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Metatranscriptomics unmasks
Mollusca virome with a
remarkable presence of
rhabdovirus in cephalopods

Magalı́ Rey-Campos, Luis Daniel González-Vázquez,
Beatriz Novoa and Antonio Figueras*

Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
Introduction: Mollusks play a significant role in marine ecosystems and have

economic value for aquaculture. Sometimes, unexpected and unexplained

mortalities among mollusks have been described. The role of potential

pathogens such as viruses remains unknown due to the lack of molluscan cell

cultures, which is one of the major drawbacks to determining the viral role in

such mortalities. Several oceanographic studies have suggested a high

abundance of viruses in the oceans. Virus identification and understanding of

viral interaction with organisms in marine ecosystems are in their infancy.

Metatranscriptomics could become a useful tool to identify viruses using a

shotgun approach and the growing number of viral genomes and sequences

deposited in public databases.

Methods: In this work, several bioinformatics approaches were set up to screen

Mollusca RNA sequences to find and confirm viral traces in their transcriptomes.

This meta-analysis included an extensive search of SRA datasets belonging to

mollusks available in the NCBI database, selecting a total of 55 SRA datasets that

were further analyzed searching for viral sequences.

Results: Twenty-two bivalves, 19 cephalopods and 16 gastropods from 16

geographical origins and 17 different tissues were considered. The domain

search approach was the most productive method to find viral sequences. This

virus search showed that Cephalopoda samples (Idiosepius notoides and

Amphioctopus fangsiao) exhibited the highest number of virus identifications.

Some of the detected viral sequences were similar or identical to others

previously identified. However, 33 putative new viruses were identified and

analyzed phylogenetically when the RdRp domain was available. Specifically,

Cephalopoda samples showed a considerable number of viruses belonging to

the Rhabdoviridae family.
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1 Introduction

Several events of emergence and spread of infectious diseases

have been highly relevant in the course of history (Piret and Boivin,

2021). This context has necessarily changed the view of the

importance of identifying and tracking viruses present in the

environment and animals, given the possibility of transmission to

other animals and potential human susceptibility (Holmes, 2022).

In a marine context, wild animals are constantly exposed to

potentially pathogenic viruses that might cause mass mortalities in

the case of unfavorable changes in environmental conditions. This

is the case for the Pacific oyster (Crassostrea gigas), for which

massive mortalities have been detected since 2008 in France. These

serious losses were related to the detection of Oyster Herpesvirus

type 1 (OsHV-1; Renault et al., 2014). OsHV-1 has spread

worldwide, and other countries, such as China and Australia,

have reported similar mortality episodes (Bai et al., 2015; Go

et al., 2017). Apart from the Pacific oyster, this virus also affects

other bivalve species, such as Scapharca broughtonii (ark clam;

Bai et al., 2016) and Argopecten irradians (Atlantic bay scallop;

Kim et al., 2019). Abalone amyotrophia causes mass mortality of

several Haliotis species (Matsuyama et al., 2021) and the abalone

ganglioneuritis is responsible for extensive mortalities and

significant economic losses in Asia and Australia in the last two

decades (Corbeil, 2020). This last disease is listed by the World

Organization for Animal Health (WOAH) as a notifiable disease.

Other diseases severely affecting crustaceans (i.e., white spot disease,

Taura syndrome, yellow head disease, infectious myonecrosis and

white tail disease) are also considered notifiable diseases. White tail

disease, for instance, is an infection produced by Macrobrachium

rosenbergii nodavirus, which has a very negative effect on the

aquaculture industry. It belongs to the genus Alphanodavirus,

which also affects insects (Dasmahapatra et al., 1985; Warrilow

et al., 2018) and other invertebrates, causing major economic losses

(Ho et al., 2018; Xu et al., 2020; Xia et al., 2022). The other genus

included in this family, Betanodavirus, is characterized by being a

neurotropic pathogenic virus affecting a multitude of marine fish

species (Munday et al., 2002). Although the advances in sequencing

have revealed great diversity and variability within the family

Nodaviridae, it has been suggested that the current Alpha-/

Betanodavirus taxonomy (Sahul Hameed et al., 2019) is

insufficient to classify all the variability (NaveenKumar et al.,

2013). Therefore, according to the high abundance of viruses in

seawater and the current knowledge about viruses, especially those

pathogenic to commercial species, the study of putative viral

pathogens present in marine environments or wild animals could

facilitate early detection and improve the actions to be taken.

However, virus identification is a challenge. These entities lack

conserved ribosomal genes, which excludes the possibility of using

amplicon sequencing technologies such as 16S rRNA or 18S rRNA

sequencing. Metatranscriptomics is a useful and unbiased method to

identify viruses (Razzauti et al., 2015; Durazzi et al., 2021).

Nevertheless, to date, only a few studies on the presence of viral

sequences in somemarine animals have been carried out by identifying

viral domains such as RdRp (RNA-dependent RNA polymerase;

Rosani and Gerdol, 2017; Rosani et al., 2019) or by building viral
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databases and searching them by BLAST (Rosani et al., 2019; Rosani,

2022). These works have provided information on known viruses that

are part of several marine bivalves and nudibranch gastropods but also

viruses that remained unidentified or unclassified and could represent

a problem under changing environmental conditions.

Increasing knowledge about viruses is a challenge. Oceans are

microorganism reservoirs; hence, marine metazoans must show

viral entities naturally constituting their microbiome and the

surrounding environment. In the present work, we focused on

mollusks, the largest marine phylum, because of their role in both

aquatic ecosystems and aquaculture activities. Four different

working pipelines were developed to perform a comprehensive

meta-analysis in the identification of viruses. Several species of

bivalves, cephalopods and gastropods were evaluated, some of them

relevant for the seafood industry (Crassostrea gigas, Octopus

vulgaris, Haliotis rufescens), others because of immune resistance

to pathogens (Mytilus galloprovincialis) and finally others that are

known to be particularly susceptible to some viral infections

(Crassostrea gigas, Haliotis discus and Haliotis diversicolor).

Molluscan transcriptomes were selected considering sequencing

attributes, sample/tissue types and geographic origin, and they

were analyzed to find viral sequences. The four search methods

were merged and compared to obtain a notion of the identification

possibilities offered by metatranscriptomics.
2 Materials and methods

2.1 Data retrieval

The SRA archive (https://www.ncbi.nlm.nih.gov/sra) was

inspected to retrieve a representative number of molluscan

transcriptomic datasets (Supplementary Table 1). The following

features were considered: RNA-seq samples with a posting date

after 2014, characterized by paired-read layout and sequenced using

Illumina technology.

After examining the NCBI-BioProject database, a similar

number of bivalves, gastropods and cephalopods were selected, as

well as a wide range of tissues and geographical origins. Finally, only

control/naïve samples were selected to run the analysis.
2.2 Reference databases

Reference viral databases for the different virus identification

pipelines included Clustered-RVDB (873,234 entries that contain

viral, virus-related, and virus-like nucleotide sequences; Goodacre

et al., 2018), a RefSeq database containing all the available viral

genome assemblies and downloaded on 18/05/2021 (10,907 viral

assemblies) and a database constituted by InterPro and Pfam IDs.

These raw domain databases (InterPro and Pfam) were downloaded

on 20/08/2022 (Blum et al., 2021; Mistry et al., 2021) and cleaned of

non-viral domains, keeping only those that contained the terms

“virus”, “viral”, “RdRp” or “capsid”. These lists of domain IDs were

used to identify viral domains after scan processing (1,370 and 1,058

viral codes, respectively; Supplementary Table 2).
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2.3 Read processing and assembly

Raw reads in FastQ format were downloaded from the SRA ftp

server. After that, raw reads were trimmed using Trimmomatic

software (Bolger et al., 2014), removing Illumina adapters and

specifying the following instructions: LEADING:3, TRAILING:3,

MINLEN:36, and HEADCROP:15. After trimming, read datasets

were inspected using FastQC software (Andrews, 2010), assessing

the effectiveness of the trimming process and running the process

again if necessary. Trimmed reads of each RNA-seq dataset were de

novo assembled using Trinity software (Grabherr et al., 2011) and

CLC Genomics Workbench 22.0.2 (Qiagen), setting a minimum

contig length of 200.
2.4 Identification of putative
viral sequences

Four different pipelines were developed for the identification

of putative viral sequences. Figure 1 shows a scheme of

these approaches:

2.4.1 Domain search approach
The first approach consisted of scanning for viral domains in all

the assembled contigs. An InterProScan analysis (Jones et al., 2014)

was performed on the assembled contigs using the Pfam database as

subject and the nucleotide sequences as input. Once the domains

were identified (with e-values lower than 1e-5), filtering was carried

out to keep only viral domains (including capsid, polymerase,

matrix or any other viral domain available in the databases). This

filtering was performed using two viral InterPro and Pfam ID

databases (all the searched viral domains can be found in

Supplementary Table 2). After identifying contigs showing viral
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domains, they were BLASTed to nrNCBI (BLASTx) for

confirmation. Moreover, all the SRA codes were browsed on the

Serratus web page (Edgar et al., 2022) to identify the RdRp domains

and compare the results.

2.4.2 BLASTn/C-RVDB search approach
The second approach consisted of a BLASTn search of all the

assembled contigs using the nucleotide viral database C-RVDB as a

reference. Hits with e-values lower than 1e-50 and query cover

higher than 50% were retrieved and BLASTed against the host

genome (in the absence of the host genome, we used the genome

available from the closest species; information on host genomes can

be found in Supplementary Table 3). Host contigs were removed in

this protocol step. As a final stage of this approach, putative viral

sequences were BLASTed again (BLASTx) against the nrNCBI

database to discard misidentified contigs and keep only sequences

assigned to viruses. The identified viral sequences were used as a

reference, and mapping of the reads putatively attributed to virus

was performed (with the restriction mapping conditions of length

fraction, 0.5 and similarity fraction, 0.8). The identification of

possible viral reads was validated when these reads covered over

50% of the reference.

2.4.3 Reads mapping approach
The third approach to identify putative viruses consisted of

mapping raw reads to a RefSeq database containing all the available

viral genome assemblies at 18/05/2021 (10,907 viral assemblies).

This method was performed using CLC Microbial Genomics

Module 21.1 (Qiagen, Hilden, Germany). The mapping

parameters used to classify reads as putative viral sequences were

as follows: length fraction = 0.5, similarity fraction = 0.8 and

minimum seed length = 30. The host genome in which the

transcriptomic assay was conducted or, if this was not available,
FIGURE 1

Working plan to find viral sequences in transcriptomic reads/assemblies available in public databases.
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the closest species was used as a reference for filtering host reads

(the list of genomes used for this purpose can be accessed in

Supplementary Table 3). Samples showing over 30 million reads

were randomly subsampled down to this figure before the mapping

process due to hardware and computing time limitations. The

results were evaluated, and possible viral reads were considered

when they covered over 50% of the reference (virus assemblies).

2.4.4 Targeted approach
The last approach to find putative viral sequences was a targeted

search. We replicated the search used by Parry and Asgari (2019) to

find some crustacean and cephalopod flaviviruses. In this case, 17

viral WOAH listed diseases (cited in Figure 1) affecting aquatic

species were considered to find their expression in the molluscan

transcriptomes available in public databases. Polymerases or

polyproteins of these viral agents were retrieved from the Protein-

NCBI database and BLASTed (tBLASTn) to TSA-NCBI

(Transcriptome Shotgun Assembly). The subject database was

restricted to the “mollusks (taxid:6447)” taxa, and the e-value

threshold was set at 1e-10. Putative viral contigs were retrieved to

run a new BLAST against nrNCBI to check the alignments and

the assignations.
2.5 Phylogenetic analyses

All the RdRp domains detected in this work were identified and

taxonomically classified by BLAST homology to nrNCBI.

Moreover, the RdRp proteins of the viral families detected in this

work were downloaded from the RefSeq database. These sequences

(along with those detected by us) were tested to find the best model

of evolution (IQ-TREE web server; Kalyaanamoorthy et al., 2017).

Moreover, the same IQ-TREE server allowed us to run a maximum

likelihood analysis with an ultrafast branch support analysis with

1,000 bootstrap replicates (Nguyen et al., 2015). The resulting trees

were edited using the iTOL online tool (Letunic and Bork, 2021).

The ICTV (Walker et al., 2021) and NCBI (Schoch et al., 2020)

taxonomy browsers were used for viral taxonomic classification

purposes. Moreover, Virus−Host DB was used to check the range of

hosts corresponding to identified viruses (Mihara et al., 2016).
3 Results

3.1 Analysed data

In the present work, we searched the SRA archive to retrieve a

representative number of Mollusca transcriptomic datasets of

interest. The selection process took into account the following

features: RNA-seq samples with a posting date after 2014,

characterized by paired-read layout and sequenced using Illumina

technology. Other information also considered was the geographic

origin, which included a wide range of tissues and a representative

number of species of each class of mollusks. From 179 NCBI
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Bioprojects, 55 SRA files were ultimately selected to run the

analysis (information on the analyzed datasets is provided in

Supplementary Table 1). The geographical distribution of samples

analyzed in this virome study is shown in Figure 2A. These datasets

included 21 samples from bivalves, 15 from gastropods and 19 from

cephalopods. Some of them are relevant for the seafood industry

(Crassostrea gigas, Octopus vulgaris, Haliotis rufescens), others

show remarkable immune resistance to pathogens (Mytilus

galloprovincialis), and others are very susceptible to viral diseases

(C. gigas, Haliotis discus and Haliotis diversicolor). Samples

included 17 different tissues, each one relevant to several

biological functions (gills as the first tissue in contact with

microorganisms in filter-feeding bivalves, hemocytes as immune

cells, digestive gland as a digestive organ and where toxin

accumulation takes place, etc.) from 16 geographical origins,

which may have different microbiomes (Figure 2B).
3.2 Viral domains detected in RNA-seq files

After a Pfam domain scan of the 55 de novo assemblies, 447

domains related to viral proteins were identified (Supplementary

Table 4). Most of these domains were ascribed to a specific viral

family in the InterPro database (Blum et al., 2021), which allowed a

description of the viral families found in each of the mollusk species

under study (Figure 3). This analysis showed several patterns; for

example, domains associated with the Reoviridae family

were detected only in bivalves (M. chilensis, M. edulis, M.

galloprovincialis and P. maximus). Another case is the family

Herpesviridae, which was almost absent in cephalopods (detected

only in Octopus kaurna) and mostly identified in bivalves and

gastropods (Figure 3, Supplementary Table 4). Baculoviridae-,

Retroviridae- and Parvoviridae-related domains were detected in

almost all the studied mollusks. Finally, domains associated with

Rhabdoviridae were found in half of the cephalopod species

investigated and were absent in gastropods.

Focusing on the RNA-dependent RNA polymerase (RdRp)

domains, 20 domains were found. The SRA files showing these

domains are listed in Table 1. This table also lists the domain ID,

the signature description and the e-value of the detection. Among

samples, the abundance of RdRp domains detected in cephalopods is

highlighted (65% of the detected domains RdRp corresponded to

these mollusks). Comparing our result to the Serratus project (Edgar

et al., 2022), some detections matched (Flaviviridae in Idiosepius

notoides, Rhabdoviridae in Hapalochlaena maculosa, and

Marnaviridae in Argopecten purpuratus). However, some RdRp

domains identified by the Serratus project were not found in our

analysis (Alphaflexiviridae-1 and Marnaviridae-2; Table 1); in

contrast, 17 RdRp domains were found in our analysis and were

absent in the Serratus database, increasing the information in terms

of viral domain detection (details in Table 1).

This analysis also helped us to find contigs containing two or

more viral domains, allowing us to identify some complete or nearly

complete viruses that will be reported in the following sections.
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3.3 Viral sequences detected by
other approaches

The BLASTn/C-RVDB search approach allowed us to identify

sequences with high similarity to previously detected viruses.

Similarly, the read mapping approach identified well-conserved

viruses that were already found by some of the other methods.

Finally, although the WOAH targeted search did not allow us to

find notifiable viruses in mollusks, it served as search bait to identify

some other putatively new viruses not found with the other

methods. Detailed information on the results of these approaches

can be found in Supplementary Table 5.
3.4 Virus identification

All the contigs identified as viral sequences by any of the search

methods were retrieved and BLASTed against nrNCBI (BLASTx) to

confirm and classify the putative viruses (Supplementary Table 5). A

total of 50 viruses were identified in the whole set of transcriptomes

studied. Interestingly, the domain search allowed the identification of

over 58% of the putative viruses, making the approach more valuable

in this sense (Figure 4A). In contrast, the read mapping approach

showed to be the most stringent method, according to the

characteristics of the bioinformatic technique (mapping versus

BLAST). It is also noteworthy that there was a lack of overlap

among the methods (Figure 4B), which means that it is necessary

to use several strategies to perform a comprehensive analysis.
Frontiers in Marine Science 05
A summary of the results obtained with all the methods is

shown in Supplementary Figure 1. The cephalopods Amphioctopus

fangsiao and Idiosepius notoides were the species showing the

highest number of viral detections (25% out of all the detections;

Supplementary Figure 1). The rest of the cephalopods as well as

bivalves and gastropods showed similar numbers. In turn, larval

samples (mainly belonging to cephalopod samples) revealed the

highest number of viruses, followed by visceral mass and brain (the

three samples/tissues account for 50% of identifications;

Supplementary Figure 1). Finally, in terms of origin, samples

from Germany, China and Chile were the most relevant because

they showed the most viruses (Supplementary Figure 1).

All of the identified viral sequences could be divided into three

groups: i) sequences from putative contaminant viruses, ii)

sequences from viruses already detected in mollusks (viruses

showing sequence identity higher than 90% to other sequences

available in public databases), and iii) new candidate viral sequences

detected in this work (identity under 90% to the NCBI database).

In the first group, we found mammalian retroviruses, avian

viruses and plant viruses. All of these sequences showed high

identities to sequences deposited in public databases (Goose

dicistrovirus, Cactus virus X or Murine leukemia virus), possibly

constituting environmental or reagent contaminants, as previously

reported (Asplund et al., 2019; Cobbin et al., 2021).

In the second group, some viruses previously reported in

mollusks were found. This is the case for the Southern pygmy

squid flavivirus, found by Parry and Asgari (2019) in the same RNA

sample. Moreover, sequences highly similar to Biomphalaria virus 5
B

A

FIGURE 2

(A) Geographical distribution of samples analyzed in this virome study. The data legend indicates the number of SRA datasets studied. Circular
graphs show the number of analyzed gastropods, bivalves and cephalopods from each geographic territory. (B) Summary of analyzed data.
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(93% identity) were found in our work in Biomphalaria pfeifferi

samples. Another virus usually found in gastropods is the Abalone

herpesvirus type 2 Taiwan, also detected in our work in Haliotis

diversicolor hemocytes. Taxonomically unclassified viruses such as

Wenzhou gastropod virus 2, previously detected in clams, were also

detected in our study in R. philippinarum samples from China and

Spain. Finally, sequences named Adintovirus and Xenomavirus

previously found in some bivalves, but for which no details are

available, were also found in our work.

In the third group, 33 different putative new viruses belonging

to 14 families were found in the mollusk transcriptomes (Table 2)

and named according to their putative classification (sequences in

the Supplementary Table 6). In bivalves, viral sequences similar to

viruses belonging to the families Aliusviridae (Bivalve alius-like

virus 1), Dicistroviridae (Bivalve dicistro-like virus 1), Nodaviridae

(Bivalve noda-like virus 1-2) and Picornaviridae (Bivalve picorna-

like virus 1-2) were identified. Moreover, 4 yet unclassified viruses

(Bivalve RNA virus 1-4) were detected in different species.

In gastropods, viruses included in the families Asfarviridae

(Gastropod asfa-like virus 1), Bromoviridae (Gastropod

bromovirus-like 1), Dicistroviridae (Gastropod dicistrovirus-like

1), Nodaviridae (Gastropod noda-like virus 1-2), Rhabdoviridae

(Gastropod rhabdo-like virus 1) and Totiviridae (Gastropod

totivirus-like 1) were identified. One unclassified virus (Gastropod

RNA virus 1) was also detected.
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In cephalopods, viruses putatively belonging to the families

Myriaviridae (Cephalopod myriavirus-like 1), Orthomyxoviridae

(Cephalopod orthomyxovirus-like 1), Rhabdoviridae (Cephalopod

rhabdo-like virus 1-9), Tobaniviridae (Cephalopod tobanivirus-like

1-2) and some unclassified viruses (Cephalopod RNA virus 1-2)

were identified.

Among these viruses, some Asfarviridae viruses have been

previously identified in gastropods, such as the Abalone asfa-like

virus. Additionally, totivirus has been found in Biomphalaria spp.,

and viruses belonging to the family Dicistroviridae in bivalves

(Bivalve RNA virus G1-G5). Moreover, sequences fitting to viral

families usually detected in insects such as Aliusviridae and

Myriaviridae were also identified in our mollusk dataset (Bivalve

alius-like virus 1 and Cephalopod myriavirus-like 1).

The family Nodaviridae constitutes another relevant viral

family detected in our search. We detected some noda-like viruses

in 4 mollusk transcriptomes (Table 2) from Embletonia pulchra,

Ruditapes philippinarum, Gigantidas vrijenhoeki and Hemifusus

tuba. Among these viruses, the one found in E. pulchra was the

most similar to Macrobrachium rosenbergii nodavirus, showing

45% sequence homology.

The most striking case was the detection of sequences belonging

to the family Rhabdoviridae. Ten different rhabdoviruses could be

related to the sequences identified in our work. Most of them were

found on cephalopod samples (Cephalopod rhabdo-like viruses 1-
FIGURE 3

Histogram showing viral families detected in each species based on the specific domains detected by InterProScan.
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TABLE 1 RdRp domains detected by InterProScan.

Assembly Species Signature
accession

Signature description E-value Serratus.io Assembly prediction score
in Serratus

SRR10397649 Limnoperna
fortunei

PF00946 Mononegavirales RNA dependent
RNA polymerase

2.4E-08 – –

SRR11015438 Anentome helena PF02123 Viral RNA-directed RNA-
polymerase

2.2E-28 – –

SRR11558422 Spirula spirula PF00946 Mononegavirales RNA dependent
RNA polymerase

1.4E-28 – –

SRR12708748 Littoraria flava PF00680 Viral RNA-dependent RNA
polymerase

6.3E-48 – –

SRR13856999 Octopus sinensis PF00978 RNA dependent RNA polymerase 6.1E-47 – –

SRR13856999 Octopus sinensis PF00946 Mononegavirales RNA dependent
RNA polymerase

8.3E-15 – –

SRR1507221 Octopus vulgaris PF00946 Mononegavirales RNA dependent
RNA polymerase

5.1E-44 – –

SRR15204602 Amphioctopus
fangsiao

PF00946 Mononegavirales RNA dependent
RNA polymerase

3.9E-24 – –

SRR16685192 Onchidium
reevesii

PF00336 DNA polymerase (viral) C-terminal
domain

6.4E-73 – –

SRR2047122 Octopus
bimaculoides

PF00978 RNA dependent RNA polymerase 7.3E-73 – –

SRR2047122 Octopus
bimaculoides

PF00946 Mononegavirales RNA dependent
RNA polymerase

1.1E-15 – –

SRR2984343 Idiosepius
notoides

PF00972 Flavivirus RNA-directed RNA
polymerase

4.1E-52 Flaviviridae-27 100

SRR2984343 Idiosepius
notoides

PF00978 RNA dependent RNA polymerase 5.4E-31 – –

SRR3105322 Octopus kaurna PF00946 Mononegavirales RNA dependent
RNA polymerase

3.1E-16 – –

SRR3105556 Hapalochlaena
maculosa

PF00946 Mononegavirales RNA dependent
RNA polymerase

1.5E-40 Rhabdoviridae-16 78

SRR3105559 Hapalochlaena
maculosa

PF00946 Mononegavirales RNA dependent
RNA polymerase

1.2E-51 – –

SRR3105561 Hapalochlaena
maculosa

PF00946 Mononegavirales RNA dependent
RNA polymerase

2.9E-50 – –

SRR7462276 Ruditapes
philippinarum

PF00978 RNA dependent RNA polymerase 3.5E-14 – –

SRR7993940 Argopecten
purpuratus

PF00680 Viral RNA-dependent RNA
polymerase

4.7E-22 Marnaviridae-2 76

SRR7993940 Argopecten
purpuratus

PF00978 RNA dependent RNA polymerase 6.7E-09 – –

SRR7462276 Ruditapes
philippinarum

– – – Alphaflexiviridae-
1

100

ERR3077388 Hemifusus tuba – – – Marnaviridae-2 64

ERR3077388 Hemifusus tuba – – – Unc2106 51
F
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The E-value column shows the level of positive identification after the domain scan process. The Serratus.io column shows the viral identification in that project (Edgar et al., 2022), and the
following column is the detection score.
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9), and only one member of this family was found in the gastropod

Elysia cornigera (Gastropod rhabdo-like 1) (Table 2).

Some of these putative newly detected viruses were complete or

nearly complete, showing a well-defined domain structure

(Figure 5). Six of them contained the RdRp domain used for

further phylogenetic analyses.
3.5 RdRp domain and
phylogenetic analyses

According to the relevance of RdRp as an essential protein

encoded in the genomes of most RNA viruses, the sequences
Frontiers in Marine Science 08
detected in this work were identified and taxonomically

classified by BLAST homology to nrNCBI. These RdRp

sequences belonged to the order Picornavirales and the

families Rhabdoviridae, Bromoviridae, Totiviridae, Aliusviridae

and Nodaviridae. After screening the public databases, some

phylogenetic analyses, including sequences found in mollusks

and reference sequences available in the RefSeq database,

were performed.

All the sequence groups were evaluated to determine the best

model of evolution. After finding the best models, maximum

likelihood phylogenies were run, and Figure 6 shows the results

of the analysis. Notably, some of the sequences studied showed a

high number of changes with respect to the available sequences
B

A

FIGURE 4

(A) Comparison of all the methods used in this work to find viral sequences in 55 SRA and 7 TSA-NCBI files. (B) Venn diagram showing shared and
exclusive viruses identified by each method.
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(Totiviridae, Bromoviridae and Aliusviridae sequences). In

contrast, in the case of the Nodaviridae-like sequences found in

mollusks, they grouped in branches between the Alpha- and

Betanodavirus sequences, following the great divergence

between vertebrate and invertebrate hosts. Finally, it is

noteworthy that cephalopod Rhabdoviridae viruses, one of the

most abundant viral families found in the analysis, provide

relevant new information about the Rhabdovirus evolution.
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4 Discussion

Viruses constitute a relevant part of the oceans’ microbiome

(Suttle, 2007), affecting the composition of other microorganisms,

as well as the biogeochemical cycles, and directly or indirectly

influencing the health of plants and metazoans (Marx, 2022). Over

the last decade, several studies have tried to define the diversity and

abundance of viruses in marine environments.
TABLE 2 New putative viruses detected in RNA-seq datasets from mollusks.

Class Viral family Virus Mollusk species Geographical origin Tissue

Bivalve

Aliusviridae Bivalve alius-like virus 1 Limnoperna fortunei Brazil Gonad

Dicistroviridae Bivalve dicistro-like virus 1 Argopecten purpuratus Chile Digestive gland

Nodaviridae
Bivalve noda-like virus 1 Ruditapes philippinarum France Larvae

Bivalve noda-like virus 2 Gigantidas vrijenhoeki India Several tissues

Picornaviridae
Bivalve picorna-like virus 1 Argopecten purpuratus Chile Digestive gland

Bivalve picorna-like virus 2 Argopecten purpuratus Chile Digestive gland

Unclassified Riboviria

Bivalve RNA virus 1 Argopecten purpuratus Chile Digestive gland

Bivalve RNA virus 2 Congeria kusceri Croatia Several tissues

Bivalve RNA virus 3 Perna viridis China Digestive gland

Bivalve RNA virus 4 Potamilus streckersoni USA Several tissues

Gastropod

Asfarviridae Gastropod asfa-like virus 1 Haliotis diversicolor China Haemocytes

Bromoviridae Gastropod bromovirus-like 1 Phylliroe bucephala USA Several tissues

Dicistroviridae Gastropod dicistrovirus-like 1 Littoraria flava Brazil Several tissues

Nodaviridae
Gastropod noda-like virus 1 Hemifusus tuba China Visceral mass

Gastropod noda-like virus 2 Embletonia pulchra Germany Several tissues

Rhabdoviridae Gastropod rhabdo-like virus 1 Elysia cornigera Germany Several tissues

Totiviridae Gastropod totivirus-like 1 Anentome helena Austria Digestive gland

Unclassified Riboviria Gastropod RNA virus 1 Rapana venosa China Larvae

Cephalopod

Myriaviridae Cephalopod myriavirus-like 1 Amphioctopus fangsiao China Larvae

Orthomyxoviridae Cephalopod orthomyxovirus-like 1 Sepioloidea lineolata Australia Arms

Rhabdoviridae

Cephalopod rhabdo-like virus 1 Amphioctopus fangsiao China Larvae

Cephalopod rhabdo-like virus 2 Hapalochlaena maculosa Australia Salivary Gland

Cephalopod rhabdo-like virus 3 Hapalochlaena maculosa Australia Gills

Cephalopod rhabdo-like virus 4 Hapalochlaena maculosa Australia Mantle

Cephalopod rhabdo-like virus 5 Octopus bimaculoides USA Several tissues

Cephalopod rhabdo-like virus 6 Octopus kaurna Australia Mantle

Cephalopod rhabdo-like virus 7 Octopus sinensis China Larvae

Cephalopod rhabdo-like virus 8 Octopus vulgaris Spain Haemocytes

Cephalopod rhabdo-like virus 9 Spirula spirula Australia Mantle

Tobaniviridae
Cephalopod tobanivirus-like 1 Idiosepius notoides Australia Brain

Cephalopod tobanivirus-like 2 Octopus bimaculoides USA Several tissues

Unclassified Riboviria
Cephalopod RNA virus 1 Idiosepius notoides Australia Brain

Cephalopod RNA virus 2 Octopus sinensis China Larvae
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FIGURE 6

RdRp maximum likelihood analysis. Sequences identified in this work are highlighted in color (gastropods: red, cephalopods: green and bivalves:
yellow). Purple circles indicate branches with over 70% support by bootstrapping.
FIGURE 5

Domain organization of the 9 full or almost complete viral sequences detected in this work.
Frontiers in Marine Science frontiersin.org10

https://doi.org/10.3389/fmars.2023.1209103
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Rey-Campos et al. 10.3389/fmars.2023.1209103
With the main objective of defining abundance and identifying

viral diversity, sequencing methods have allowed several extensive

studies involving oceanic expeditions and testing samples

distributed throughout the oceans, including even the Arctic

region (Brum et al., 2015; Roux et al., 2016; Gregory et al., 2019;

Dominguez-Huerta et al., 2022). This enormous amount of data

uncovered the viral biodiversity in oceans around the globe.

Mollusks, the taxa under study in this work, constitute a

widespread group of invertebrates inhabiting a wide variety of

habitats (freshwater, marine and terrestrial environments). Their

study has become relevant because they are valuable as

bioindicators (Chaudhary et al., 2022; De Silva et al., 2022;

Gonçalves et al., 2022; Jong et al., 2022; Lemos et al., 2022;

Pokhrel et al., 2022) and because many mollusk species are

important in the aquaculture industry, as is the case for mussels,

oysters, clams and abalones, representing 23% of total aquaculture

production (FAO, 2022). It is important to highlight the habit of

consuming some uncooked food, being a potential risk for human

health (Prato et al., 2004; Guyader et al., 2008; Lattos et al., 2021).

Well-demonstrated cases of norovirus, causing gastroenteritis and

hepatitis A virus, highlight the importance of detection in samples

of commercial interest.

Marine mollusks exposed to the aforementioned diversity of

viruses could be a good model to study invertebrate immunity

(Qiao et al., 2021b; Qiao et al., 2021a).

Characterizing mollusk viruses without the availability of cell

lines is a challenge (Renault and Novoa, 2004). Arzul et al. (2017)

reported molecular techniques and histologic approaches to study

some of the most relevant viruses affecting some mollusks (oyster,

abalone and scallop), but they highlighted the great difficulty

resulting from the lack of tools. Despite this obstacle, there are

some known viral pathologies that have caused serious problems in

the aquaculture industry (Renault et al., 2014; Bai et al., 2015; Bai

et al., 2016; Kim et al., 2019).

Massive sequencing studies are increasingly enabling the

identification of pathogens. Frequently, the screening of data

available in public databases allows the identification of putative

new viruses and already known and well-classified viruses. This is

the case for several pioneering studies performed in bivalves

(Rosani and Gerdol, 2017; Rosani et al., 2019) and nudibranchs

(Rosani, 2022). Some of these identified viruses were the Wenzhou

gastropod virus 2 in Ruditapes philippinarum samples, a virus that

we also found in several samples analyzed in our study. We detected

this virus in Hemifusus tuba, a gastropod sampled in China, a

different location from the two previous clam detections (Spain

and USA).

After exploring different genomic tools and comparing our

results to those of other studies (i.e., the Serratus project, Edgar

et al., 2022), it is apparent that the different approaches and search

algorithms are complementary. A domain scan approach seems to

be a successful method since the high level of molecular variation of

viruses, especially RNA viruses (Peck and Lauring, 2018; Sanjuán

and Domingo-Calap, 2021), and their low representation in

databases is an obstacle added to the lack of tools such as

molluscan cell lines. Moreover, strategies based on domain

searches result in some identifications of DNA viruses inserted in
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host genomes. Recently, the widespread genomic distribution of

eukaryotic transposons showing hallmarks typical of some dsDNA

viruses was assessed (Starrett et al., 2021). These transposable

elements, easily identified as viral domains, are common in

eukaryotic genomes. This could also be the case for Mytilus

Mediterranean mussel adintovirus, found in Mytilus spp. in our

work and considered a genomic transposon in the work of Starrett

et al. (2021). This type of genomic element remains poorly studied

in mollusks, and further research is necessary.

Another caution in this type of study should be the detection of

contaminant viruses. For instance, depending on the biology of the

host, it might be common to find viruses associated with food such

as plants or algae in the case of some mollusks. Other common

contaminants are those associated with laboratory reagents.

Asplund et al. (2019) and Cobbin et al. (2021) reported a list of

viruses found in specific reagents, including some retroviruses and

parvoviruses. We detected some of these viruses, being Parvovirus

domains extensively found in our mollusk dataset (30% of analyzed

transcriptomes showed sequences identified as Parvovirus); hence,

this detection could be associated with the use of certain reagents

(e.g., library preparation kits, culture media) during the

development of the experiments.

After considering all the results obtained with the different

approaches, differences were found among species in terms of viral

number and diversity, but no predominance of detection was

observed when comparing the three classes of mollusks. Larvae,

visceral mass and brain showed the majority of viral domains and

sequence detection. Most viruses detected in gills were from bivalve

samples, which was somewhat expected due to the filter-feeding

biology of these animals (Musella et al., 2020; Li et al., 2022). In

regard to the environment, 10% of the samples were from

freshwater locations. We detected an Aliusviridae-like virus in

Limnoperna fortunei and a Totiviridae-like virus in Anentome

helena. There is little information on these viruses infecting

mollusks, thus further analyses including more samples are needed.

Picorna-like viruses (Picornavirales), nodaviruses (Nodamuvirales)

and rhabdoviruses (Mononegavirales) (Figure 7) were the most

detected viruses in our mollusk dataset. Picorna-like viruses

constitute a highly diverse and poorly defined group but are widely

found in association with eukaryotes and in the marine environment

(Culley et al., 2003; Culley et al., 2006). Nervous necrosis virus (NNV-

Betanodavirus) is responsible for mass mortalities in the aquaculture

industry worldwide, affecting approximately 30 fish species, with great

economic and environmental impacts (Munday et al., 2002; Costa and

Thompson, 2016). Moreover, Alphanodavirus also affects insects

(Dasmahapatra et al., 1985; Warrilow et al., 2018) and other

invertebrates, such as crustaceans, causing major economic losses

(Ho et al., 2018; Xu et al., 2020; Xia et al., 2022). Previous works

have referred to the detection of this viral family in several mollusks,

indicating ubiquity in the marine environment (Gomez et al., 2008;

Volpe et al., 2018; Bitchava et al., 2019). In some cases, infectivity of

NNV taken frommollusk reservoirs has been demonstrated, indicating

a serious risk for outbreaks in susceptible cultured fish (Gomez et al.,

2010). We detected nodavirus sequences in several mollusks:

Hemifusus tuba (Gastropod noda-like virus 1), Embletonia pulchra

(Gastropod noda-like virus 2), Ruditapes philippinarum (Bivalve noda-
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like virus 1) andGigantidas vrijenhoeki (Bivalve noda-like virus 2). This

last species is a vent mussel, showing the great diversity of locations and

species that can be in contact with these viruses (Ryu et al., 2021).

Finally, cephalopod samples showed a remarkable number of

rhabdoviruses (named Cephalopod rhabdo-like virus 1-9 in the

present work).Three aquatic rhabdoviruses, spring viremia of carp

virus (SVCV), infectious hematopoietic necrosis virus (IHNV) and

micropterus salmoides rhabdovirus (MSRV), cause severe diseases

among farmed fish species. Scarce information on viruses infecting

and causing pathologies in cephalopods has been reported (Gestal et al.,

2019). These animals are of great interest because of their economic

value (4 million tons of catches per year worldwide on average; FAO).

Among the studied cephalopods, severalOctopus spp. with commercial

interest showed the presence of rhabdoviruses (Cephalopod rhabdo-

like virus 5-8), which would imply an economic risk and an

explanation for possible drops in population counts.

Thus, these analysis tools might have to be incorporated into

fishery resource exploitation works. Additionally, the novel

rhabdovirus group found in cephalopods needs to be considered

in future research, either as part of the large reservoir that

constitutes the group of mollusks or as a cause of possible

unknown pathologies of wild populations. This is especially

interesting given the aforementioned economic relevance of

cephalopods and their use as experimental models due to their

high neuronal complexity.

In summary, a meta-analysis was conducted to find viral

sequences to continue describing the Mollusca virome. Domain

search allowed us to find the majority of viruses, but several search

methods needed to be explored. The mollusks in which more

viruses were found were cephalopods.

Among the 50 viruses detected, 33 were considered putative

new viruses according to their divergence with respect to those

deposited in the databases. The most relevant were the single-
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stranded RNA viruses: picorna-like virus, noda-like virus and

rhabdo-like virus, being the rhabdo-like viruses clearly associated

with cephalopod samples.

This work support massive sequencing techniques as a great

tool to monitor and diagnose pathogens to foresee and explain

potential massive mortalities. Moreover, the great diversity of

viruses in the oceans is also reflected here, as well as the

requirement of using several computer-based analysis tools to

obtain more comprehensive results.
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