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ABSTRACT

The interplay between the chiral anomaly and the non-leptonic weak Hamiltonian
is studied. The structure of the corresponding effective Lagrangian of odd intrinsic
parity is established. It is shown that the factorizable contributions (leading in
1/NC) to that Lagrangian can be calculated without free parameters. As a first
application, the decay K+ → π+π0γ is investigated.

*) Work supported in part by CICYT (Spain), Grant No. AEN90-0040.

CERN-TH.6444/92
April 1992

http://arXiv.org/abs/hep-ph/9205210v1


1. The chiral anomaly [1] is a fundamental property of chiral quantum field the-
ories such as the standard model. Although its origin as an intrinsically quantum
mechanical violation of a classical symmetry is well understood, many aspects of
the anomaly remain to be tested experimentally. For the strong, electromagnetic
and semileptonic weak interactions, the manifestations of the chiral anomaly at
low energies are completely determined by the Wess–Zumino–Witten (WZW)
functional [2] in terms of pseudoscalar meson and external gauge fields.

The non-leptonic weak interactions, which are the subject of this letter, require
a separate treatment. This can already be seen in the normal parity sector. To
lowest order in chiral perturbation theory (CHPT), the strong, electromagnetic
and semileptonic weak interactions of pseudoscalar mesons are governed by the
effective chiral Lagrangian of O(p2) (in the notation of Ref. [3])

L2 =
F 2

4
〈DµUDµU † + χU † + χ†U〉, (1)

where
DµU = ∂µU − irµU + iUlµ, χ = 2B0(s + ip), (2)

and 〈A〉 stands for the trace of the matrix A; U is a unitary 3 × 3 matrix

U †U = 1, det U = 1,

which transforms as
U → gRUg†

L (3)

under SU(3)L×SU(3)R and incorporates the eight pseudoscalar Goldstone boson
fields. The external 3 × 3 hermitian matrix fields lµ, rµ, s, p contain in particular
the relevant gauge fields of the standard model for electromagnetic and semilep-
tonic weak interactions

rµ = vµ + aµ = eQAµ (4)

lµ = vµ − aµ = eQAµ +
e√

2 sin θW

(W+
µ T+ + h.c.)

Q =
1

3
diag(2,−1,−1)

T+ =




0 Vud Vus

0 0 0
0 0 0




where the Vij are Kobayashi–Maskawa matrix elements. The parameters F and
B0 in the non-linear sigma model Lagrangian (1) are related to the pion decay
constant (F ≃ Fπ = 93.2MeV ) and to the quark condensate, respectively [3].

Although the Lagrangian (1) allows one in particular to calculate any mesonic
amplitude with an external W to O(p2), one does not obtain the full non-leptonic
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mesonic amplitudes at low energies by simply contracting the W field. Instead,
one first has to integrate out the W together with the heavy quarks in the fun-
damental theory to arrive at an effective ∆S = 1 Hamiltonian [4]

H∆S=1
eff =

GF√
2
VudV

∗
us

∑

i

Ci(µ
2)Qi + h.c. (5)

The Wilson coefficients Ci(µ
2) are functions of the heavy masses, ΛQCD and the

renormalization scale µ. The Qi are the standard four-quark operators which can
be written as products of colour singlet quark bilinears.

Restricting ourselves to the dominant octet part, the effective Hamiltonian
(5) has a unique realization at the mesonic level to lowest order in CHPT first
given by Cronin [5]

L∆S=1
2 = G8F

4〈λDµU
†DµU〉 + h.c. (6)

λ =
1

2
(λ6 − iλ7).

The only coupling constant at O(p2) can be determined from K → 2π decays to
be

|G8| ≃ 9 × 10−6 GeV−2 ≃ 5 × GF√
2
|VudVus|. (7)

G8 exhibits the non-leptonic enhancement factor (∆I = 1/2 rule), but is subject
to large higher-order corrections [6].

2. The chiral anomaly enters at O(p4). Its contribution to strong, electromag-
netic and semileptonic weak amplitudes is contained in the Wess–Zumino–Witten
functional [2], which has the following explicit form in a scheme where the vector
currents are conserved:

S[U, l, r]WZW = − iNC

240π2

∫
dσijklm〈ΣL

i ΣL
j ΣL

k ΣL
l ΣL

m〉 (8)

− iNC

48π2

∫
d4xεµναβ

(
W (U, l, r)µναβ − W (1, l, r)µναβ

)

W (U, l, r)µναβ = 〈UlµlνlαU †rβ +
1

4
UlµU †rνUlαU †rβ + iU∂µlν lαU †rβ

+ i∂µrνUlαU †rβ − iΣL
µ lνU

†rαUlβ + ΣL
µU †∂νrαUlβ

− ΣL
µΣL

ν U †rαUlβ + ΣL
µ lν∂αlβ + ΣL

µ∂νlαlβ (9)

− iΣL
µ lνlαlβ +

1

2
ΣL

µ lνΣ
L
αlβ − iΣL

µΣL
ν ΣL

αlβ〉
− (L ↔ R)

ΣL
µ = U †∂µU ΣR

µ = U∂µU †
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NC = 3 ε0123 = 1

where (L ↔ R) stands for the interchange

U ↔ U †, lµ ↔ rµ, ΣL
µ ↔ ΣR

µ .

The anomaly also contributes to non-leptonic weak amplitudes starting at
O(p4). The most obvious contribution is due to tree diagrams involving one WZW
vertex and one vertex from the non-leptonic weak Lagrangian (6). Since L∆S=1

2

contains bilinear terms in the meson fields, there is a local part in the correspond-
ing functional which can be given in explicit form by diagonalizing the kinetic part
of the Lagrangians (1) and (6) simultaneously [7]. This local Lagrangian embod-
ies the so-called pole contributions to anomalous non-leptonic weak amplitudes
and is given by [8]

L∆S=1
an = − ieG8

8π2F
F̃ µν∂µπ

0K+
↔

Dν π−+
αG8

6πf
F̃ µνFµν

(
K+π−π0 − 1√

2
K0π+π−

)
+h.c.

(10)
Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor, F̃µν = εµνρσF ρσ

its dual, and Dνϕ
± denotes the covariant derivative (∂ν ∓ ieAν)ϕ

±. In the limit of
CP conservation, the anomalous Lagrangian (10) contributes only to the decays
(with real or virtual photons)

K+ → π+π0γ, π+π0γγ and KL → π+π−γγ. (11)

There is, however, an additional source of non-leptonic anomalous amplitudes
of O(p4), which was not taken into account in Ref. [8]. Diagrammatically, those
contributions can be pictured as arising from contraction of the W field between
Green functions due to the anomaly on the one side and the Lagrangian L2 of Eq.
(1) on the other side. However, as in the normal parity sector discussed before,
such a procedure would not give the correct amplitudes at the hadronic scale.
Rather, we must use again the operator product expansion first and realize the
corresponding operators at the bosonic level in the presence of the anomaly.

3. A possible framework to implement the bosonization of four-quark operators
was formulated in Ref. [9]. Let us first recall the standard bosonization of (left-
handed) quark currents in CHPT. The Green functions of quark currents can be
expressed as functional integrals in the fundamental theory

〈0|T{qjLγµqiL . . .}|0〉 = N−1
∫

[DqDqDG]qjLγµqiL . . . e
i
∫

d4xL

= (−i
δ

δlµ,ji

) . . . eiZ[l, r, s, p] (12)
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where [3]
L = L0

QCD + qγµ{vµ + γ5aµ}q − q{s − iγ5p}q (13)

is the QCD Lagrangian with massless light quarks in the presence of external fields
l, r, s, p. The basic tenet of CHPT is that the generating functional Z[l, r, s, p] [3]
can be calculated in the effective theory in terms of the chiral effective action
S[U, l, r, s, p] as

eiZ[l, r, s, p] = N−1
∫

[DU]eiS[U, l, r, s, p] . (14)

The bosonized form of the quark currents in the low-energy theory is then given
by

qjLγµqiL ↔ δS[U, l, r, s, p]

δlµ,ji

. (15)

The insertion of a four-quark operator Qi can be treated in a similar fashion
[9]. In the effective chiral theory, a four-quark operator 1 corresponds to the
insertion [9]

〈0|T{qlLγµqkLqjLγµqiL . . .}|0〉 = N−1
∫

[DUDG]

{
δΓ

δlµ,lk

δΓ

δlµji
− i

δ2Γ

δlµ,lkδl
µ
ji

}
. . . eiΓ

(16)
where Γ[U, l, r, s, p; G] is the effective action before the gluons are integrated out.
There is a difference between the bosonization of a current (15) and a four-quark
operator (16) due to the anomalous dimension of the four-quark operator. The
gluonic integral includes soft gluons dressing the four-quark operator [recall that
only hard gluons were integrated out to arrive at the Hamiltonian (5)] to produce
the necessary µ-dependence of the operator in its bosonized form. Of course,
neither S[U, l, r, s, p] nor Γ[U, l, r, s, p; G] can be calculated directly from QCD
at this time. However, very encouraging progress in this direction has recently
been made in the context of a model incorporating a specific mechanism for
spontaneous chiral symmetry breaking [10, 9, 11].

The two contributions in Eq. (16) are denoted [9] as factorizable (leading
in 1/NC) and non-factorizable (non-leading in 1/NC), respectively. Let us now
consider the odd-intrinsic parity parts (containing the ε tensor)

Γ−[U, l, r, s, p; G] and S−[U, l, r, s, p]. (17)

There is obviously no term of O(p2) in Γ−. Nor does chiral symmetry allow a
chiral invariant O(p4) term. Instead, Γ− is given to O(p4) by the chiral anomaly
in terms of the WZW functional S[U, l, r]WZW and by a term accounting for the
gluonic component of the chiral U(1) anomaly. Except for this latter part, which
will not play any special rôle in the following, the remainder Γ−

rem[U, l, r, s, p; G]
defined via

Γ−[U, l, r, s, p; G] = S[U, l, r]WZW + Γ−
rem[U, l, r, s, p; G] (18)

1We restrict the analysis to products of left-chiral currents.
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is chiral-invariant. The anomaly can be viewed as arising from the chiral
non-invariance of the fermionic measure in the path integral [12]. The non-
renormalization theorem [13] of the chiral anomaly then tells us that there is
a similar decomposition for the effective action S− with odd intrinsic parity,

S−[U, l, r, s, p] = S[U, l, r]WZW + S−
inv[U, l, r, s, p]. (19)

The O(p4) part of S− is unaffected by the gluonic path integral and is again given
by S[U, l, r]WZW . The remainder S−

inv[U, l, r, s, p] starts at O(p6) and is SU(3)L ×
SU(3)R invariant [14].

Looking at Eq. (16), we find that the WZW functional in Eq. (18) only con-
tributes to the factorizable part because there is no possible contribution of O(p2)
with an ε tensor. The non-factorizable contribution is determined entirely by Γ−

rem

and it can only be calculated with a special model for spontaneous chiral sym-
metry breaking (cf. Refs. [10, 9, 11]).

To lowest order, O(p4), the factorizable contribution can be given exactly
because the WZW functional can be pulled out of the gluonic path integral.
The bosonized form of the four-quark operator in the anomalous parity sector is
[factorizable contribution of O(p4)] :

qlLγµqkLqjLγµqiL ↔ δSWZW

δlµlk

δS2

δlµ,ji

+ (lk ↔ ji) (20)

where

δS2

δlµ,ji

= −F 2

2
(Lµ)ij (21)

Lµ = iU †DµU

is the left-chiral current of lowest order p corresponding to the chiral Lagrangian
(1). The anomalous current [of O(p3)] has the following form

δSWZW

δlµ,ji

=
1

16π2
εµναβJan

ναβ,ij

Jan
ναβ = iLνLαLβ +

{
F L

να +
1

2
U †F R

ναU, Lβ

}
(22)

+ a chirally non-covariant polynomial

in the external fields l, r,

where F L, F R are the non-Abelian field strengths associated with the fields l, r
[3]. The anomalous current (22) has a well-known structure [15, 16]: it consists
of a chirally covariant piece written explicitly in (22) and a local polynomial in
the external gauge fields l, r, which is not chirally covariant. Only the covariant
anomalous current has direct physical significance. Changing the local polyno-
mial in l, r amounts to different regularization schemes which cannot modify the
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physical content of the anomaly. Moreover, in the regularization scheme chosen
in Eq. (8), the local polynomial disappears for external vector gauge fields which
is exactly the case relevant for us: all external gauge fields are photons (radiative
non-leptonic kaon decays).

4. We can now construct the bosonization of the dominant octet operator in
(5)

Q− = Q2 − Q1 (23)

Q1 = sγµ(1 − γ5)duγµ(1 − γ5)u

Q2 = sγµ(1 − γ5)uuγµ(1 − γ5)d

in the factorizable approximation for the odd-parity part of O(p4). The final result
is

Q−(fact) ↔ − F 2

8π2
εµναβ

[
〈λ{Lµ, J

an
ναβ}〉 − 〈λLµ〉〈Jan

ναβ〉
]

(24)

in terms of the covariant anomalous current (22). This result may be written in
a more explicit form in terms of four chiral operators of O(p4) of odd intrinsic
parity as 2

Q−(fact) ↔ F 2

16π2

(
2iεµναβ〈λLµ〉〈LνLαLβ〉

+ 〈λ[U †F̃ µν
R U, LµLν ]〉

+ 3〈λLµ〉〈(F̃ µν
L + U †F̃ µν

R U)Lν〉
+ 〈λLµ〉〈(F̃ µν

L − U †F̃ µν
R U)Lν〉

)
. (25)

The last three terms in Eq. (25) were already obtained by Cheng [17], although
not in the explicitly covariant form given here. They were also discussed in Ref. [8]
since they contribute to the decays K → ππγ(γ) considered there. Contrary to the
conjecture made in Ref. [8], the coefficients of these terms are by no means small,
since they are actually generated by the chiral anomaly although the operators
are completely chirally covariant. The first term in Eq. (25) only contributes to
K decays with at least three pions in the final state. In fact, in the limit of CP
conservation it only contributes to the decay KL → π+π−π0γ [18].

We have therefore established that the factorizable contribution to Q− in
the anomalous parity sector can be completely determined to O(p4) as given
by Eq. (25). Moreover, of all possible octet operators of O(p4) proportional to
the ε tensor [19], only the four operators appearing in (25) can contribute to
processes where all external gauge fields are photons. Since the WZW functional
cannot contribute to the non-factorizable part, the latter automatically has the
right chiral transformation property of an octet operator. Therefore, even if we

2We neglect a term proportional to 〈[λ, F̃
µν
L ]LµLν〉, which cannot contribute for the case of

external photons.
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cannot calculate the non-factorizable contributions in a model-independent way,
we know they must be of the form (25), albeit with different coefficients. In fact,
those coefficients will be µ-dependent to cancel the µ-dependence of the Wilson
coefficients. This cancellation was discussed in Ref. [9] for the normal-parity octet
Lagrangian of O(p2) in (6).

Since all octet operators in H∆S=1
eff produce the same structure (25), we can

write down the final representation of the ∆S = 1 effective Lagrangian in the
anomalous parity sector to O(p4)

L∆S=1
eff =

G8F
2

16π2

(
2a1iε

µναβ〈λLµ〉〈LνLαLβ〉

+ a2〈λ[U †F̃ µν
R U, LµLν ]〉

+ 3a3〈λLµ〉〈(F̃ µν
L + U †F̃ µν

R U)Lν〉
+ a4〈λLµ〉〈(F̃ µν

L − U †F̃ µν
R U)Lν〉

)
+ h.c. (26)

From the dominance of the octet operator Q− we expect the dimensionless co-
efficients ai to be positive and of order one. In fact, they can be expected to be
somewhat smaller than one because there is no factorizable contribution to (26)
from the dominant penguin operator Q6 unlike the situation in the normal parity
sector at O(p2) [9].

5. The phenomenological implications of the chiral anomaly for non-leptonic K
decays will be treated in more detail elsewhere [18]. Here, we confine ourselves
to a brief application of our findings to the decay K+ → π+π0γ. The available
experimental evidence is consistent with a dominant magnetic part for the direct
emission amplitude (non-bremsstrahlung)[20]. In Ref. [8], the magnetic amplitude
due to the Lagrangian (10) was found to be

M = −eG8M
3
K

2π2F
, (27)

whereas (26) contributes

M =
3eG8M

3
K

2π2F
(
a2

2
− a3). (28)

Moreover, it was shown in [8] that the V -exchange corrections of O(p6) to M
are much smaller than the anomalous amplitude (27) of O(p4). For ai ≃ 1, there
is positive interference between the two amplitudes [17]. Assuming that the di-
rect emission rate is purely magnetic, the experiments of Ref. [20] have found a
corresponding branching ratio (the average is from Ref. [21])

BR(K+ → π+π0γ)DE = (1.8 ± 0.4) × 10−5 (29)
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for a certain cut in the kinetic energy of the charged pion. With the total magnetic
amplitude given by the sum of (27) and (28), we find

BR(K+ → π+π0γ)M = 2.2×10−5
(

2 + 6a3 − 3a2

5

)2

(G8/9×10−6 GeV−2)2 (30)

for the same cuts. The good agreement between (29) and (30) gives support to
the theoretical expectation

ai
<∼ 1. (31)

Further experimental work isolating the competing electric direct emission am-
plitude [8] is necessary to make this agreement more conclusive.

Conclusions

i. The non-Abelian chiral anomaly contributes to non-leptonic weak processes
in two different ways at O(p4):

• CHPT amplitudes involving one WZW vertex and one vertex from
L∆S=1

2 (6). The so-called pole contributions are given in closed form
by the Lagrangian (10).

• Direct anomalous amplitudes due to chirally covariant octet operators
of O(p4) in (25) and (26).

ii. In the non-leptonic sector, the anomaly contributes only to radiative kaon
decays.

iii. The factorizable contributions of odd intrinsic parity, which are unambigu-
ously calculable, already produce all possible terms of O(p4) relevant for
radiative processes where all external gauge fields are photons. Due to the
non-renormalization of the chiral anomaly, there are no QCD corrections
to the factorizable part at O(p4).

iv. The non-factorizable terms (non-leading in 1/NC) compensate the scale
dependence of the Wilson coefficients. They contribute to the coefficients
of the factorizable terms but they cannot generate new ones.

v. Although the coefficients of the four possible chiral operators are not cal-
culable in a model-independent way, the overall scale is expected to be of
O(G8) or somewhat smaller. The octet enhancement of the Wilson coeffi-
cients appears in this scale, but the dominant penguin operator Q6 does
not contribute to the factorizable part, because the WZW functional is
independent of external scalar/pseudoscalar fields.

vi. The phenomenological implications are encouraging for the decay K+ →
π+π0γ and will be considered in more detail elsewhere [18].
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