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Abstract: The fast and reliable processing of medical images is of paramount importance to adequately
generate data to feed machine learning algorithms that can prevent and diagnose health issues. Here,
different compressed sensing techniques applied to magnetic resonance imaging are benchmarked as
a means to reduce the acquisition time spent in the collection of data and signals that form the image.
It is shown that by using these techniques, it is possible to reduce the number of signals needed
and, therefore, substantially decrease the time to acquire the measurements. To this end, different
algorithms are considered and compared: the iterative re-weighted least squares, the iterative soft
thresholding algorithm, the iterative hard thresholding algorithm, the primal dual algorithm and
the log barrier algorithm. Such algorithms have been implemented in different analysis programs
that have been used to perform the reconstruction of the images, and it was found that the iterative
soft thresholding algorithm gives the optimal results. It is found that the images obtained with this
algorithm have lower quality than the original ones, but in any case, the quality should be good
enough to distinguish each body structure and detect any health problems under an expert evaluation
and/or statistical analysis.

Keywords: compressed sensing; medical resonance imaging; IRLS; ISTA; IHTA; primal dual algorithm;
log barrier algorithm

MSC: 94A20; 94A12; 94A40

1. Introduction

As the years go by and scientific knowledge increases and refines, theories are updated
and improved, giving rise to more reliable and efficient technological applications. For ex-
ample, within the field of signal processing, in the past, a camera with n pixels needed n
signals to form the image. In 1949, however, with the Shannon–Nyquist theorem [1], it
was shown that it was possible to form the same image with fewer signals. This theorem
establishes that it is feasible to recover a signal if it is sampled uniformly at a rate of at
least twice its Fourier bandwidth, that is, it allows a continuous signal to be reconstructed
with a discrete sequence of acquired samples. However, for some applications, such as
radar imaging or different imaging modalities outside of visible wavelengths, the required
sampling rate may be so high that it is impossible for state-of-the-art samplers to achieve
such values. Furthermore, due to the large number of samples collected, it is necessary
to compress them [2]. In 2006, Donoho and the team consisting of Romberg, Candès and
Tao introduced the concept known as compressed sensing (CS) [3,4], which substantially
simplified the acquisition process.

CS is an alternative technique to the Shannon–Nyquist sampling theorem. With this
approach, it is possible to reconstruct a signal from a few random measurements using some
non-linear techniques, as long as the original signal is compressible or sparse. A sparse
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signal has most of its coefficients as zero, and only a few contain all the information.
It is possible to obtain this type of signal through a basis transformation. For example,
a sinusoidal signal of a given frequency obtained with a voltmeter as a function of time is
not sparse. However, if the Fourier transform is applied, the signal has an associated peak
at that frequency. The rest of the values are zero. Therefore, in the Fourier domain, [5] is
sparse. Moreover, there are different wavelet transformations that allow this sparsity, such
as Daubechies [6] or the Tight-Frame [7].

The main objective of CS is to reduce the number of coefficients necessary to obtain the
desired resolution and quality for the representation of the object of interest. To achieve this,
it uses a mathematical function called a norm. The norm lp of a vector x (vector notation is
shown in bold) of length n is expressed as follows:

‖x‖p =

(
n

∑
i=1
|xi|p

)1/p

(1)

In the case p = 0, the l0 norm consists of the number of non-zero elements in the vector
x. The l1 norm (p = 1) gives as a result the sum of the elements of the vector. The l2 norm
is widely used to compute the Euclidean distance [8].

The CS problem can be described as the reconstruction of the vector x of dimension n,
from the measurements y = Ax, of dimension m, and the random measurement matrix A,
known as the sensing or measurement matrix, of dimensions m × n.

The solution to this problem depends on its typology as follows:

• If m > n and rank(A) = n (purely overdetermined linear system), the linear system is
solved via least squares:

x = (AT A)−1 ATy (2)

The reconstruction error of y: ‖y− Ax‖2 is non-null.
• In the purely underdetermined case (m < n and rank(A) = m), there is an infinite set

of solutions that belong to a linear variety oriented by the null space of A. This is the
typical case of under-sampling, that is, the number of samples in A (length of y ) is
less than the original size of x. In this case, the minimum l2 norm solution is written
as follows:

xMN = AT(AAT)−1y (3)

since it does not have components in the null space of A. This solution is sparse in the
system of reference (Rn = ColA

⊕
KerA).

The sparse problem treated in this paper consists in finding the sparser solution in the
l0 norm, which is the same to impose sparsity in the canonic basis set of Rn:

x = min‖x‖0 subject to y = Ax (4)

Minimization in norm l0 requires an exhaustive search over all possible sparse combi-
nations. Since it requires a large computational cost, this minimization is replaced by the
convex minimization problem in l1. This problem is determined as

x = min‖x‖1 subject to y = Ax (5)

and it is known as basis pursuit (BP). In more complex situations, the measurements
obtained are corrupted by an unknown noise, which is denoted as e. Therefore, y = Ax + e.
The reconstruction problem is written as follows:

x = min‖x‖1 subject to ‖y− Ax‖2 ≤ ε, (6)

where ‖e‖ ≤ ε. This problem is known as BP denoising (BPDN) [9].
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This is equivalent to imposing that the linear system y = Ax is incompatible due to
measurement noise. BPDN is a constrained problem, whose solution can be approached by
the following unconstrained optimization problem:

x = minx‖y− Ax‖2
2 + λ‖x‖1 (7)

The parameters λ and ε are related but, generally, the relationship between them is
not analytical and cannot be estimated [10].

The CS technique has various applications in many fields, e.g., underwater imag-
ing [11], wireless monitoring of structural health [12] and 3D visualization of the oxidation
state of iron in FeO/Fe3O4 [13]. In this document, CS is used in medical imaging, in
particular, with images obtained by nuclear magnetic resonance (NMR).

MRI is a non-invasive technique widely used in medicine to obtain the necessary
medical images for further diagnosis. This technique is based on the physical phenomenon
of resonance. It consists of the transition between different energy states when an atomic
nucleus is introduced into an external magnetic field of a characteristic frequency. This
frequency, known as the Larmor frequency, corresponds to the precession frequency of the
protons inside the nucleus. When a magnetic field is applied, the protons absorb the energy
and raise it to a higher level. Once the magnetic field is removed, the protons decay to the
ground state. MRI measures the time and energy released from this last transition. Due
to its environment, those two values will be different for each proton. Then, applying the
inverse Fourier transform to the obtained data, the image is created with different contrast
for each component of the body [14] as shown in Figure 1.

Figure 1. Example of magnetic resonance imaging of the cranial region [15].

This technique makes it possible to distinguish different components of the human
body, particularly soft tissues, such as muscles, tendons, ligaments, fat, etc. Not only that
but it also makes it possible to differentiate between bones and organs [14]. The images can
be in any direction or part and can even be made of animals, for example, a mouse [16].
In addition, magnetic resonance can be used as a spectroscopy technique in biochemistry: it
allows knowing the three-dimensional and dynamic structure of biological molecules [17].
In addition, its main advantage over other techniques, such as computed tomography
or X-rays, is the lack of ionizing radiation, which makes MRI exams safe for the patient.
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For these reasons, its multiple uses, and its high-resolution images, MRI is known as the
crown jewel in medical imaging [18].

Despite the many advantages mentioned above, MRI has some drawbacks: patients
with pacemakers or metal prostheses can be injured by the strong magnetic field (up to
3T), so they cannot be examined. In addition, due to the reduced space and high noise
level of the machine, it can generate stress or anxiety. In addition to these disadvantages,
there are many more safety precautions that must be taken into account when taking an
exam. In addition, the maintenance of the machine components and the tests are very
expensive. Finally, it takes a long time to acquire the data needed to build the image,
approx. 40 min [19].

In this article, we present a methodology to reduce the MRI acquisition time by
using three different CS algorithms. Different MRI images of the head are considered and
reconstructed with fewer measurements, leading to a reduction in the acquisition time.
In the algorithms, a smaller number of data is introduced than the real image, the time that
the algorithm takes in the reconstruction is measured, and the error is made. This study
then paves the way for shorter MRI exams.

General Contributions

The general contributions of this study are the following:

• Different compressed sensing algorithms used to reconstruct various medical images
are evaluated and compared.

• The acquisition time and the number of measurements performed are reduced and
minimized.

• The error in the reconstructed image is minimized by adjusting the regularization and
optimization parameters in the algorithms.

The article is organized as follows: first is an overview of previous works in Section 2;
in Section 3, the CS algorithms employed to reconstruct the image are described, and it is
shown how they can be applied in MRI. In Section 4, the results are presented and discussed
(reconstructed images, acquisition time and error). The article finishes with the conclusions.

2. Related Works

Compressed detection techniques have been applied to the reconstruction of magnetic
resonance images. One of the first papers in this field was presented by Donoho in
2006, in which he presented the concept of compressed sensing and demonstrated its
potential application to magnetic resonance imaging reconstruction. Compressed detection
is based on the assumption that most medical images are underrepresented in some
domain, allowing accurate reconstruction from a limited set of [3,20] measurements. This
breakthrough opened up new possibilities for speeding up MRIs, making them more
feasible and comfortable for patients while reducing motion artifacts.

Following Donoho’s groundbreaking work, numerous algorithms have been proposed
to improve and optimize the compressed detection reconstruction process for MRI in order
to achieve better image quality. They have been extensively evaluated through simulations
and experiments. The main goal of these experiments is to assess the quality and accuracy
of the reconstructed images, as well as determining the robustness of the algorithm under
various conditions.

Among these algorithms, the iterative re-weighted least squares (IRLS) was proposed
as an improvement of the traditional compressed detection algorithm, improving the con-
vergence and the quality of image reconstruction [20]. This algorithm led to a successful
reduction in the acquisition time while preserving image quality, enabling fast and effi-
cient MRI scans [21]. Daubechies et al. (2004) introduced the iterative smooth threshold
algorithm (ISTA). ISTA is an optimization-based approach that promotes sparseness in
the reconstructed image, allowing for more efficient image reconstruction with fewer mea-
surements [22]. In parallel, IHTA was introduced, which broadens the threshold idea
to promote scarcity in MRI reconstruction. IHTA aims to recover sparse signals more
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accurately by iteratively discarding the least-significant coefficients [23]. The primal dual
algorithm (PDA) is another approach that has gained attention in the context of compressed
detection for MRI reconstruction. PDA takes advantage of a dual variable formulation to
promote scarcity and encourage more efficient and accurate retrieval of MRI signals [24].
A new variant of the primal dual algorithm (PDA) was proposed for MRI reconstruction [4]
that improves the algorithm’s ability to handle complex MRI structures more effectively,
offering better image reconstruction [25]. The LBA takes advantage of the logarithmic
barrier function to approximate the non-smooth L1 norm, which promotes sparseness
in the signal domain. This algorithm effectively tightens the sparseness constraints and
improves the quality of images reconstructed from heavily undersampled data [26].

In addition, there are numerous studies comparing compressed detection algorithms
to assess their performance under various conditions [27–29]. The use of CS in single pixel
detectors has also been simulated to achieve high-resolution images [30,31]. Furthermore,
the integration of deep learning techniques with compressed detection has gained attention
in recent years. Deep learning-based approaches have shown great potential to improve
the reconstruction quality and robustness of compressed detection methods, making them
even more attractive for MRI applications [32,33].

This article focuses on the study of these algorithms (IRLS, ISTA, IHTA, PDA, and
LBA), more classical algorithms that minimize the l1 norm and the TV norm, and do not
require any parallelization or special hardware support, such as GRAPPA [34].

3. Materials and Methods

MRI receives the data of proton relaxation and stores them in the frequency space
so that with the inverse Fourier transform, it is possible to construct the image. The CS
problem applied to this case can be written as

ym×1 = Fm×nxn×1 + ηm×1 η ∼ N(0, σ2) (8)

where y are the frequency samples collected by the machine, F is the Fourier measurement
matrix, x is the image to be constructed, and η is the noise randomly distributed. An in-
verse linear problem has to be solved to recover the data that form the image from the
measurements; the measurement matrix which associates a frequency to a value in the
grey scale is used. Object x can be an image in 2D or 3D, but it is represented as a vector
by concatenation.

In the ideal case, in which enough measurements are taken (n = m), Equation (8) can
be solved by applying the inverse Fourier transform on the frequencies:

x = F−1y (9)

To reduce the acquisition time, fewer measurements are taken. Therefore, Equation (8)
has infinite solutions, which can be solved with minimization algorithms. In this article,
to reconstruct the image, five possible methods are used: iterative re-weighted least squares
(IRLS), iterative soft threshold (ISTA), iterative hard threshold (IHTA), a primal dual
algorithm (PD) and a log barrier algorithm (LB). The first three algorithms belong to the
category of greedy algorithms. They have less accuracy in the reconstruction but are less
expensive and simpler. PD and LB are convex algorithms; the error is minor, but it takes a
lot of computational resources [9]. All those algorithms shown below are iterative because
of the large storage size of A.

3.1. Iterative Re-Weighted Least Squares

The first algorithm, IRLS, solves the minimization problem without restrictions
(Equation (7)). To achieve this, it replaces the l1 minimization with the l2 norm with a
given weight represented by the diagonal matrix W in each iteration k. This matrix is
updated by

W(k) = diag(|x(k)i |
− 1

2 + γ) (10)
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where γ is the dumping factor, which is reduced at each iteration. In order to obtain
the reconstructed signal, the algorithm solves Equation (11), obtained from the uncon-
strained Lagrangian, until it reaches a certain number of iterations or the solution converges,
i.e., ‖y− Ax‖2 < ε, where ε is the minimum error [10]:

x(k+1) = (W(k))−1 AT(A(W(k))−1 AT)−1y (11)

3.2. Iterative Soft Threshold Algorithm

The next algorithm, ISTA, solves the same minimization problem as the previous
algorithm (Equation (7)). In this case, the function called the soft threshold is used:

soft(x, τ) =


x + τ x < −τ

0 |x| ≤ τ
x− τ x > τ

(12)

This, shown in Figure 2, tries to decrease the amplitude of the coefficients with noise.
For example, if the amplitude of the signal is small, the noise and the number of data
which provide information are of equal magnitude. The data contain little information and,
therefore, the function returns 0. For larger amplitudes, the noise is very small compared
to the intensity of the real signal, and thus the function subtracts the part associated with
noise [35].

Figure 2. Soft Threshold rule with τ = 2.

In order to obtain the reconstructed signal with this algorithm, it is necessary to
calculate the Landweber iteration, which is defined as

b(k) = x(k) +
1
a

AT(y− Ax(k)) (13)

where a is the largest eigenvalue of the matrix AT A. The solution xk+1 is calculated with
the soft threshold rule, which is written in a more compact way:

x(k+1) = signum(b(k))max(0, |b(k)| − λ

2a
) (14)

In each iteration, the value of λ should be reduced in order to achieve convergence [10].
Over the years, ISTA have had a lot of improvements in order to reduce the acquisition

time or to obtain a better resolution. For example, changing the thresholding function to
Equation (15), called the p-thresholding function, the technique penalizes small coefficients
and shrinks more values to zero. If p = 1, the equation reduces to soft thresholding
(Equation (12)) [36]:

Gτ,p(x) = sign(x)max(0, |x| − τ|x|p−1) (15)
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Another algorithm which improves the convergence speed, which is the main ISTA
problem, is called fast ISTA (FISTA), which relies on the simplicity of the computation
of the proximal map of l1 norm. If the gradient algorithm is applied in Equation (6), the
following iterative equations are obtained:

x(k) = x(k−1) − t(k)∇(||Ax(k−1) − b(k)||2) (16)

where t(k) > 0 is the step size updated in each iteration. Using this idea with the uncon-
strained problem (Equation (7)), an iterative scheme is obtained, which can be seen as a
proximal regularization of ||Ax− b||2. It is written as

x(k) = minx

(
1

2t(k)
||x− (x(k−1)−

t(k)∇(||Ax(k−1) − b(k)||2))||2 + λ||x||1
) (17)

By using FISTA, the number of iterations required to obtain an optimal solution is
less than that of ISTA, as it improves the convergence rate [37]. However, there is no
simple solution to the non-smooth part λ||x||1. In order to solve this, it is possible to
approximate this term by its Moreau envelop, which is smooth [38]. This strategy is also
used in projected ISTA (pISTA) and projected FISTA (pFISTA), in which the unconstrained
model is converted into a much simpler form, where the objective function can be separated,
and the orthogonal projection operator is introduced [39].

It is clear that many ways to optimize MRI and its different sequences have been
proposed to improve its stability, memory consumption and reconstruction time [40,41],
but ISTA is still a good way for signal reconstruction because it stands out for its simplicity.

3.3. Iterative Hard Threshold Algorithm

As mentioned in Section 1, solving the CS problem in the l0 norm is very expensive.
However, IHTA handles this problem if the data have noise, i.e.,

x = minx‖y− Ax‖2
2 + λ‖x‖0 (18)

In this algorithm, the following function is defined similarly to ISTA:

hard(x, τ) =

{
x |x| > τ
0 |x| ≤ τ

(19)

In this function, if the signal is of the same magnitude as the noise, it eliminates those
values; otherwise, it does not alter the value [10]. In this algorithm, the Landweber iteration
is also calculated by Equation (13), and the solution is obtained by

x(k+1) = HardThreshold(|b(k)|, λ

2a
) (20)

3.4. Primal Dual Algorithm

PD algorithms for linear programming are used to solve Equation (5) among others.
The standard form in linear programs is

minx〈c0, x〉 subject to Ax = y, fi(x) ≤ 0 (21)

where each of the fi=1,... ,m is a linear functional fi(x) = 〈ci, x〉+ di for ci ∈ Rn and di ∈ R.
This algorithm finds the optimal x∗ and the dual vectors ν∗ ∈ Rn, λ∗ ∈ Rn, which satisfies
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the Karush–Kuhn–Tucker conditions by solving this system of nonlinear equations with
Newton’s method [42,43]:

c0 + ATν∗ + ∑
i

λi
∗ci = 0

λi
∗ fi(z∗) = 0, i = 1, . . . , m

Az∗ = y

fi(z∗) ≤ 0, i = 1, . . . , m

(22)

So in the inner loop of the PD algorithm, Newton’s method is applied. Conjugate
gradients are used in Equation (22) in order to obtain the step direction ∆x. Then, the
solution is updated by the next equation:

x(k+1) = x(k) − α∆x (23)

3.5. Log-Barrier Algorithm

The BPDN problem (Equation (6)) can be modeled as second-order cone programs
(SOCPs), i.e., it can be written as a linear program Equation (21), where fi represents a
second-order conic. This method consists of transforming the minimization problem into a
series of linear problems in y:

minx〈c0, x〉+ 1
τk ∑

i
− log(− fi(x))

subject to Ax = y
(24)

Each one of these subproblems are solved with a high degree of accuracy with New-
ton’s method to obtain x(k). In each iteration k, τk is updated so that τk > τk−1 [43].

3.6. Application of the Algorithms to MRI

Previous algorithms have been used to reduce the MR acquisition time. Since it
was not possible to access an MRI machine, the code was designed to read actual MRI
images, decompose the data, and store them as vector x. This code also generates the
measures matrix A as a function to avoid memory problems due to the large size of the
matrix. The measurements that would be obtained in IRM y are evaluated by A and x.
The measure matrix function computes the Fourier transform of x and randomly orders
its coefficients. The algorithms were applied to y, and the signal and the reconstructed
image x̂ were obtained. The code also allows to obtain the time it takes to perform the
algorithms and the error between the original signal and the reconstructed one. Finally,
the regularization and optimization parameters in the algorithms were adjusted so that the
error in the reconstructed image was minimal.

The objective of this article is to evaluate and compare different algorithms to reduce
the acquisition time so that the number of measurements performed is less than the
number necessary to build the original image. In all cases, when the image is read, some
values are randomly selected, which are stored in x; then, y is obtained, and the token x̂
is reconstructed.

Several images were analyzed with the algorithms to obtain the time and error param-
eters as a function of the number of measurements. With these results, the best algorithm
was selected to carry out the reconstruction applied to MRI and the minimum number of
measurements necessary to be able to distinguish all the components of the image.

4. Results and Discussion

Medical imaging acquisition is greatly enhanced by the use of compressed detection
techniques since, as discussed above, it is possible to reconstruct a given signal (image)
using only a few random measurements. This can substantially increase the speed and
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accuracy of the acquisition process and lead to better image qualities for certain medical
devices, such as those using MRI, which often take a long time to take. This was verified
in this section, which presents results after applying the CS algorithms in medical images
obtained with magnetic resonance. Several images of the head of the human body obtained
from the database of the University of South Carolina [15] were analyzed. Two images
commonly used to assess for medical problems were taken: an axial slice of the brain and
an axial section of the face and neck region, both at 2048 × 2048 resolutions. The first image
is challenging because the brain area does not have much resolution, and it is difficult to
distinguish particular features. The second image shows more contrast between different
tissue types and is easier to assess.

One of the images used in the simulations is shown in Figure 3. The image corresponds
to an axial section of the brain in the plane marked by the blue lines in Figure 4. In it,
the orbit of the eyes can be distinguished in the lower part. Fat appears with a very strong
signal, while water and cerebrospinal fluid have a very low intensity.

Figure 3. MRI image of an axial slice of the brain. In the area below are the eye orbits [15].

Figure 4. Images of sagittal, coronal and 3D slices of the brain. The blue line shows the plane
corresponding to the image in Figure 3.

The image is blurred in the left orbit, which is an example of an artifact. An artifact is a
distortion in the image that has no relation to the subject of the studied body region. In this
case, it is generated by the movement of the patient [44]. Artifacts must be recognized,
as they can simulate non-existent medical conditions or cover up real problems. In this case,
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its origin is clear, but in general, it is necessary to know the different types of artifacts that
can be produced in order to be able to distinguish and address them properly. The impact
of artifacts on the reconstruction process depends on their size. If the artifact is not too
large, reconstruction can smooth it out and produce an image without its effect. In this
sense, the best algorithm that can deal with artifacts is PD because it leads to clearer and
blur-free images as will be seen.

Below are the images and the parameters obtained from the reconstruction, as well as
the time and error of each algorithm based on the data taken from the original image.

In the IRLS reconstruction, only the shape of the head and the orbits are detected
in the first measurements, while the white matter is not distinguishable (Figure 5 top).
When 70% of the data is available (Figure 5 middle), the white matter can be distinguished
but with little intensity. When the intensity of the orbits increases, the effect of the artifact
begins to be noticed. If the algorithm is run with all available data (Figure 5 bottom), the
edge resolution is increased, but white matter signal intensity is lost. That makes their
identification more difficult.

Figure 5. Reconstruction of the image in Figure 3 using IRLS with 30% (top), 70% (middile) and
100% (bottom) of taken measurements.
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As in IRLS, the ISTA algorithm first detects the areas of highest intensity in the first
measurements without distinguishing the white matter (Figure 6 top). If the number of
input data is increased, the border resolution increases, but it is still difficult to differentiate
the white matter (Figure 6 middile). Finally, the resolution increases until the shape of the
fat is detected (Figure 6 bottom).

Figure 6. Reconstruction of the image in Figure 3 using ISTA with 30% (top), 70% (middle) and 100%
(bottom) of taken measurements.

If IHTA is used for the reconstruction, more noise is detected on the inside of the head
(where the white matter should be) with 30% of the initial signal values (Figure 7 top).
With 70% of measurements (Figure 7 middle), an image similar to the same case was
obtained with ISTA, but the target has more intense signals, which allows to distinguish
better. The resolution increases as more data are added. However, when 100% of the data
is reached (Figure 7 bottom), the white matter is not detected, it appears black.
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Figure 7. Reconstruction of the image in Figure 3 using IHTA with 30% (top), 70% (middle) and
100% (bottom) of taken measurements.

With the PD algorithm, the object is much clearer with lower measurements. With 30%
of the initial values (Figure 8 top), the structure inside the head can be recognized and
delimited, even if it is of low intensity. As the number of measurements increases, the im-
ages obtain better resolution. At 70% (Figure 8 middle), the image is similar to the original.
Finally, at 100% (Figure 8 bottom), the gray matter loses its intensity.

Images obtained with the latest algorithm, LB, are blurrier. With 30% of the mea-
surements (Figure 9 top), it is not possible to distinguish the structures. If the algorithm
uses 70% of the initial data (Figure 9 middle), the image is clearly reconstructed. Finally,
with 100% of the data, the reconstruction is similar to that obtained with the PD algorithm.
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Figure 8. Reconstruction of the image in Figure 3 using PD with 30% (top), 70% (middle) and 100%
(bottom) of taken measurements.

The graph in Figure 10 shows the time it takes for the algorithms to reconstruct the
image based on the number of data entered. The IRLS maintains a constant time of 8 s in all
reconstructions. It solves the rebuild problem in the l2 norm and is the fastest. In the case of
the ISTA, which employs a minimization in norm l1, the time decreases linearly from 100 s
to approximately 50 s. The IHTA takes the longest time to rebuild, which is to be expected
since it solves the minimization with the l0 norm. In addition, two peaks are obtained at
20% and 90% of the measurements with IHTA. The convex algorithms, PD and LB, take
much longer than the greedy ones as expected. The PD reconstruction time is longer, as the
number of measurements increases. Its maximum value is 367 s. The LB algorithm does
not show a clear trend. It has three peaks, at 20%, 40% and 90%, the latter being the softest.
Finally, with 100%, the time is reduced to 285 s. Note that in general, the reconstruction
time is not very important when reconstructing one or few images, so with respect to this
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factor, it would be beneficial to use the most accurate algorithm regardless of the time
it takes.

Figure 9. Reconstruction of the image in Figure 3 using LB with 30% (top), 70% (middle) and 100%
(bottom) of taken measurements.

The error made in the reconstruction can be seen in the following Figure 11. The IRLS
error decreases linearly. The trends in ISTA and IHTA are very similar: in both, the error
decreases with the number of measurements. However, when 90% of the measurements is
reached, the error with IHTA increases sharply. This is due to the fact that, as mentioned
above, in the last reconstruction, the algorithm does not detect the signal related to the
white matter and, therefore, returns a larger error. The error for PD and LB is higher than
expected since they are convex algorithms, and the reconstructed images are quite similar
to the original ones. Both algorithms decrease the error in a similar way up to 60%, where
the error in PD is greater.
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Figure 10. Reconstruction time of Figure 3 as a function of the number of measurements for each al-
gorithm.

Figure 11. Error in the reconstruction of Figure 3 as a function of the number of measurements for
each algorithm.

An additional analyzed image (Figure 12a) corresponds to the plane indicated by
the blue lines in Figure 12b, representing an axial section. The region of the face and
neck is presented. The black “U” shape at the bottom is the teeth, while the spinal cord
is centrally located above them. Figure 12c,d illustrate the computation time and the
reconstruction error of the algorithms, respectively. Both parameters show similar trends to
those observed in the previous image. The LB algorithm exhibits the longest reconstruction
time but achieves the lowest error when the amount of input data is small. However,
as the size of the data set increases, the LB algorithm shows a larger error. PS has the
second longest rebuild time, and its error is comparable to that of IRLS, which is the fastest
algorithm. ISTA and IHTA show similar reconstruction times, with the latter showing the
lowest error among all the algorithms.
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Figure 12. (a) MRI image analyzed. (b) Images of sagittal, coronal and 3D slices of the head. The blue
line shows the plane corresponding to (a). (c) Reconstruction time of (a) as a function of the number
of measurements for each algorithm. (d) Error in the reconstruction of (a) as a function of the number
of measurements for each algorithm.

Finally, possible limitations of the study and possible solutions should be addressed.
First, the data set used may be somewhat specific to the field of MRI medical imaging,
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which has very similar colors and contrasts and all follow a very similar acquisition process
with long exposure times, and it would be nice to check the applicability of the study
to other types of medical images such as those taken for example with X-rays. Second,
the algorithms, although of different origin and with different strengths and limitations,
can be considered quite specific to the field of compressed detection and would be good
to explore new possibilities, such as the use of different rules or mathematical concepts,
which could lead to further improvements in the reconstruction process.

5. Conclusions

In this work, CS techniques applied to images acquired with magnetic resonance
were studied. Several programs were developed that allowed us to reconstruct an image
quickly and clearly. A random signal was started with a smaller number of data than those
necessary to construct the original image in a conventional way. A similar image was then
generated at a lower resolution. The algorithms chosen to perform this task were IRLS,
ISTA, IHTA, PD and LB.

From the analysis of the images reconstructed with these algorithms, it can be con-
cluded that it is appropriate to use ISTA. Although it has adequate computational time
and in some cases may not give the best possible resolution, it allows distinguishing each
component if 70% or more of the measurements are taken. Although the IHTA algorithm is
the highest resolution, it does not correctly resolve some images and takes longer to perform
the reconstruction. The IRLS algorithm has the shortest computational time, but, like IHTA,
it does not achieve sufficient precision. If there is less than 50% of the measurements, the PD
algorithm should be used since its images are clearer and it can recover the structures. Keep
in mind, however, that the proper detection of health problems with such low-resolution
images may be highly expert-dependent or would need to be assisted by statistical analysis.
The LB algorithm takes too much time and does not offer any improvement compared to
the other algorithms.

These algorithms can be applied to different parts of the human body and with
different MRI sequences, such as T1, T2 or proton density. These sequences change the
contrast of the images, allowing a distinction to be made between the components of the
human body. Images can also be reconstructed even if contrast agents are introduced.

The same CS technique studied in this article can be applied to other methods; for
example, CT scan or X-ray. Although the acquisition time of these is much shorter, it can
still reduce the amount of radiation applied to the human body needed to obtain an image.

Then, finally, the ISTA algorithm can be recommended as the most adequate to recon-
struct magnetic resonance images with sufficient precision and computational efficiency.
For cases where the exposure time can be very long and the process would benefit from
fewer measurements (less than 50%), PD would be the best option. However, for other
scenarios, such as images taken with less time (X-rays), the IHTA algorithm should be
preferred, as it provides the highest accuracy.
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