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a b s t r a c t

Numerical methods that preserve geometric invariants of the system, such as energy,
momentum or the symplectic form, are called geometric integrators. Variational in-
tegrators are an important class of geometric integrators. The general idea for those
variational integrators is to discretize Hamilton’s principle rather than the equations
of motion in a way that preserves some of the invariants of the original system. In
this paper we construct variational integrators with fixed time step for time-dependent
Lagrangian systems modelling an important class of autonomous dissipative systems.
These integrators are derived via a family of discrete Lagrangian functions each one for a
fixed time-step. This allows to recover at each step on the set of discrete sequences the
preservation properties of variational integrators for autonomous Lagrangian systems,
such as symplecticity or backward error analysis for these systems. We also present a
discrete Noether theorem for this class of systems.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since the emergence of computational methods, fundamental properties such as accuracy, stability, convergence,
nd computational efficiency have been considered crucial for deciding the utility of a numerical algorithm. Geometric
umerical integrators are concerned with numerical algorithms that preserve the system’s fundamental physics by
eeping the geometric properties of the dynamical system under study. The key idea of the structure-preserving approach
s to treat the numerical method as a discrete dynamical system which approximates the continuous-time flow of the
overning continuous-time differential equation, instead of focusing on the numerical approximation of a single trajectory.
uch an approach allows a better understanding of the invariants and qualitative properties of the numerical method.
sing ideas from differential geometry, structure-preserving integrators have produced a variety of numerical methods for
imulating systems described by ordinary differential equations preserving its qualitative features. In particular, numerical
ethods based on discrete variational principles [1,2] may exhibit superior numerical stability and structure-preserving
apabilities than traditional integration schemes for ordinary differential equations.
Variational integrators are geometric numerical methods derived from the discretization of variational principles [1–

]. These integrators retain some of the main geometric properties of the continuous systems, such as preservation of
he manifold structure at each step of the algorithm, symplecticity, momentum conservation (as long as the symmetry
urvives the discretization procedure), and a good behaviour of the energy function associated to the system for long
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time simulation steps. This class of numerical methods has been applied to a wide range of problems in optimal con-
trol [4–6], constrained systems [7], formation control of multi-agent systems [8], nonholonomic systems [9], accelerated
optimization [10], flocking control [11] and motion planning for underactuated robots [12], among many others.

In this paper we construct variational integrators for non-autonomous Lagrangian systems with fixed time step (see [2]
or variable time step). More precisely, a variational integrator for a time-dependent Lagrangian system is derived through
family of discrete Lagrangian functions each one for a fixed time-step (see [10,13]). This allows to recover at each

tep on the set of discrete sequences the preservation properties of variational integrators for autonomous Lagrangian
ystems such as symplecticity of the integrator or cosymplecticity of the modified time-dependent Hamiltonian system
sing backward error analysis. We also obtain a discrete-time Noether Theorem for the relation between symmetries
nd first integrals. Such a result allow us to guarantee, for instance, an exponentially fast rate of change for the linear
nd angular momentum of certain mechanical systems. The class of variational integrators developed in this work are
otivated by the recent applications of geometric integrators in contact [14,15], celestial mechanics [16] and formation
ontrol of multi-agent systems [8,17,18].
The remainder of the paper is structured as follows. Section 2 introduces some geometric aspects of time-dependent

agrangian systems, Noether symmetries, constants of the motion and its relation via a Noether Theorem for time-
ependent Lagrangian systems. Section 3 constructs the variational integrator for time-dependent Lagrangian systems
nd the discrete-time version of Noether theorem. In Section 4 we derive the discrete Hamiltonian flow for discrete-
ime non-autonomous Hamiltonian Systems which is further employed in Section 5 in the context of the backward error
nalysis. An example is shown in Section 6. Conclusions are presented in Section 7.

. Symmetries and constants of the motion for non-autonomous Lagrangian systems

Let Q be the configuration space of a mechanical system, that we will assume is a differentiable manifold of dimension
with local coordinates q = (q1, . . . , qn). Let TQ be the tangent bundle of Q , locally described by positions and velocities,

(qi, q̇i) with dim(TQ ) = 2n. Let T ∗Q be its cotangent bundle, locally described by positions and momenta, (qi, pi) where also
im(T ∗Q ) = 2n. The tangent and cotangent bundle at a point q ∈ Q are denoted as TqQ and T ∗

q Q , respectively. We denote
by τQ : TQ → Q the canonical projection on the tangent bundle which in local coordinates is given by τQ (qi, q̇i) = (qi)
and by πQ : T ∗Q → Q the canonical projection on the cotangent bundle, πQ (qi, pi) = (qi).

Consider a time-dependent Lagrangian L : R × TQ → R, and denote by FL : R × TQ → R × T ∗Q the Legendre
transformation for L given by (t, q, q̇) ↦→ (t, q, p := ∂L/∂ q̇). We assume that L is hyperregular, i.e. that FL is a
diffeomorphism between R × TQ and R × T ∗Q . If L is hyperregular, one can work out the velocities q̇ = q̇(t, q, p) in
terms of (t, q, p) and define the Hamiltonian function (the ‘‘total energy’’) H :R × T ∗Q → R as H(t, q, p) = pT q̇(t, q, p) −

L(t, q, q̇(t, q, p)), where the inverse of the Legendre transformation to express q̇ = q̇(t, q, p) has been used.
From the Lagrangian L : R × TQ → R we can derive the Euler–Lagrange equations using a variational principle, as

follows. Denote by C2(q0, q1) the set of twice differentiable curves with fixed end-points q0, q1 ∈ Q , that is, C2(q0, q1) =

{q : [0, T ] −→ Q | q is C2, q(0) = q0, q(T ) = q1}, and define the action functional J : C2(q0, q1) −→ R, given by
(·) ↦→ J (q(·)) =

∫ T
0 L(t, q(t), q̇(t)) dt . Critical points of this functional are described by the solutions of Euler–Lagrange

equations, d
dt

(
∂L
∂ q̇i

)
−

∂L
∂qi

= 0, that is,

∂2L
∂ q̇i∂ q̇j

q̈j +
∂2L

∂ q̇i∂qj
q̇j +

∂2L
∂ q̇i∂t

−
∂L
∂qi

= 0. (1)

Since L is hyperregular, the matrix Hess(L) :=

(
∂2L

∂ q̇i∂ q̇j

)
is non-singular. Hence, Eqs. (1) can be written as a system of

xplicit second-order time-dependent differential equations.
Two intrinsic geometrical objects (i.e., independent of the choice of local coordinates or the regularity of the

agrangian), characterizing the tangent bundle TQ , are the Liouville vector field ∆ and the vertical endomorphism S.
hese geometric objects allow, for instance, to describe the energy function of the system on the tangent bundle (instead
f a Hamiltonian formalism on the cotangent bundle) and to describe the tangent bundle version of Noether theorem.
oth can be regarded in a natural way as living on R × TQ and we shall denote these extensions by the same symbols.
n local coordinates, these geometrical objects can be written as ∆(qi, vi) = vi ∂

∂ q̇i
and S(X i ∂

∂qi
+ Y i ∂

∂ q̇i
) = X i ∂

∂ q̇i
.

By using the Liouville vector field we define the energy function EL on R×TQ as EL = ∆L−L, or locally as EL = q̇i ∂L
∂ q̇i

−L.
rom Eqs. (1) it follows that the energy, in general, is not preserved in the non-autonomous case. In fact,

d
dt

EL = −
∂L
∂t

. (2)

Remark 1. Alternatively, since L is hyperregular, one can construct the energy function EL :R × TQ → R by using the
Legendre transformation FL : TQ → T ∗Q [19] as E (t, q, q̇) = ⟨FL(t, q, q̇), q̇⟩ − L(t, q, q̇).
L

2



L. Colombo, M.G. Fernández and D. Martín de Diego Journal of Computational and Applied Mathematics 424 (2023) 114966

L

i

m

D

f

t

E

E

Next, we define two lifts of vector fields on Q to TQ . Denote by X(Q ) the set of vector fields on Q and let XV
∈ X(Q )

the vertical lift of X ∈ X(Q ), that is, the vector field on TQ given by

XV (vq) =
d
dt

⏐⏐⏐⏐
t=0

(vq + tX(q)) = (X(q))Vvq , ∀vq ∈ TqQ .

ocally, XV
= X i ∂

∂ q̇i
where X = X i ∂

∂qi
.

By denoting {ΦX
t } the flow of a vector field X ∈ X(Q ), we can also define the complete lift XC

∈ X(TQ ) of X in terms of
ts flow which is the tangent lift {TΦX

t }. In other words, XC (vq) =
d
dt

⏐⏐
t=0

(
TqΦX

t (vq)
)
. In coordinates, XC

= X i ∂

∂qi
+ q̇j ∂X

i

∂qj
∂

∂ q̇i
.

As before, we denote by the same symbols the corresponding extensions to R × TQ . Therefore, XV (t, vq) = (0t , XV (vq))
and XC (t, vq) = (0t , XC (vq)).

Using the vertical and complete lifts the Euler–Lagrange equations can be alternatively described as follows [20,21]. A
curve q(t) is a solution of Euler–Lagrange equations for L if and only if

d
dt

(
XV (L)(q(t), q̇(t))

)
= XC (L)(q(t), q̇(t)), ∀ X ∈ X(Q ). (3)

In this paper we are only interested in symmetries that come from vector fields on Q . This motivates the following
definitions.

Definition 2.1. A vector field X ∈ X(Q ) is said to be a symmetry of the Lagrangian L : R × TQ → R if

XC (L) = 0.

Denoting by dT f : R × TQ → R the differential of a function f : R × Q → R, that is, dT f =
∂ f
∂t + q̇i ∂ f

∂qi
we can define a

ore general class of symmetries called Noether symmetries.

efinition 2.2. A vector field X ∈ X(Q ) is said to be a Noether symmetry of L : R × TQ → R if

XC (L) = dT f , (4)

for some function f ∈ C∞(R × Q ).

Observe that symmetries of the Lagrangian are a particular type of Noether symmetries with f = 0 (or f = constant,
in general).

From the Euler–Lagrange equations (3), together with (4), it follows the celebrated Noether theorem for the relation
between symmetries and first integrals.

Theorem 2.3 (Noether Theorem). If X is a Noether symmetry, that is XC (L) = dT f . Then, XV (L)− f is a constant of the motion
for the Euler–Lagrange equations for L.

Next, assume that G is a Lie group with Lie algebra g and Φ : G × Q → Q a smooth left action of G on Q . The
infinitesimal generator ξQ ∈ X(Q ) corresponding to an element ξ ∈ g is defined by (see, for instance, [22] Section 2.8)

ξQ (q) =
d
ds

⏐⏐⏐
s=0

Φ(exp(sξ ), q). (5)

Denote by {Φ
ξQ
s } the flow of ξQ then {TΦ

ξQ
s } is the flow of ξ C

Q . The Lie group G is said to be a Lie group of symmetries
or L if for all ξ ∈ g and s, L(t, TΦ

ξQ
s (vq)) = L(t, vq). Infinitesimally, the previous condition is equivalent to

ξ C
Q (L) = 0 for all ξ ∈ g (6)

That is, if for any ξ ∈ g we have that ξQ is a symmetry of the Lagrangian as in Definition 2.1.
As a consequence of Noether Theorem 2.3 we deduce that for all ξ ∈ g we have that such that ξV

Q (L) is a constant of
he motion for the Euler–Lagrange equations for L.

xample 1. Consider the Lagrangian function L : TRn
≡ Rn

× Rn
→ R given by

L(q, q̇) =
1
2
∥q̇∥2

− V (q), (7)

q = (q1, . . . , qn) ∈ Rn and V : Rn
→ R is a potential function which is assumed to be SE(n)-invariant [23].

Next, consider the non-autonomous Lagrangian L : R × TQ → R given by L(t, q, q̇) = e−κtL(q, q̇). The corresponding
uler–Lagrange equations for L are

q̈ = κ q̇ − ∇ V . (8)
i i qi

3
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In this case we have the energy of L and L are related by EL = e−κtEL. Therefore using Eq. (2) it follows that dEL
dt = κL,

ndicating that the energy is not conserved along the evolution of the system. But, more interesting is to observe that
dEL
dt = κ∥q̇∥2 and therefore we have dissipation of energy if k < 0, preservation if k = 0 and energy growth if k > 0.

The time-dependent Lagrangian L is SE(n)-invariant under the Lie group action Φ : SE(n) × Rn
→ Rn given by

(R, q) = Φ(R, q1, . . . , qn) = (Rq1, Rq2, . . . , Rqn) where qa ∈ R, 1 ≤ a ≤ n. That is,

L(t, Rq1, . . . , Rqn, Rq̇1, . . . , Rq̇n) = L(t, q1, . . . , qn, q̇1, . . . , q̇n).

Infinitesimally this invariance means that ξ C
Q (L) = 0 for any ξ ∈ SE(d). Using that ξ C

Q (q)(L) = e−κtξ C
Q (q)(L), then ξ C

Q (L) = 0.
Therefore, by Noether Theorem 2.3 it follows that ξV

Q (L) = (e−κtξV
Q (q)(L)) are constants of the motion for all ξ ∈ g for the

ystem given by Eqs. (8). As a consequence, if k < 0, we deduce the exponential decay of the functions Jξ := ξV
Q (q)(L):

∥Jξ (q(t), q̇(t))∥ = e−κt
∥Jξ (q(0), q̇(0))∥. (9)

Note that in the case d = 3, we have two types of infinitesimal generators:
[(a)] Translation in the direction a ∈ Rn makes the Lagrangian SE(n)-invariant. In this case, the infinitesimal generator

is given by ξQ = a ·
∂
∂q . Therefore, by (9) the linear momentum Jξ = ξV

Q (q)(L) = a · q̇ decays exponentially.
[(b)] Rotations in the system about some fixed axis makes the Lagrangian L also SE(n)-invariant. For instance, with

= 3, by considering rotations along the z-axis, the infinitesimal generator is given by the vector field ξQ =

(
x ∂

∂y − y ∂
∂x

)
.

In this case, by (9), the quantity which exponentially decays is the angular momentum Jξ = ξV
Q (q)(L) = xẏ − yẋ.

3. Symmetries and constants of the motion for discrete-time non-autonomous mechanical systems

Variational integrators (see [2] for details) are derived from a discrete variational principle. These integrators retain
some of the main geometric properties of the continuous-time systems, such as symplecticity, momentum conservation
(as long as the symmetry survives the discretization procedure), and good (bounded) behaviour of the energy associated
to the system (see [3] and references therein).

A discrete Lagrangian is a differentiable function Ld :Q ×Q → R, which may be considered as an approximation of the
action integral defined by a continuous regular Lagrangian L : TQ → R. That is, given a time step h > 0 small enough,
Ld(q0, q1) ≈

∫ h
0 L(q(t), q̇(t)) dt , where q(t) is the unique solution of the Euler–Lagrange equations for L with boundary

conditions q(0) = q0 and q(h) = q1.
Construct the grid {tk = kh | k = 0, . . . ,N}, with Nh = T and define the discrete path space Cd := {qd : {tk}Nk=0 → Q }.

We identify a discrete trajectory qd ∈ Cd with its image qd = {qk}Nk=0, where qk := qd(tk). Define

Cd(q0, qN ) =
{
qd : {k}Nk=0 → Q | qd(0) = q0, qd(N) = qN

}
.

The discrete action Ad : Cd(q0, qN ) → R for a sequence qd is calculated by summing the discrete Lagrangian on each
adjacent pair and is defined by

Ad(qd) = Ad(q0, . . . , qN ) :=

N−1∑
k=0

Ld(qk, qk+1). (10)

For any product manifold Q1 × Q2, T ∗

(q1,q2)
(Q1 × Q2) ≃ T ∗

q1Q1 ⊕ T ∗
q2Q2, for q1 ∈ Q1 and q2 ∈ Q2 where T ∗Q denotes

the cotangent bundle of a differentiable manifold Q . Therefore, any covector α ∈ T ∗

(q1,q2)
(Q1 × Q2) admits a unique

decomposition α = α1 + α2 where αi ∈ T ∗
qiQi, for i = 1, 2. Thus, given a discrete Lagrangian Ld we have the following

decomposition dLd(q0, q1) = D1Ld(q0, q1)+D2Ld(q0, q1), where D1Ld(q0, q1) ∈ T ∗
q0Q and D2Ld(q0, q1) ∈ T ∗

q1Q . Discrete Euler
Lagrange equations (see [2] for instance) are given by a critical sequence for Ad on the space Cd(q0, qN ). That is, the discrete
Euler–Lagrange equations are

D1Ld(qk+1, qk+2) + D2Ld(qk, qk+1) = 0, ∀k = 0, . . . ,N − 2,

where D1 and D2 denote the partial derivatives with respect to the first and second component of Ld, respectively.
For non-autonomous systems [10,13] we introduce, in the discrete setting, a family of maps Lkd : Q × Q → R,

= 0, . . . ,N − 1 where we are now fixing the number of steps N ∈ N and considering a discrete Lagrangian on the
set of discrete sequences defined on each step qd : {k}Nk=0 → Q .

The family of discrete Lagrangians {Lkd}
N−1
k=0 will be called discrete time-dependent Lagrangian and simply denoted by Lkd.

We look for the extremals of the corresponding discrete action given by Sd(qd) =
∑N−1

k=0 Lkd(qk, qk+1). The stationary
condition for variations vanishing at the end points of the discrete sequences gives rise to the discrete Euler–Lagrange
equations [13]

D1Lk+1
d (qk+1, qk+2) + D2Lkd(qk, qk+1) = 0, k = 0, . . . ,N − 2. (11)

The discrete Euler–Lagrange equations implicitly defines a family of local discrete flows {Ψ
k,k+1
d }

N−2
k=0 as

Ψ
k,k+1
d : Q × Q −→ Q × Q (12)
(qk, qk+1) ↦−→ (qk+1, qk+2(qk, qk+1, k))
4
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[

where qk+2 is locally well defined by using the discrete Euler–Lagrange equations and assuming the non-singularity of
he matrix D12Lkd(qk, qk+1) for each k and (qk, qk+1) ∈ Q ×Q . Observe that the map Ψ

k,k+1
d transforms a point (qk, qk+1) at

a discrete time k to a new point (qk+1, qk+2) now at discrete time k + 1.
Eqs. (11) define the integration scheme (qk−1, qk) ↦→ (qk, qk+1). By defining the discrete (post and pre) momenta

p+

k :=D2Lk−1
d (qk−1, qk), k = 1, . . . ,N (13)

p−

k := − D1Lkd(qk, qk+1), k = 0, . . . ,N − 1,

Eqs. (11) lead to the integration scheme (qk, pk) ↦→ (qk+1, pk+1), by writing (11) as p−

k = p+

k .
Given a vector field X ∈ X(Q ) we can define the vector fields XC,d and XV ,d in X ∈ X(Q × Q ) by XC,d(q0, q1) =

(X(q0), X(q1)) and XV ,d(q0, q1) = (X(q0), 0q1 ). In terms of these vector fields, the discrete Euler–Lagrange equations can be
writen similarly to (3), as (see [21] for details)

XC,d(qk, qk+1)(Lkd) =
(
XV ,d(qk, qk+1)(Lkd) − XV ,d(qk+1, qk+2)(Lk+1

d )
)
, (14)

∀X ∈ X(Q ), k = 0, . . . ,N − 2.

Definition 3.1. A vector field X ∈ X(Q ) is said to be a symmetry of the discrete time-dependent Lagrangian
Lkd : Q × Q → R if for each k ∈ {0, . . . ,N − 1},

XC,d(Lkd) = 0.

For a family f of functions, f k : Q → R, k ∈ {0, . . . ,N − 1}, define dkT f : Q × Q → R by

dkT f (qk, qk+1) = f k+1(qk+1) − f k(qk).

Then, we can define Noether symmetries for the discrete-time Lagrangian Lkd as follows.

Definition 3.2. A vector field X ∈ X(Q ) is said to be a discrete Noether symmetry of Lkd : Q × Q → R if

XC,d(Lkd) = dkT f (15)

for each k ∈ {0, . . . ,N − 1} and for a family f of functions f k : Q → R.

In the same way as the continuous-time case, as a consequence of the discrete Euler–Lagrange equations (14), together
with (15), we deduce Noether Theorem for the relation between symmetries of the discrete Lagrangian and first integrals
of the discrete Euler–Lagrange equations.

Theorem 3.3 (Discrete Noether Theorem). If X ∈ X(Q ) is a discrete Noether symmetry for the discrete-time Lagrangian Lkd,
that is XC,d(Lkd) = dkT f , then, X

V ,d(Lkd)− f k is a constant of the motion for the discrete Euler–Lagrange equations for Lkd for each
k, k = 0, . . . ,N − 1.

As in Section 2, consider the action of a Lie group G on Q , Φ : G×Q → Q , with infinitesimal generator as (5). This action
can be lifted to Q ×Q by Φ

Q×Q
g (q0, q1) = (Φg (q0), Φg (q1)) which has an infinitesimal generator ξQ×Q : Q ×Q → T (Q ×Q )

given by ξQ×Q (q0, q1) = (ξQ (q0), ξQ (q1)) = ξ
C,d
Q (q0, q1).

Assume that the family of discrete Lagrangians Lkd is invariant under the lifted action, that is, for all g ∈ G

(Lkd ◦ ΦQ×Q
g )(q0, q1) = Lkd(q0, q1), ∀(q0, q1) ∈ Q × Q .

Infinitesimally, this is equivalent to

(ξQ×Q )C,d(Lkd) = 0, for all ξ ∈ g. (16)

That is ξQ is symmetry of the discrete Lagrangian Lkd.
From Eqs. (14) and (16) we obtain a discrete-time version of Noether Theorem as follows

Theorem 3.4. Let G be a Lie group of symmetries for Lkd, that is, (ξQ×Q )C,d(Lkd) = 0 for all k and ξ ∈ g. Then, (ξQ×Q )V ,d(Lkd) is
a constant of the motion for the discrete Euler–Lagrange equations for Lkd.

Example 2. Consider the time-dependent Lagrangian function L : R × Rn
× Rn

→ R given in Example 1 by

L(t, q, q̇) = e−κt
(
1
2
∥q̇∥2

− V (q)
)

. (17)

To construct the geometric integrator, the velocities are discretized by finite-differences, i.e., q̇i ≡
qik+1−qik

h for t ∈

t , t ]. The discrete Lagrangian Lk : Rn
× Rn

→ R is given by setting the trapezoidal discretization for the
k k+1 d,h

5
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Fig. 1. Exponential decay for the rate of change of the total energy of system. The left figure shows the evolution of the non-autonomous energy
function while the right figure corresponds with the evolution of the autonomous energy function.

time-dependent Lagrangian L given by (40), that is,

Lkd,h(qk, qk+1) =
h
2
L
(
kh, qk,

qk+1 − qk
h

)
+

h
2
L
(
(k + 1)h, qk+1,

qk+1 − qk
h

)
here, h > 0 is the time step.
The discrete Euler–Lagrange equations for Lkd,h are given by

0 =(qk+1 − qk)e−κ(kh)
− (qk+2 − qk+1)e−κh(k+2) (18)

− e−κh(k+1)(qk − 2qk+1 + qk+2 + h∇qk+1V (qk+1)).

After some calculus we can write Eqs. (41) as the following explicit integration scheme

qk+2 = κ̂hqk+1 − κhqk − hκ̄h∇qk+1V (qk+1), (19)

with κh =
eκhk+1
e−κhk+1

, κ̄h =
1

e−κhk+1
, κ̂h = 1 + κh =

2+e−κhk
+eκhk

e−κhk+1
.

Note that the previous equations are a set of n(N − 1) for the n(N + 1) unknowns {qk}Nk=0. Nevertheless the boundary
onditions on initial positions and velocities q0 = q(0), vq0 = q̇(0) contribute to 2n extra equations that convert Eqs. (41)
nto a nonlinear root finding problem of n(N − 1) equations and the same amount of unknowns. To start the algorithm
e use the boundary conditions for the first two steps, that is, q0 = q(0) and q1 = hvq0 + q0 = hq̇(0) + q(0).
The energy function is also discretized by using a trapezoidal discretization. In particular, the energy EL : R× TQ → R

s given by

EL(t, q, q̇) = e−κt
(
1
2
∥q̇∥2

+ V (q)
)

.

sing the trapezoidal rule for EL, the discrete energy function Ed : Rn
× Rn

→ R is given by

Ed(qk, qk+1) =
1
2h

∥qk+1 − qk∥2(e−κkh
+ e−κ(k+1)h) +

h
2
(e−κhkV (qk) + e−κ(k+1)hV (qk+1)). (20)

Next we show the performance of the proposed variational integrator in numerical simulations. For simplicity we
onsider Q = R3 and V (q) = 0. Initial positions were arbitrary selected as q0 = [18, 6, 10] and we set the initial velocities
o be v0 = [2.22, −1.86, 3.48]. Note that by using the fact that ĖL = κL = κEL, for κ < 0 the energy of the system decays
xponentially, so, for simulation results we choose as damping gain κ = −5. The simulation for the energy behaviour
as conducted with an end time of 1 s and time steps of h = 0.005 s, which results in N = 200 iterations. In Fig. 1,
e show the exponential decay for the rate of change of the total energy function of the system, in both case, for the
on-autonomous energy function (left figure) and the autonomous energy function (right figure).
Observe also that the Lagrangian Lkd,h is SE(d)-invariant, therefore applying the discrete Noether Theorem 3.4, it follows

hat for all ξ ∈ se(d),

ξ
V ,d
Q (qk, qk+1)(Lkd,h) = ξ

V ,d
Q (qk+1, qk+2)(Lk+1

d,h ), (21)

or all k = 0, . . . ,N −1 and where {qk} is a solution of the discrete Euler–Lagrange equations. Fig. 2 shows an application
f Noether Theorem 3.4. In particular, Fig. 2 (left figure) shows the preservation of the constants of the motion associated
rom translation symmetry, that is,

− D1Lkd,h(qk, qk+1) = e−κkh
(
(1 + e−kh)

(
qk+1 − qk

)
−

h
∇qkV (qk)

)
, (22)
h 2
6
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Fig. 2. Preservation of (22) (green-left) and exponential decay of the discretization of linear momentum (23) (purple-left). Preservation of (24)
(green-right) and exponential decay of the discretization of angular momentum (25) (purple-right).

and the exponential decay of the corresponding discretization of linear momentum:

(1 + e−kh)
(
qk+1 − qk

h

)
−

h
2
∇qkV (qk). (23)

imilar simulation results can be obtained for the SO(3)-symmetry as is shown in Fig. 2 (right figure). Note that in the
ase of the associated constant of motion for Lkd,h, it is given by

e−κkh
(
(1 + e−kh)

(
qk+1 − qk

h

)
−

h
2
∇qkV (qk)

)
× qk+1, (24)

nd the corresponding exponential decay of the discretization of the angular momentum is(
(1 + e−kh)

(
qk+1 − qk

h

)
−

h
2
∇qkV (qk)

)
× qk+1. (25)

. Discrete Hamiltonian flow for discrete-time non-autonomous mechanical systems

Consider L : R × TQ → R as in Section 2. Since L is hyperregular we can determine the Hamiltonian function
: R × T ∗Q → R by using the Legendre transform FL : R × TQ → R × T ∗Q by

H = EL ◦ (FL)−1
= pT q̇(t, q, p) − L(t, q, q̇(t, q, p)),

which induces the cosymplectic structure (η, ΩH ) on T ∗Q ×R with ΩH = −d(pr∗1θQ −Hη) = ΩQ +dH∧dt and η = pr∗2dt ,
where pri, i = 1, 2, are the projections to each factor and θQ denotes the Liouville 1-form on T ∗Q [19], given in induced
coordinates by θQ = pi dqi. We also denote by ΩQ = −dpr∗1θQ the pullback of the canonical symplectic 2-form ωQ = −dθQ
on T ∗Q . In coordinates, ΩQ = dqi ∧ dpi but observe that now ΩQ is presymplectic since kerΩQ = span{∂/∂t}. Therefore
in induced coordinates (t, qi, pi):

ΩH = dqi ∧ dpi + dH ∧ dt , η = dt.

We define the evolution vector field EH ∈ X(T ∗Q × R) by

iEH ΩH = 0 , iEH η = 1 (26)

In local coordinates the evolution vector field is:

EH =
∂

∂t
+

∂H
∂pi

∂

∂qi
−

∂H
∂qi

∂

∂pi
.

he integral curves of EH are given by:

ṫ = 1 , q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

. (27)

From Eq. (26) we deduce that the flow of EH verifies the preservation relations

LEH (ΩQ + dH ∧ dt) = 0, LEHη = 0. (28)

The integral curves of EH are precisely the curves of the form t ↦→ FL(σ ′(t), t) where σ : I → Q is a solution of the
Euler–Lagrange equations for the time-dependent Lagrangian L :R × TQ → R.
7
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Fig. 3. Correspondence between the discrete Lagrangian and the discrete Hamiltonian flows.

Denote by Ψs : U ⊂ T ∗Q × R → T ∗Q × R the flow of the evolution vector field EH , where U is an open subset of
∗Q × R. Observe that Ψs(αq, t) = (Ψt,s(αq), t + s), αq ∈ T ∗

q Q , where Ψt,s(αq) = pr1(Ψs(αq, t)). Therefore from the flow of
EH we induce a map

Ψt,s :Ut ⊆ T ∗Q → T ∗Q

where Ut = {αq ∈ T ∗Q | (αq, t) ∈ U}. Observe that if we know Ψt,s for all t , we can recover the flow Ψs of EH .
From Eqs. (28) we have that Ψ ∗

s (ΩQ + dH ∧dt) = ΩQ + dH ∧dt and Ψ ∗
s (η) = η . The previous preservation properties

are associated with the symplecticity of the family of maps {Ψt,s : T ∗Q → T ∗Q }. In particular, for all t, s with s small
enough it has been show in [10] that Ψt,s : Ut ⊆ T ∗Q → T ∗Q is a symplectomorphism, that is, Ψ ∗

t,sωQ = ωQ .
Given a discrete Lagrangian Lkd : Q × Q → R, the discrete Legendre transformations F±

Lkd
: Q × Q → T ∗Q are defined at

each k through the momentum Eqs. (13) as

F+

Lkd
(q0, q1) =(q1,D2Lkd(q0, q1)) = (q1, p1) (29)

F−

Lkd
(q0, q1) =(q0, −D1Lkd(q0, q1)) = (q0, p0). (30)

If for each k both discrete Legendre transformations are locally diffeomorphisms for nearby q0 and q1, then we say
that Lkd is regular. Using F±

Lkd
, the discrete Euler–Lagrange equations (11) can be written as

F−

Lk+1
d

(qk+1, qk+2) = F+

Lkd
(qk, qk+1).

Consider Ψ
k,k+1
d :Q × Q → Q × Q defined by (12). It will be useful to note that

F+

Lkd
= F−

Lk+1
d

◦ Ψ
k,k+1
d . (31)

Definition 4.1. We define the discrete Hamiltonian flow Ψ̃
k,k+1
d : T ∗Q → T ∗Q as

Ψ̃
k,k+1
d = F−

Lk+1
d

◦ Ψ
k,k+1
d ◦

(
F−

Lk+1
d

)−1

, Ψ̃
k,k+1
d (q0, p0) = (q1, p1). (32)

Alternatively, it can also be defined as

Ψ̃
k,k+1
d = F+

Lkd
◦ Ψ

k,k+1
d ◦

(
F+

Lkd

)−1

, Ψ̃
k,k+1
d (q0, p0) = (q1, p1). (33)

In analogy with [2] we have the following results:

Proposition 1. The diagram in Fig. 3 is commutative.

Proof Proposition 1. The central triangle is (31). The parallelogram on the left-hand side is commutative by (32), so the
triangle on the left is commutative. The triangle on the right is the same as the triangle on the left, with shifted indices.
Then parallelogram on the right-hand side is commutative and therefore the triangle on the right-hand side. ⋄

Corollary 1. The following definitions of the discrete Hamiltonian flow are equivalent: Ψ̃
k,k+1
d = F+

Lkd
◦ Ψ

k,k+1
d ◦ (F+

Lkd
)−1,

Ψ̃
k,k+1

= F−

k+1 ◦ Ψ
k,k+1

◦ (F−

k+1 )−1, Ψ̃
k,k+1

= F+

k ◦ (F−

k+1 )−1.
d Ld
d Ld

d Ld Ld

8
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In addition, for each k we have that (F+Lkd)
∗ωQ = (F−Lkd)

∗ωQ (see [2,10]), so, for each k, the discrete Hamiltonian flow
Ψ̃

k,k+1
d is a symplectic transformation, that is (Ψ̃ k,k+1

d )∗ωQ = ωQ . Moreover, given the map Ψ̃
k,k+1
d (qk, pk) = (qk+1, pk+1),

we have the map (kh, qk, pk) = ((k + 1)h, qk+1, pk+1) on R × T ∗Q giving explicitly the information of the evolution of
discrete time.

Example 3. Continuating with Examples 1 and 2, by using that

D1Lkd,h(qk, qk+1) = −
qk+1 − qk

h

(
e−κkh

+ e−κ(k+1)h)
−

h
2
e−κkh

∇qkV (qk),

D2Lkd,h(qk, qk+1) =
qk+1 − qk

h

(
e−κkh

+ e−κ(k+1)h)
−

h
2
e−κ(k+1)h

∇qk+1V (qk+1),

e define the Legendre transformations as

F+

Lkd
(qk, qk+1) =

(
qk+1,

qk+1 − qk
h

(
e−κkh

+ e−κ(k+1)h)
−

h
2
e−κ(k+1)h

∇qk+1V (qk+1)
)

,

F−

Lkd
(qk, qk+1) =

(
qk,

qk+1 − qk
h

(
e−κkh

+ e−κ(k+1)h)
+

h
2
e−κkh

∇qkV (qk)
)

.

sing the last two expressions and Ψ
k,k+1
d given by (42), it follows the construction of the Hamiltonian flow Ψ̃

k,k+1
d by

Corollary 1.

5. Backward error analysis for discrete-time non-autonomous mechanical systems

Next we will show the discrete Hamiltonian flow Ψ̃
k,k+1
d defined in (32) has an asymptotically correct decay behaviour

by studying the rate of decay of a truncated modified Hamiltonian function following the approach of Backward Error
Analysis [3] (Chapter IX), [24] (Sec. 4) — see also [25,26] and reference therein.

Consider the ordinary differential equation
d
dt

y(t) = X(y(t)), (34)

ith X a complete vector field on a manifold M and y(t) ∈ M . The flow map for X is denoted by RX : R × M → M .
e use the notation RX (t, q) or simply RX,t (q). The flow RX,t may be expressed using a exponential map notation as

X,t (q) = exp(tX)(q), where t is a parameter and exp : X(M) → Diff(M), with Diff(M) denoting the set of diffeomorphisms
on M and X(M) the set of vector fields on M . In the following, we assume that the flow exp(tX) is not explicitly integrable,
and therefore one may use a numerical method to simulate the flow. Under this assumption, a numerical approximation
to the solution of (34) can be given by constructing a family of diffeomorphisms {Φh}h≥0 and then, for each h fixed, it
may be possible to obtain the sequence {qh,n}n∈N satisfying Φh(qh,n) = qh,n+1, called a numerical integrator. A numerical
integrator for X is a family of one-parameter diffeomorphisms Φh : M → M (smooth in h) satisfying Φ0(x) = x with
x ∈ M , and Φh(x) − exp(hX)(x) = O(hp+1) with p ≥ 1 being the order of the integrator. Let us consider now the special
case when M = T ∗Q (as in this paper). We recall that an integrator Φh is symplectic if it is a symplectic diffeomorphism
ith respect to the symplectic canonical structure ωQ on T ∗Q for each h > 0.
Consider the Hamilton equations (27) for H : R × T ∗Q → R, that is the integral curves of the evolution vector field

EH =
∂

∂t
+

∂H
∂p

∂

∂q
−

∂H
∂q

∂

∂p
(35)

e aim to study backward error analysis for Ψ̃
k,k+1
d : T ∗Q → T ∗Q , the discrete Hamiltonian flow defined in Definition 4.1

or the non-autonomous Hamiltonian system (27) at each fixed t ∈ R - recall that Ψt,s : Ut ⊆ T ∗Q → T ∗Q is a
ymplectomorphism, in particular for s = h.
Using the extended Hamiltonian Hext

: T ∗(R × Q ) → R defined by

Hext (t, q, µ, p) = µ + H(t, q, p),

the corresponding equations of motion for the Hamiltonian vector field XHext are

q̇ =
∂Hext

∂p
=

∂H
∂p

,

ṗ = −
∂Hext

∂q
= −

∂H
∂q

,

ṫ =
∂Hext

∂µ
= 1,

µ̇ = −
∂Hext

= −
∂H

.

∂t ∂t

9
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The Hamiltonian XHext projects onto EH and therefore also their flows are related by the projection pr : T ∗(R × Q ) →

× T ∗Q given by pr(t, q, µ, p) = (t, q, p).
Now we will see how to naturally extend the flow Ψ̃

k,k+1
d : T ∗Q → T ∗Q to a symplectic discrete flow Ψ̃ ext

h :

T ∗(R × Q ) → T ∗(R × Q ). Consider the extended discrete Lagrangian Lextd : Q × Q × R × R → R subjected to the
constraint tk+1 = tk + h and t0 = 0 then

Lextd (qk, qk+1, tk, tk+1) = Lkd(qk, qk+1),

for tk = kh and tk+1 = h(k + 1). Applying discrete variational calculus subjected to constraints we obtain the following
implicit symplectic method (see [2,21,27])

pk = −D1Lextd (qk, qk+1, tk, tk+1) = −D1Lkd(qk, qk+1),
pk+1 = D2Lextd (qk, qk+1, tk, tk+1) = D2Lkd(qk, qk+1),

µk = −D3Lextd (qk, qk+1, tk, tk+1) + λk,

µk+1 = D4Lextd (qk, qk+1, tk, tk+1) + λk,

tk+1 = tk + h,

where λk is a Lagrange multiplier associated to the constraint tk+1 = tk+h. These equations implicitly define a symplectic
flow Ψ̃ ext

h : T ∗(R × Q ) → T ∗(R × Q ) by

Ψ̃ ext
h (tk, qk, µk, pk) = (tk + h, qk+1, µk+1, pk+1).

Moreover Ψ̃ ext
h it is a numerical integrator for XHext

Applying classical results of backward error analysis [3,24] we can derive a modified Hamiltonian vector field X̄Hext

that can be written as an asymptotic expansion in terms of the step-size h > 0 as

X̄Hext =

∞∑
r=0

hrXr , (36)

where each Xr is a real analytic vector field on T ∗(R × Q ) and it may be determined by the integrator Ψ̃ ext
h as

Xr (t, q, µ, p) = lim
h→0

Ψ̃ ext
h (t, q, µ, p) − exp(hXh,r−1)(t, q, µ, p)

hr , (37)

ith X0 = XHext and Xh,r :=
∑r

j=0 h
jXj.

Since the discretization Ψ̃ ext
h is symplectic there exist functions Hext

r : T ∗(R × Q ) → R such that each Xr = XHext
r

ith X0 = XHext [3]. That is, the modified vector field X̄Hext associated to Ψ̃ ext
h is Hamiltonian H̄ext : T ∗(R × Q ) → R with

amiltonian function with formal expansion

H̄ext = Hext +

∞∑
r=1

hrHext
r .

urthermore, because the equation of motion in the variable t is integrated exactly (that is, tk+1 = tk + h) we have that
¯ ext (q, t, p, µ) = µ+H̄(q, p, t) and, in consequence, also Hext

r : R×T ∗Q → R. We can consider the truncated Hamiltonians:
¯ N
ext = Hext +

∑N
r=1 h

rHext
r . Therefore we have a truncated Hamiltonian H̄N

= H +
∑N

r=1 h
rHext

r on R × T ∗Q . We have
orresponding evolution vector field EH̄N ∈ X(T ∗Q × R) determined by

iEH̄N ΩH̄N = 0 , iEH̄N η = 1 (38)

s a consequence its flow preserves the 2-form ΩH̄N and the 1-form η, being two important properties of this type of
eometric integrators. In local coordinates the evolution vector field is given by

EH̄N =
∂

∂t
+

∂H̄N

∂pi

∂

∂qi
−

∂H̄N

∂qi
∂

∂pi
.

s in Section 4 from the flow of EH̄N we induce the two-parameter symplectic family of maps Ψ
EH̄N
t,s : T ∗Q → T ∗Q .

From our previous considerations we deduce that Ψ̃
k,k+1
d (q, p) − Ψ

EH̄N
kh,h (q, p) = O(hN+1). In particular one has the

ollowing result for autonomous systems from [24] adapted to our non-autonomous context.

emma 5.1 (Adapted from A. C. Hansen (2011) Theorem 4.1 [24]). Let T ∗Q be a real and analytic smooth manifold, d a
iemannian distance on T ∗Q , a real analytic evolution vector field EH̄N on T ∗Q and Ψ̃

k,k+1
d be a numerical integrator deduced

rom a family of discrete Lagrangians {Lkd} such that the induced symplectic method Ψ̃
k,k+1
d : T ∗Q → T ∗Q is of order p such

hat it is analytical and (q, p) ∈ K ⊂ T ∗Q with K compact. For each time step k there exists τ ∈ Z depending on h and positive
constants C, α, γ such that for Ψ

EH̄τ

t,s : T ∗Q → T ∗Q such that d
(
Ψ̃

k,k+1
d (q, p), Ψ

EH̄N
kh,h (q, p)

)
≤ Che−γ /h for all (q, p) ∈ K and

h ≤ α, where Ψ̃
k,k+1 must be considered as Ψ̃

k,k+1
:= ϕ ◦ Ψ̃

k,k+1
◦ ϕ−1 for a given local chart (U, ϕ) on T ∗Q .
d d d

10
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Finally, consider the truncated Hamiltonian H̄N
ext = Hext +

∑N
r=p h

rHext
r . Following [3], Section IX.8 we obtain the

ollowing result:

heorem 5.2. Assume that the Hamiltonian function Hext : U ⊂ T ∗(R × Q ) → R where U is an open subset, and apply the
ymplectic method Ψ̃ ext

h . If the numerical solution stays in a compact set K ⊂ U , then there exist h0 and N = N(h), (N equal
o the largest integer satisfying hN ≤ h0) such that

H̄N
ext (qk, tk, pk, µk) = H̄N

ext (q0, t0, p0, µ0) + O(e−h0/2h),
Hext (qk, tk, pk, µk) = Hext (q0, t0, p0, µ0) + O(hp),

ver exponentially long time intervals nh ≤ eh0/2h.

. Examples

.1. Formation control of double integrator agents

Formation control of agents with double integrator dynamics can be seen as a stabilization system whose evolution
an be described by a time-dependent Lagrangian function. Next we employ the previous constructions on variational
ntegrators for time-dependent Lagrangian systems in the context of distance-based formation control algorithms.

.1.1. Double integrator formation stabilization systems
Consider dimension n ≥ 2 autonomous agents and denote by N the set of agents (|N | the total number of agents).

gent’s evolve under a double integrator dynamics. We wish the agents reach a desired formation shape. To do that one
eeds to look for a minima of the potential function

V (q[1], . . . , q[|N |]) :=
1
2

|N |∑
a=1

∑
b∈Na

Vab(q[a], q[b])

with

Vab(q[a], q[b]) :=
1
4
(∥q[a]

− q[b]
∥
2
− d2ab)

2.

ere q[a]
∈ Rd describes the position of an agent ‘‘a" in Rd (d = 2 or d = 3) with the neighbour set of agents

∈ Na ⊂ {1, . . . , a − 1, a + 1, . . . , |N |} and given constants dab > 0 that define the desired distances of agents ‘‘a"
nd ‘‘b" for a = 1, . . . , |N |, b ∈ Na. For any κ > 0 the second order system

q̈ = −κ q̇ − ∇V (q) with q = (q[1], . . . , q[|N |]) ∈ Rd|N |, (39)

alled double integrator formation stabilization system [28], has decreasing energy E = ∥q̇∥2/2 + V (q) until a stationary
oint of V (q) is reached since Ė = q̇T q̈ + q̇T∇V = −κ∥q̇∥2 < 0.
Note that the double integrator formation stabilization system (39) can be given by the Euler–Lagrange equations for

he time-dependent Lagrangian function L : R × TRd|N |
→ R given by

L(t, q, q̇) = eκt

(
1
2

|N |∑
a=1

∥q̇[a]
∥
2
− V (q)

)
. (40)

.1.2. Derivation of the discretized equations of motion
To construct the geometric integrator, the velocities for each agent a ∈ N are discretized by finite-differences,

.e., q̇[a]
≈

q[a]
k+1−q[a]

k
h for t ∈ [tk, tk+1]. Denote also by qk = ((q[1]

k ), . . . , (q[|N |]

k )) ∈ Rd|N |. The discrete Lagrangian Lkd,h :

Rd|N |
× Rd|N |

→ R is given by setting the trapezoidal discretization for the time-dependent Lagrangian L given by (40),
that is,

Lkd,h(qk, qk+1) =
h
2
L
(
kh, qk,

qk+1 − qk
h

)
+

h
2
L
(
(k + 1)h, qk+1,

qk+1 − qk
h

)
here, h > 0 is the time step.
The discrete Euler–Lagrange equations for Lkd,h are given by

0 =(q[a]
k+1 − q[a]

k )eκ(kh)
− (q[a]

k+2 − q[a]
k+1)e

κh(k+2) (41)

− eκh(k+1)(q[a]
k − 2q[a]

k+1 + q[a]
k+2 + 2h2

∇q[a]
k+1

V d
ab(q

[a]
k+1, q

[b]
k+1)),
11
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Fig. 4. Infinitesimal and minimal rigid graph considered in the numerical simulations.

for each a ∈ N and b ∈ Na, where we have used that

V d
ab =

1
2

∑
b∈Na

(V d
ab(q

[a]
k , q[b]

k ) + V d
ab(q

[a]
k+1, q

[b]
k+1)),

that is, V d
ab is the trapezoidal discretization of Vab.

After some calculus we can write Eqs. (41) as the following explicit integration scheme

q[a]
k+2 = κ̂hq

[a]
k+1 − κhq

[a]
k − κ̄h∇q[a]

k+1
V d
ab(q

[a]
k+1, q

[b]
k+1), (42)

or each a ∈ N and b ∈ Na, with κh =
1+e−κh

1+eκh
, κ̄h =

2h2

1+eκh
, κ̂h = 1 + κh =

2+eκh+e−κh

1+eκh
, that is, for each a ∈ N⎧⎨⎩q[a]

k+2 = κ̂hq
[a]
k+1 − κq[a]

k − κ̄h

∑
b∈Na

Γ k
ab(q

[a]
k+1 − q[b]

k+1),

Γ k
ab = ∥q[a]

k+1 − q[b]
k+1∥

2
− d2ab.

Note that the previous equations are a set of d|N |(N − 1) equations, k = 0, . . . ,N for the d|N |(N + 1) unknowns
q[a]
k }

N
k=0, with 1 ≤ a ≤ n = |N |. Nevertheless the boundary conditions on initial positions and velocities of the agents

[a]
0 = qa(0), v

[a]
q0 = q̇a(0) contribute to 2dn extra equations that convert Eqs. (41) in a nonlinear root finding problem of

n(N − 1) equations and the same amount of unknowns. To start the algorithm we use the boundary conditions for the
irst two steps, that is, q[a]

0 = q[a](0) and q[a]
1 = hv[a]

q0 + q[a]
0 = hq̇[a](0) + q[a](0).

emark 2. Observe also that the Lagrangian Lkd,h is SE(d)-invariant, since the inter-agent potential is SE(d)-invariant,
herefore we can apply the discrete Noether Theorem 3.4. Both the linear and angular momentum in double-integrator
ormation systems are related with steering controller design for coordinating a formation as a whole at the steady state
y using the linear and angular momentum of the centroid and therefore the variational integrators developed in this
ork could be used as for the steering control to achieve a desired formation.

.1.3. Simulation results
Next, for simulation purposes we will restrict ourselves to the case |N | = 4, d = 3, where the desired formation shape

s depicted in Fig. 4 with neighbour relationships given by N1 = {2, 3, 4}, N2 = {1, 3, 4}, N3 = {1, 2, 4} and N4 = {1, 2, 3}.
The explicit integration scheme (42) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q[1]
k+2 = G1

k − κ̄h

(
Γ k+1
12 (q[1]

k+1 − q[2]
k+1) +Γ k+1

13 (q[1]
k+1 − q[3]

k+1) + Γ k+1
14 (q[1]

k+1 − q[4]
k+1)

)
q[2]
k+2 G2

k − κ̄h

(
Γ k+1
21 (q[2]

k+1 − q[1]
k+1) + Γ k+1

23 (q[2]
k+1 − q[3]

k+1) + Γ k+1
24 (q[2]

k+1 − q[4]
k+1)

)
q[3]
k+2 = G3

k − κ̄h

(
Γ k+1
31 (q[3]

k+1 − q[1]
k+1) +Γ k+1

32 (q[3]
k+1 − q[2]

k+1) + Γ k+1
34 (q[3]

k+1 − q[4]
k+1)

)
q[4]
k+2 = G4

k − κ̄h

(
Γ k+1
41 (q[4]

k+1 − q[1]
k+1) + Γ k+1

42 (q[4]
k+1 − q[2]

k+1) + Γ k+1
43 (q[4]

k+1 − q[3]
k+1)

)
(43)

where Ga
k = G(q[a]

k , q[a]
k+1) = κ̂hq

[a]
k+1 − κhq

[a]
k , q[a]

k = (xak, y
a
k, z

a
k ) ∈ R3, i = 1, . . . , 4.

Initial positions were q0 = [1, 0, 0, 1, 0, 1, 0, −3, 0, 1, 0, −3] and we set the initial velocities to zero and damping
gains κ = 13. In this case, an end time was settled of 2 s in steps of h = 0.005 s, resulting in N = 400 iterations. In Fig. 5
12
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E
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d

A

w

Fig. 5. Convergence of agents’ trajectories by employing the variational integrator (left) and evolution of the discrete energy function in the
3-dimensional formation with pyramidal shape (right). The crosses denote the initial positions.

on the left we show the convergence of agents’ trajectories by employing the variational integrator and in Fig. 5 on the
right we shows the decrease of the energy, both per agent and total.

The energy function was discretized using a trapezoidal discretization. In particular, the total energy of each agent
a : TR12

→ R is given by

Ea(q[a], q̇[a]) =
1
2
∥q̇[a]

∥
2
+

1
2

∑
b∈Nb

Vab(q[a], q[b]).

Using the trapezoidal rule for Ea, the discrete energy function for each agent Ed
a : R4

× R4
→ R is given by

Ed
a (q

[a]
k , q[a]

k+1) =
1

2h2 (q
[a]
k+1 − q[a]

k )2 +
1
4

∑
b∈Na

(V d
ab(q

[a]
k , q[b]

k ) + V d
ab(q

[a]
k+1, q

[b]
k+1)). (44)

.2. Numerical integration in celestial mechanics

In several problems in celestial mechanics it is interesting to study the dynamics of the following second-order
ifferential equation:

q̈ + f (t)q̇ = −∇V (q) (45)

n example is the Lane–Emden equation, used in modelling of stellar structures

q̈ +
2q̇
t

= −qm

with V (q) =
qm+1

m+1 .
We can write Eq. (45) as a time-dependent Lagrangian system by using the Lagrangian function

L(t, q, q̇) = e
∫
f (t)dt (

1
2
∥q̇∥2

− V (q)),

and apply our study of symmetries, constant of the motion and the construction of variational integrators for this
time-dependent Lagrangian system.

For instance, in [16] the authors study a perturbed Kepler problem with linear drag that also depends on time:

q̈ + α sin(Ωt)q̇ + γ
q

|q|3
= 0 (46)

ith α, Ω, γ ∈ R. The authors use the contact formalism with Hamiltonian

H(t, q, p, s) =
|p|2

−
γ

+ α sin(Ωt)s

2 |q|

13
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where s is an extra variable. Using the contact formalism they deduce the equations

q̇ =
∂H
∂p

= p, (47)

ṗ = −
∂H
∂q

−
∂H
∂s

p = −γ
q

|q|3
− α sin(Ωt)p, (48)

ṡ =
∂H
∂p

p − H =
|p|2

2
+

γ

|q|
+ α sin(Ωt)s. (49)

Observe that Eqs. (47) and (48) imply the modified Kepler equations (46). Using our formalism these equations are directly
derived using the time-dependent Lagrangian

L(t, q, q̇) = e−
α
Ω

cos(Ωt)
(

|q̇|2

2
+

γ

|q|

)
.

and we can directly apply Noether theorems and all the discrete variational methods developed in our paper.

7. Conclusions

We have constructed variational integrators for non-autonomous Lagrangian systems with fixed time step. In particular,
a variational integrator for a time-dependent Lagrangian system was derived via a family of discrete Lagrangian functions
each one for a fixed time step. This allows recovering at each step on the set of discrete sequences the preservation
properties of variational integrators for autonomous Lagrangian systems such as symplecticity of the integrator or
exponential decay of the energy due to backward error analysis. By assuming a regularity condition we can derive the
corresponding discrete Hamiltonian flow. A Noether theorem for this class of systems was also obtained giving rise to a
relation between Noether symmetries and constants of the motion for both the continuous-time and the discrete-time
Euler–Lagrange equations. In further work we would like to study the applicability of backward error analysis in the
Lagrangian side as in [29] but in the non-autonomous case and compare with the results obtained in this paper as well as
comparisons with other integrators with fixed step-size, as for instance, the exponential Euler integrator [30]. We expect
the proposed methods to have a better qualitative behaviour and stability properties due to their inherent geometric
preservation construction (symmetry, symplecticity on fibres...) than other methods, especially in formation control of
multi-agent systems with large N . Another perspective is the extension to time-dependent forced and nonholonomic
systems.
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