
Theory of Dynamical Phase Transitions in Quantum Systems with
Symmetry-Breaking Eigenstates

Ángel L. Corps 1,2,* and Armando Relaño 2,3,†
1Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid, Spain

2Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Complutense de Madrid,
Avenida Complutense s/n, E-28040 Madrid, Spain
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We present a theory for the two kinds of dynamical quantum phase transitions, termed DPT-I and DPT-
II, based on a minimal set of symmetry assumptions. In the special case of collective systems with infinite-
range interactions, both are triggered by excited-state quantum phase transitions. For quenches below the
critical energy, the existence of an additional conserved charge, identifying the corresponding phase, allows
for a nonzero value of the dynamical order parameter characterizing DPTs-I, and precludes the main
mechanism giving rise to nonanalyticities in the return probability, trademark of DPTs-II. We propose a
statistical ensemble describing the long-time averages of order parameters in DPTs-I, and provide a
theoretical proof for the incompatibility of the main mechanism for DPTs-II with the presence of this
additional conserved charge. Our results are numerically illustrated in the fully connected transverse-field
Ising model, which exhibits both kinds of dynamical phase transitions. Finally, we discuss the applicability
of our theory to systems with finite-range interactions, where the phenomenology of excited-state quantum
phase transitions is absent. We illustrate our findings by means of numerical calculations with experi-
mentally relevant initial states.
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Introduction.—Recent advances in experimental tech-
niques with cold atoms and trapped ions [1–5] have
stimulated the research about some fundamental concepts,
like dynamical quantum phase transitions (DPTs). DPTs
refer to two distinct phenomena. DPTs-I occur when the
dynamics of observables qualitatively changes at a critical
value of a control parameter [6–12]; they are characterized
by dynamical order parameters becoming zero at the
critical value of the control parameters [13]. DPTs-II
happen when the dynamics becomes nonanalytic at par-
ticular critical times [14–24]; they are purely nonequili-
brium phenomena and cannot be described by dynamical
order parameters. Both may appear in the same models, like
the long-range or fully connected transverse-field Ising
model [25,26], or the Rabi model [27]. Although con-
nections between them have been found [25,26,28–34], a
common mechanism for their appearance is missing [35].
In this Letter, we present a theory for these two kinds of

DPTs. It is inspired in collective systems, where excited-
state quantum phase transitions (ESQPTs) [36] entail
important consequences for the thermalization after a
nonequilibrium process [37–42]. The corresponding criti-
cal energy splits the spectrum into two different phases: one
where there exists a constant of motion, Ĉ, acting like a
partial dynamical symmetry, and another where Ĉ is no
longer constant [43]. Here, we show that the very existence

of this partial dynamical symmetry provides a framework
for DPTs, because (i) the dynamical order parameter
characterizing DPTs-I can be different from zero if and
only if Ĉ is a constant of motion, and (ii) the constancy of Ĉ
precludes the main mechanism accounting for DPTs-II in
systems with a discrete Z2 symmetry [15]. These facts are
independent of whether the system exhibits ESQPTs, so
our theory applies to both fully connected and finite-range
interacting models. We use the fully connected transverse-
field Ising model [25,26] for numerical demonstration, and
conclude by discussing the applicability to finite-range
interactions systems.
Assumptions.—Consider a generic Hamiltonian, ĤðλÞ,

depending on a control parameter, λ, such that (i) there
exists a Z2 symmetry, represented by an operator, Π̂, which
we call parity, ½ĤðλÞ; Π̂� ¼ 0, ∀ λ, labeling the Hamil-
tonian eigenstates as Π̂jEn;�i ¼ �jEn;�i; (ii) there exists a
second Z2 operator, Ĉ, acting like a partial symmetry,
commuting with the projectors, P̂n, onto the energy
subspaces only below a given critical energy, Ec,
½Ĉ; P̂n� ¼ 0, ∀ En < Ec; and (iii) the two previous oper-
ators are not commuting, ½Π̂; Ĉ� ≠ 0, so eigenlevels are
degenerate below Ec, and nondegenerate above Ec [43].
In the thermodynamic limit (TL), these conditions apply

to fully connected systems exhibiting an ESQPT at E ¼ Ec
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[43–45], such as the Lipkin-Meshkov-Glick (LMG) [46–
54], the Dicke and Rabi [55–62], and the two-site Bose-
Hubbard models [63], spinor Bose-Einstein condensates
[64], and the coupled top [65]. As discussed below, they
also apply to more general, finite-range interactions sys-
tems, where ESQPTs are absent.
Theory for DPTs-I.—The equilibrium state of a closed

quantum system is equal to the infinite-time average of the
time-evolved wave function [66]. Thus, long-time averages
inducing dynamical order parameters for DPTs-I can also
be described via equilibrium ensembles. Here, we focus on
the TL, and therefore assume that all three previous
assumptions hold, to build an equilibrium ensemble
depending on all relevant constants of motion for the
previous setup. Above Ec, such an ensemble must depend
only on energy and parity; it must be diagonal in the parity
eigenbasis. Below Ec, it must depend also on Ĉ; as
½Π̂; Ĉ� ≠ 0, it must be nondiagonal in the same basis, and
therefore it must store information about quantum coher-
ence between parity sectors. As such coherence is complex
valued, a real operator like Ĉ [43] cannot account for all its
possible values. Therefore, a third operator is needed:
K̂≡ ði=2Þ½Ĉ; Π̂�. It can be shown that K̂ commutes with
the energy projectors below Ec if Ĉ does [67]. Hence, such
a generic system is characterized by a set of three non-
commuting charges, fΠ̂; Ĉ; K̂g, for E < Ec, whereas only
Π̂ is a constant of motion above Ec. This seemingly implies
that we need two equilibrium ensembles to describe our
setup, and that the transient region around E ¼ Ec is ill-
defined. However, we can fix this problem defining two
new operators, C̃ ¼ IE<Ec

ĈIE<Ec
, K̃ ¼ IE<Ec

K̂IE<Ec
, where

IE<Ec
≡P

n θnP̂n, P̂n is the projector onto the eigenspace
with energy En, and θn ¼ 1 if En < Ec and θn ¼ 0 if
En > Ec. hC̃i and hK̃i are equal to hĈi and hK̂i below Ec,
but identically zero above Ec. Thus, C̃ and K̃ commute with
the Hamiltonian in the TL, so we can build an unique
equilibrium ensemble from them.
The simplest equilibrium ensemble depending on these

charges is

ρGMEðE; p; c; kÞ ¼ ρMEðEÞðI þ pΠ̂þ cC̃þ kK̃Þ; ð1Þ

where ρMEðEÞ denotes the standard microcanonical ensem-
ble [68]. Parity doublets, jEn;�i, within a small energy
window around the average energy, Tr½ρGMEĤ�, are equally
populated, and TrρGMEðEÞ ¼ 1. We call ρGMEðE; p; c; kÞ a
generalized microcanonical ensemble (GME). Besides the
average energy, it depends on three parameters p; c; k ∈ R,
satisfying p2 þ c2 þ k2 ≤ 1, which are fixed by requiring
that Tr½ρGMEΠ̂�¼ hΠ̂i, Tr½ρGMEC̃�¼ hC̃i, and Tr½ρGMEK̃� ¼
hK̃i. Equation (1) represents an ensemble depending on
three noncommuting charges [69–72]. It has the following
properties: (a) It accounts for the quantum coherence

between parity sectors if and only if E < Ec.
ρGMEðE; p; c; kÞ has nondiagonal elements in the
parity eigenbasis if c ≠ 0 and/or k ≠ 0. Consequently,
the expectation value of any parity-changing observable,
Ô, Tr½ρGMEðE; p; c; kÞÔ�, may be nonzero only in this
spectral region. (b) It becomes diagonal when all popu-
lated eigenstates are above Ec. Hence, if E > Ec,
Tr½ρGMEðE; p; c; kÞÔ� ¼ 0 for any initial condition.
These two properties imply that a DPT-I happens when a

quench crosses the critical energy Ec. If the initial state
fulfills E < Ec and a quench of control parameters λi → λf
leads the system to a region where all populated states are
above Ec, then all information about quantum coherence
between parity sectors is lost. Equation (1) is exact in the
TL, when assumption (ii) is exactly fulfilled [73]. For
finite-size effects, see below.
Theory for DPTs-II.—Let us consider a quantum quench

λi → λf where the initial state jΨ0ðλiÞi is a broken-
symmetry ground state,

jΨ0ðλiÞi ¼
ffiffiffiffi
ω

p jE0;þðλiÞi þ eiϕ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω

p
jE0;−ðλiÞi; ð2Þ

with ω ∈ ½0; 1� and ϕ ∈ ½0; 2πÞ [74]. After the quench, its
time evolution is given by jΨtðλfÞi ¼ e−iĤðλfÞtjΨ0ðλiÞi. In
systems with a discrete Z2 symmetry, DPTs-II are signaled
by nonanalytic points in LðtÞ≡ LþðtÞ þ L−ðtÞ, where
L� ¼ jhE0;�ðλiÞjΨtðλfÞij2 are the return probabilities to
the positive-parity and negative-parity projections of the
initial state [15] after the quench. These nonanalytic points
are usually identified through the rate rNðtÞ ¼ − lnLðtÞ=N,
akin to a dynamical version of the intensive equilibrium
Helmholtz free energy [14]. Generically, it is expected
that L� ¼ exp½−NΩ�ðtÞ� [14], whereΩ�ðtÞ is an intensive
function [67]. Hence, in the TL the term with the
smallest Ω�ðtÞ dominates, nonanalyticities appearing at
any crossing time when ΩþðtÞ ¼ Ω−ðtÞ [15]. As in
standard phase transitions, rNðtÞ remains analytic for
N < ∞, only becoming singular when N → ∞. From
(2), we have

LþðtÞ ¼ ωjfþðtÞj2; L−ðtÞ ¼ ð1 − ωÞjf−ðtÞj2; ð3Þ

with f�ðtÞ ¼
P

n jcn;�j2e−iEn;�ðλfÞt, where the expansion of
initial eigenstates jE0;�ðλiÞi ¼

P
n cn;�jEn;�ðλfÞi allowed

by parity conservation has been used.
Suppose that the quench only populates final eigenstates

below Ec. We assume that the gap of states of opposite
parity closes exponentially in system size, En;þðλfÞ ¼
En;−ðλfÞ þ ane−bnN , and that ½Ĉ; P̂n� also goes exponen-

tially to zero [43], implying ĈjEn;þðλfÞi ¼ ðjEn;−ðλfÞiþ
cne−dnN jφniÞ=

ffiffiffiffiffiffi
Nn

p
, where hφnjEn;−ðλfÞi ¼ 0 and Nn ¼

1þ c2ne−2dnN . By expanding 1=
ffiffiffiffiffiffi
Nn

p
≃ 1 − 1

2
c2ne−2dnN and

keeping the leading term in the exponential decays, we find

PHYSICAL REVIEW LETTERS 130, 100402 (2023)

100402-2



cn;þ ¼ hE0;þðλiÞjĈ†ĈjEn;þðλfÞi ≃ cn;− þ w1e−w2Ncn;− þ
w3e−w4N for some constants wi, or, equivalently, jcn;þj2 ≃
jcn;−j2 þ ane−bnN for some an ∈ C, bn > 0 which may be
determined explicitly. Therefore,

fþðtÞ ¼
X

n

ðjcn;−j2 þ ane−bnNÞe−iEn;−ðλfÞte−iane−bnNt: ð4Þ

The first summation is an oscillatory correction to f−ðtÞ
reflecting the inexact degeneration of eigenlevels for
N < ∞; for fixed N, such correction is only relevant for
exponentially large times t ∼OðebnNÞ. This timescale
coincides with the relaxation time of the prethermal states
represented by the GME; it is huge even for modest system
sizes [75]. The second summation is an overall exponen-
tially damped contribution in N originating from the finite-
N matrix element of Ĉ, also negligible for small N. So, in
the N → ∞ limit, we have the following:
Result: If assumptions (i)–(iii) hold, then fþðtÞ¼f−ðtÞ,∀ t, if E < Ec.
Consequence: The constancy of Ĉ if E < Ec implies

ΩþðtÞ and Ω−ðtÞ cannot cross. Therefore the main mecha-
nism for DPTs-II is forbidden for quenches below the
critical energy and can only happen if the quench leads the
system to E > Ec. This follows from simple algebraic
manipulations of (3) [67].
Numerical results.—To test our theory, we choose the

long-range transverse-field Ising model (ℏ ¼ 1),

Ĥðα; λÞ ¼ −
λ

4N ðαÞ
XN

i≠j

1

ji − jjα σ̂
x
i σ̂

x
j þ

h
2

XN

i¼1

σ̂zi : ð5Þ

Here, N ðαÞ ¼ ½2=ðN − 1Þ�PN
m¼1½ðN −mÞ=mα� is the Kac

factor [76], N is the number of spins, and σ̂x;y;z are the Pauli
matrices.
We start with the fully connected case, α ¼ 0. As

½Ĥð0; λÞ; Ĵ2� ¼ 0, where Ĵx;y;z ¼ 1
2

P
N
i¼1 σ̂

x;y;z
i , we separate

the Hamiltonian matrix in symmetry sectors according to
its eigenvalues jðjþ 1Þ; we focus on the maximally
symmetric sector, j ¼ N=2. We fix h ¼ 1, and consider
λ as the control parameter. This is equivalent to fixing λ and
varying h [10,11,16], but allows us to identify the critical
points in simpler terms. In experiments [11], h ∼MHz;
thus, t ∼ μs.
This model has a QPT at λc ¼ h [67,77], and an ESQPT

at ϵc ≡ Ec=j ¼ −h if λ > λc [47–53,67]. For λ > λc and
E < Ec, its eigenstates become degenerate in parity,
Π̂≡Q

j σ̂
z
j. This entails that Ĉ ¼ signð1

2

P
N
i¼1 σ̂

x
i Þ, which

represents the sign of the ferromagnetic order parameter in
its extensive form, is a conserved charge. If λ < λc, or λ >
λc and E > Ec, the Z2 symmetry is restored.
In Fig. 1 we focus on three different quenches λi → λf ¼

1.75. We compare the time evolution hÔðtÞi ¼
hΨtðλfÞjÔjΨtðλfÞi with Ô ¼ Ĵz; Ĵx; Ĉ; K̂ ¼ ði=2Þ½Ĉ; Π̂�

with the corresponding GME theoretical predictions. The
GME provides a perfect description of long-time averages
in all cases. For hĴzðtÞi [Fig. 1(a)], we see no traces of
DPTs. The usual dynamical order parameter, hĴxðtÞi, is
in Fig. 1(b) [10,11,16]. Its long-time average, hĴxi≡
limτ→∞ð1=τÞ

R
τ
0 dthĴxðtÞi, is only zero above Ec (blue).

Below this energy, hĴxðtÞi relaxes towards a nonzero value
(red), and this also happens when the quench leads the
system to the critical energy of the ESQPT (magenta).
These observations are easily explained by the GME. As

shown in Figs. 1(c) and 1(d), hĈi and hK̂i are nonzero for
the first two quenches, meaning that c ≠ 0 and k ≠ 0 in
both cases. Note that these two observables are constant for
E < Ec. At the critical quench, states both below and above
Ec are populated, so it is possible to find symmetry-
breaking long-time averages with c ≠ 0 and k ≠ 0, and

also Ĉ and K̂ are not constant. Finally, hĈi¼hK̂i¼hĴxi¼0

for the last quench, because Ĉ is not constant when E > Ec.
In Fig. 2 we display the long-time averages and the GME

predictions, for quenches with different (average) energies.

In Fig. 2(a), we observe a minimum of hĴzi at Ec. Yet, the

critical behavior is best observed in hĴxi, hĈi and hK̂i: these
are nonzero only below Ec. Similar nonanalytical points
should appear also in the inverse participation ratio across
the transition [34]. The insets of Figs. 2(b)–2(d) show how

the largest energy, ϵcðjÞ, for which hĴxi, hĈi, and hK̂i
remain larger than a given bound, γ ¼ 1=20, scales as a
function of system size, strongly suggesting that long-time
averages vanish exactly at ϵc in the TL, as predicted by our
theory. Furthermore, the GME provides a perfect descrip-
tion of these equilibrium values.
We focus on DPTs-II in Fig. 3. We display rNðtÞ for

two quenches, one for E < Ec [Fig. 3(a)] and another for

FIG. 1. Time evolution of physical observables after a quench
λi → λf ¼ 1.75. (a) Ĵz, (b) Ĵx, (c) Ĉ, and (d) K̂. The values of
the initial control parameter, quenched state average energy,
and width are λi ¼ 2.5, ϵðλfÞ ¼ −1.135, σϵ ¼ 0.0025 (red);
λi ¼ 7, ϵðλfÞ ¼ −1, σϵ ¼ 0.0066 (magenta), and λi ¼ 27.5,
ϵðλfÞ ¼ −0.895 67, σϵ ¼ 0.0085 (blue). Black dashed lines
show the GME predictions, whose energy window is
½ϵðλfÞ − 2σϵ; ϵðλfÞ þ 2σϵ�. System size is j ¼ 6400; the initial
state, (2), has ω ¼ 3=4, ϕ ¼ π=6.
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E > Ec [Fig. 3(b)]. At first sight, there seem to exist
nonanalytical points in the two cases, those in (a) related to
an anomalous dynamical phase [17,18,21]. To delve into
this preliminary conclusion, we display drNðtÞ=dt in
Figs. 3(c) and 3(d). The finite-size scaling in Fig. 3(c),
corresponding to the inset of Fig. 3(a), is inconclusive
about the nonanalyticity in the TL: we cannot find a clear
pattern as system size increases. Contrarily, Fig. 3(d) shows
that drNðtÞ=dt approaches a break as N grows for the kink
shown in the inset of Fig. 3(b). Also, all finite-size curves
cross at a finite-size precursor of the critical time, tc ≈ 2.68.
This behavior is reminiscent of first-order phase transitions.

These results can be interpreted with our theory. Below
the critical energy, E < Ec, Ĉ is a conserved charge, in the
TL. Therefore, the behavior shown in the inset of Fig. 3(a)
cannot be caused by the crossing of ΩþðtÞ and Ω−ðtÞ. This
is the main signature of an anomalous dynamical phase,
and its origin and behavior in the TL remain unclear [67].
However, above the critical energy, E > Ec, Ĉ is not a
conserved charge, and ΩþðtÞ and Ω−ðtÞ may cross. Thus,
rNðtÞ is expected to become nonanalytic at the correspond-
ing crossing times in the TL, as depicted in Fig. 3(d). Thus,
the seemingly nonanalytical precursors appearing in (a) and
(b) have a different origin, manifesting in a completely
different scaling to the TL, with no signatures of a phase
transition in (c).
Beyond fully connected systems.—Lastly, we discuss the

applicability of our theory to the finite-range transverse-
field Ising model, (5), with α ¼ 1.2 (the Kac factor is
omitted), and open boundary conditions. We restrict
ourselves to the fully symmetric sector regarding the
inversion symmetry [78]. This model shows a thermal
phase transition for α ≤ 2 [79,80], and its eigenlevels are
degenerate in symmetry pairs below a certain energy, at
least if α ≤ 1.5 [78].
In Fig. 4 we focus on Ĉ, which is defined exactly as be-

fore.We observe that jhEn;−jĈjEn;þij≈1 belowE=N∼−1.5,
which, together with the parity degeneracies [78], implies
the constancy of Ĉ in this energy region [43]. Thus, our
assumption (ii) is fulfilled, the GME is needed to describe
steady states within this region, and themain mechanism for
DPTs-II is forbidden. Inset (b) shows that two precursors
of the critical energy, obtained from the properties of Ĉ
(triangles) and the parity degeneracies in the spectrum
(squares), behave similarly, becoming stable as the system

FIG. 2. (a)–(d) Long-time average of physical observables after
a quench λi → λf ¼ 1.75 as a function of the final energy ϵðλfÞ. λi
is varied continuously. System size is j ¼ 6400; the initial state,
(2), has ω ¼ 3=4, ϕ ¼ π=6. Points represent exact averages while
lines show the GME prediction. Insets in (b)–(d) show the scal-
ing of ΔϵðjÞ ¼ ϵcðjÞ − ϵcð∞Þ with system size (γ ¼ 1=20),
jΔϵðjÞj ∼ j−κ, κ > 0.

FIG. 3. (a),(b) rNðtÞ for quench (a) λi ¼ 2.535 → λf ¼ 1.6,
ending below Ec [ϵðλfÞ ¼ −1.070 077, σϵ ¼ 0.006 25] and
(b) λi ¼ 7.437 → λf ¼ 1.6, ending above Ec [ϵðλfÞ ¼
−0.920 036, σϵ ¼ 0.018 113 2], for j ¼ 1600. (c),(d) Fiinite-size
scaling of drNðtÞ=dt around the kinks shown by magenta arrows
in (a),(b), respectively, for several j [legend in (d)]. The initial
state (2) has ω ¼ 1=2, ϕ ¼ 0.

FIG. 4. (a) Expectation value of Ĉ in the eigenstates of opposite
parity for (5), α ¼ 1.2, λ ¼ 2.5, h ¼ 1, N ¼ 16. (b) Scaling of the
precursor of the critical energy EcðNÞ, obtained as the largest
eigenvalue such that 1 − jhEn;−jĈjEn;þij < 10−4 (triangles) or
jEn;þ − En;−j=hsi < 10−4, being hsi the mean eigenlevel spacing
(squares). (c) Time evolution hĈðtÞi (N ¼ 15) for clustering
initial states and average energies: j↑↑↑↑↑↑↑↓↑↑↑↑↑↑↑ix,
jhEi − E0j=N ¼ 0.78 (orange line), j↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ix,
jhEi − E0j=N ¼ 0.026 (pink line), j↑↑↑↑↓↓↓↓↓↓↓↑↑↑↑ix,
jhEi − E0j=N ¼ 1.80 (purple line).
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size increases up to N ¼ 16. This suggests that our theory
should hold below a certain critical energy, Ec, in the TL,
probably linked to the critical temperature [80].
Finally, we explore the dynamical consequences of these

spectral properties. We select three experimentally relevant
initial states satisfying the cluster decomposition property
[81,82] (see caption of Fig. 4 for details), with different
population probabilities of the Hamiltonian eigenstates. In
Fig. 4(c) we show that hĈðtÞi remains constant for the first
(second) initial condition, hĈðtÞi ¼ 1 (hĈðtÞi ¼ −1) which
fulfills E < Ec; therefore, equilibrium states are described
by (1) with c ¼ 1 (c ¼ −1), p ¼ k ¼ 0, and the main
mechanism for DPTs-II is forbidden. Contrarily, hĈðtÞi is
not constant for the third case, for which E > Ec, and thus
DPTs-II are possible. This illustrates the applicability of
our theory to more general initial states than (2).
These results are compatible with the observation of

symmetry-breaking steady states [10,25], together with
anomalous DPTs-II [17,18] in subcritical quenches,
whereas regular DPTs-II are observed in supercritical ones
[16]. They also explain the breakdown of the eigenstate
thermalization hypothesis into two branches for symmetry-
breaking observables [83,84]—each should be labeled by a
different eigenvalue of Ĉ. Furthermore, as the conservation
of K̂ and Π̂ implies the conservation of the quantum
coherence between the two symmetry-broken magnetiza-
tion branches, our theory also accounts for the bimodal
structure of the full probability distribution of the ferro-
magnetic order parameter observed in [85] for small
quenches and values of α. More work is needed to clarify
their link with domain well dynamics [86–88].
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