analyzer (Seahorse Bioscience, Agilent) previously calibrated using 

Seahorse XF Calibrant solution in a CO2-free incubator overnight. 24 h before the assay, 

cells were seeded at 37,500 cells per well in a Seahorse 24-well XF Cell Culture 

microplate in DMEM culture medium and were allowed to adhere for 24 h in 5% 

CO2 atmosphere at a 37 °C. On the day of assay, media was changed to XF DMEM 

medium supplemented with 10 mM glucose, 1 mM sodium pyruvate and 2 mM 

glutamine, pH 7.4, and then maintained in XF assay media at 37 °C in a CO2-free 

incubator 1 h. Mitochondrial function of the cells was analyzed by sequential injections 

of the modulators oligomycin (1 μM), carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone (FCCP, 1 μM) and a mixture of antimycin A and 

rotenone (Rot/AA, 0.5 μM).  

For glycolytic rate analysis, the medium was changed to Seahorse XF DMEM medium 

(10 mM glucose, 1 mM sodium pyruvate, 2 mM glutamine, pH 7.4). Then, ECAR and 

OCR were recorded using the Agilent Seahorse XF24 Analyzer following injections with 

0.5 µM Rot/AA and 50 mM 2-deoxyglucose (2-DG) (XF Glycolytic Rate Test Kit), 

respectively. Data were collected using Agilent Seahorse Wave 2.6.1 Desktop software 

and normalized to protein concentration determined at the end of the assay. Data were 

exported to GraphPad Prism version 9 for analysis.  

 

Measurement of consumption and production rates of metabolites 

 

For measurement of uptake and production rates of metabolites, 2 x105 cells per well were 

seeded in triplicate in 6-well plates with standard incubation medium.  After 24h, cells 

were counted and supernatants were collected and frozen until further analysis. 

Consumption and production rates of metabolites were determined by measuring 

metabolite concentration in incubation media at the beginning and at the end of 24h-

incubation time and correcting the absolute consumption/production by time and cell 

number assuming lineal cell growth.  

Glucose, lactate, glutamate and glutamine concentrations in medium aliquots were 

determined spectrophotometrically using NAD(P)H- coupled enzymatic reactions in an 
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autoanalyzer Cobas Mira Plus (Horiba ABX, Kyoto, Japan)59. Concentration of 180 

metabolites from 6 different families (amino acids, biogenic amines, acilcarnitines, 

glycerophospholipids, esphingolipids and hexoses) were determined using the Absolute 

IDQ p180 kit from Biocrates Life Sciences (Innsbruck, Austria) and an AB Sciex 6500 

QTRAP MS/MS mass spectrometer coupled to a UHPLC Agilent 1290 Infinity II System. 

10 μl of media was plated in each well, and the kit was processed following 

manufacturer’s instructions. Analyst and the MetIDQ™ software packages were used to 

analyse the obtained data and calculate metabolite concentrations59. 

 

Construction of condition-specific GSMMs 

 

Condition-specific Genome-Scale Metabolic Models (GSMMs) of control and ORF-

A549 cells were reconstructed using the human GSMM Recon3D60 as a template by 

integrating transcriptomics (RNAseq), uptake and production rates of metabolites 

(measured as previously indicated) and Seahorse extracellular fluxes, using the 

COBRApy toolbox61. As part of this reconstruction, enzymes with low expression were 

removed from the network. More in detail, enzymes with average gene expression 

(FPKM) value under 1 in all conditions were removed, always ensuring their removal still 

allowed to produce 50% of optimal biomass and to sustain the measured rates of 

metabolite uptake and secretion. In addition, enzymes with FPKM values under 1 in any 

of the ORF-A549 cell lines, were also removed from the condition-specific model if the 

difference against the control was statistically significant (FDR < 0.05).  

 

Quadratic metabolic transformation algorithm  

 

The metabolic transitions of ORF-A549 when were simulated with the quadratic 

metabolic transformation algorithm (qMTA)31. qMTA was run using as an input the 

condition-specific models, the reference (i.e., control) flux distribution for A549 cells and 

the gene expression and measured rates fold-change between control cells and ORF-A549 

cells (measured rates shown in Supplementary Table 2). The reference flux distribution 

was defined as the average flux values when sampling the solution space within 99% of 

GIME3’s optimal solution30, 31 in the A549 control model (i.e., non-transduced A549 

cells).  
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Briefly, qMTA simulates the metabolic transitions of A549 when transduced with ORFs 

by maximizing the consistency between the variation in gene expression and measured 

rates and the resulting flux distribution relative to the reference flux distribution. As part 

of this process p-values for differential gene expression and standard deviation for 

measured flux rates are used to give more weight measured variations with a stronger 

statistical significance. The result is a flux distribution consistent with the transcriptomics 

and measured rates for each transfection, i.e., ORF3a, ORF9b, ORF9c, and ORF10 (ORF-

A549 cells). 

To facilitate summarizing the results of the metabolic transformation, individual fluxes 

are assigned to a KEGG pathway. This assignment is achieved by matching the genes 

catalyzing each reaction to the gene-pathway annotation of KEGG. Then, the individual 

reaction fluxes of each pathway are added (in absolute value) to compute the total flux 

value for each pathway. To further summarize the results, KEGG pathways were also 

grouped to four metabolic pathway superfamilies (Bioenergetics and carbohydrate, amino 

acids, lipids and nucleotide metabolism) and total flux value for each superfamily was 

calculated using the same procedure. 

 

Identification of targets disrupting metabolic transformations 

 

qMTA is also used to identify putative gene knock downs and metabolic inhibitors that 

can disrupt the metabolic transformation underlying ORF transduction. This is achieved 

for each condition by iteratively repeating the qMTA analysis with gene knock downs 

(simulated by reducing the maximum flux to each mapped reaction to 50% of the control 

condition). This tests the capacity of a gene knock down to prevent or disrupt the 

metabolic transformation. To increase robustness62, this analysis is complemented by 

using the minimization of metabolic adjustment (MOMA) algorithm63  to simulate the 

capacity of individual gene knock downs to switch the ORF metabolic flux distribution 

to a state closer to the A549 control cells. Briefly, MOMA simulates the effect of a gene 

knock down by reducing the maximum flux to each reaction mapped to gene to 50% and 

minimizing the variation in the remaining reactions. For each condition, putative genes 

knock downs are ranked based on their capacity to both disrupt the metabolic 

transformation from control to ORF-A549 cells and their capacity to revert the ORF-

transduced state to the control.  
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