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The RIP homotypic interaction motif (RHIM) is an essential
protein motif in inflammatory signaling and certain cell death
pathways. RHIM signaling occurs following the assembly of
functional amyloids, and while the structural biology of such
higher-order RHIM complexes has started to emerge, the
conformations and dynamics of nonassembled RHIMs remain
unknown. Here, using solution NMR spectroscopy, we report
the characterization of the monomeric form of the RHIM in
receptor-interacting protein kinase 3 (RIPK3), a fundamental
protein in human immunity. Our results establish that the
RHIM of RIPK3 is an intrinsically disordered protein motif,
contrary to prediction, and that exchange dynamics between
free monomers and amyloid-bound RIPK3 monomers involve a
20-residue stretch outside the RHIM that is not incorporated
within the structured cores of the RIPK3 assemblies deter-
mined by cryo-EM or solid-state NMR. Thus, our findings
expand on the structural characterization of RHIM-containing
proteins, specifically highlighting conformational dynamics
involved in assembly processes.

Polymerization into higher-order supramolecular com-
plexes is essential to mammalian innate immunity pathways
(1). Upon recognition of pathogen- or danger-associated mo-
lecular patterns, death domains (DDs), Toll/IL-1 receptor
(TIR) domains, and RIP homotypic interaction motifs
(RHIMs) assemble homotypically (i.e., DD with DD, or RHIMs
with RHIMs) to signal for distinct immune responses, from
proinflammatory cytokine production to activation of tran-
scription factors and to cell death. Mechanistic insights can
now be inferred by contrasting the structures of these proteins
in their monomeric and in their complexed, active states (2).
This has established that while DDs do not undergo structural
changes upon assembly (2), TIR domains exhibit rearrange-
ments at the TIR:TIR contact surfaces while the native
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flavodoxin-like fold is maintained (3, 4). Unlike DD- and TIR-
mediated assembly, which consists of well-folded domains
arranged into ring-shaped or filamentous higher-order as-
semblies, RHIM-mediated polymerization occurs through a
dramatically different mechanism, namely amyloid signaling
(5), with the formation of β-structure concomitantly with
recruitment of monomers into the fibrillar form. This assem-
bly concentrates other functional, folded domains within the
signaling complex. The amyloid-forming domains of two
RHIM-containing proteins, RIPK1 and RIPK3, have been
structurally studied in the complexed, fibril state (6, 7),
whereas the monomeric state of these proteins remains
structurally elusive.

The RIPK3 RHIM was reported in 2002 as a hydrophobic
stretch comprising 16 residues (448–464), and key to the
interaction with RIPK1, although residues outside this RHIM
core region were also shown to be required for the mutual
interaction of the RIPK1 and RIPK3 RHIMs (8). The RIPK3
RHIM was predicted then to adopt a β-hairpin with a turn
composed of residues 454 to 457 (8). Solid-state NMR
(SSNMR) and cryo-electron microscopy (cryo-EM) data
collected on RIPK3 amyloids formed by a longer C-terminal
construct (residues 387–518) consistently detect only residues
within the core of the RHIM, supporting the prediction that
the remaining parts of the protein C-terminal region are un-
structured (6, 7). The lack of structural information on RHIM
monomers and the mechanism of RIPK3 incorporation into
the amyloid form poses a major limitation to understanding
initiation of RHIM-mediated innate immunity pathways and
programmed cell death.

Both SSNMR and cryo-EM structural models of RIPK3
homo-amyloids established that the RIPK3 RHIM adopts
essentially identical conformations in fibrils assembled in ac-
etate buffer (at pH 4–5) or under quasi-physiological condi-
tions (in phosphate buffer at pH 7) (7). In this
Communication, we report successful reconstitution and
characterization of tag-free, soluble RIPK3 (387–518) under
both amyloid-forming and nonamyloid-forming conditions,
identifying the RHIM-encompassing region of RIPK3 C-ter-
minal to the kinase domain as intrinsically disordered in the
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monomeric soluble form, contrary to predictions, and afford-
ing identification of the set of residues involved in the as-
sembly of RIPK3 into the amyloid form associated with
necroptosis signaling.
Results

Building on prior studies that reported essentially identical
RIPK3 fibril structures in acetate buffer (at acidic pH) and in
phosphate buffer (at quasi-physiological pH) (7), we sought to
characterize the monomeric form of RIPK3 (387–518) over
this pH range in solution. To this end, lyophilized, isotopically
13C, 15N-labeled RIPK3 (387–518) monomer was dissolved in
8 M urea (pH adjusted to 6.5 or to 4.0) to ensure full solubi-
lization, and then buffer exchanged using gel filtration to
remove the denaturant, into 90:10 H2O/D2O solutions con-
taining 20 mM 2-(N-morpholino)ethanesulfonic acid (MES)
(final pH adjusted to 6.5) or 1 mM acetic acid (final pH
adjusted to 4.0). The 1H-15N heteronuclear single quantum
coherence (HSQC) spectra recorded on these protein samples,
whose final concentrations are in the range 18 to 20 μM,
revealed the typical pattern of disordered proteins. The peaks
map to a narrow region spanning ca. 1 ppm in the 1H
dimension, suggesting that the entire C-terminal domain of
RIPK3, including hydrophobic residues within the RHIM, is
chiefly disordered (Figs. 1 and S1).
Figure 1. 1H-15N HSQC spectra of 18 μM RIPK3 (387–518) at 25 �C and dif
with RHIM residues highlighted in bold, acidic residues in red, and basic residue
the pH was raised to 5.0, 5.5, and 6.5 through the addition of 100 mM sodium c
that RHIM residues, which are labeled in every spectrum and depicted with incr
overlay of the 1H-15N HSQC spectra recorded at the four pH values. HSQC, hete
RIPK3, receptor-interacting protein kinase 3.
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The spectra for the RIPK3 (387–518) sample in 20 mMMES
at pH 6.5 (Fig. S2) showed remarkably broader peaks than
those corresponding to the sample at pH 4.0 (Fig. 1). In fact,
when the pH of this latter sample was smoothly raised from 4.0
to 5.0, 5.5, and finally to 6.5 by small aliquots (0.5 μl each) of
100 mM Na2CO3, the corresponding 1H-15N HSQC spectra
revealed no significant peak shift in the RHIM region but
instead exhibited a marked decrease in signal intensities
(Fig. 2A).

These signal losses were quite inhomogeneous throughout
the RIPK3 (387–518) sequence, as gauged from the first
increment of the corresponding 1H-15N HSQC spectra
(Figs. 2A and S1). According to thioflavin T (ThT) assays, the
broadening and loss of intensity observed upon raising the pH
is consistent with the assembly of amyloid fibrils when the pH
is raised to 6.5 from pH 4.0 (Fig. 2B).

The RHIM is a hydrophobic stretch within a predicted
disordered domain (8), reminiscent of the hydrophobic α-helix
within the disordered domain of TAR DNA-binding protein
43 in which electrostatic repulsion at low pH opposes
hydrophobic-driven assembly (9). Indeed, the net charge of
RIPK3 (387–518) would increase from +3 to +9.8 upon
lowering the pH from 6.5 to 4.0, according to computational
predictions (https://protcalc.sourceforge.net). Within the
framework of such a charge model in which high electrostatic
protein–protein repulsion at low pH would prevent assembly,
screening of charges by, e.g., NaCl should provoke assembly
ferent pH values. The protein sequence is displayed on top of the spectra,
s in blue. Sample was initially prepared at pH 4.0 using 1 mM DAc, and then
arbonate, with 1H-15N HSQC spectra recorded at the various pH values. Note
eased saturation for clarity, do not shift upon raising the pH. Fig. S1 shows an
ronuclear single quantum coherence; RHIM, RIP homotypic interaction motif;

https://protcalc.sourceforge.net


Figure 2. Effect of pH, salt and concentration on RIPK3 amyloid assembly. A, first increments of the distinct 1H-15N HSQC NMR spectra of RIPK3
(387–518) at different pH values shown in Figs. 1 and S1. B, ThT fluorescence emission over time of 5 μM RIPK3 (387–518) in the absence and presence of
150 mM NaCl, at pH 4.0 and 6.5. C, ThT fluorescence emission spectra of RIPK3 (387–518) at different concentrations (pH 4, no NaCl). D, electron micrograph
of fibrils from (left) 100 μM RIPK3 (387–518) at pH 4.0 (0 mM NaCl, in the presence of preformed seeds)) and (right) 5 μM RIPK3 (387–518) at pH 6.5 (150 mM
NaCl, in the absence of preformed seeds). Scale bar 100 nm. HSQC, heteronuclear single quantum coherence; RIPK3, receptor-interacting protein kinase 3;
ThT, thioflavin T.
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just as in the pH 6.5 condition. Figure 2B shows that, indeed,
the addition of 150 mM NaCl promotes RIPK3 (387–518)
assembly into amyloid fibrils at pH 4.0 as indicated by the
rapid increase in ThT fluorescence intensity. Moreover, at pH
6.5, the addition of NaCl did not have such a marked effect on
the extent or rate of assembly (Fig. 2B).

Previous cryo-EM and SSNMR studies have shown that at a
high protein concentration (>300 μM), RIPK3 formed homo-
amyloid fibrils at low and higher pH values (7). By contrast,
our present work here shows that at a low protein concen-
tration, RIPK3 did not form fibrils at pH 4.0 in the absence of
NaCl (Figs. 2, B and C and S3). We reasoned that at high
protein concentrations, hydrophobic-driven protein assembly
would balance the electrostatic repulsion present at low pH.
Using ThT assays and transmission electron microscopy, we
confirmed that even at low pH and in the absence of NaCl,
RIPK3 readily assembles into fibrils as soon as the concen-
tration is raised (Fig. 2, C and D), thus reconciling with the
cited prior literature (7). Additionally, we observed that RIPK3
fibril assembly is possible at pH 4.0 in the absence of NaCl and
at low protein concentration if fibril seeds are present (Figs. 2D
and S4). The fibrils display an increased tendency to associate
J. Biol. Chem. (2023) 299(4) 104568 3
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into thicker bundles with increasing pH and the presence of
NaCl, likely due to reduced electrostatic repulsion (Figs. 2D
and S4). These results suggest that nucleation of fibril as-
sembly is hindered at pH 4.0, where electrostatic repulsion is
strong, but elongation and growth of fibrils is possible if the
nucleation barrier is overcome, whereas nucleation and elon-
gation both occur more readily when NaCl is present or at
high protein concentration.

The results from Figures 1 and 2 present a way to contrast
RIPK3 under amyloid-assembling and under nonamyloid-
assembling conditions. In other words, RIPK3 at low pH and
at low concentrations (18 μM) represents a nonassembling
state, whose assembly into amyloids can be triggered by either
addition of NaCl or by raising the pH. Alternatively, assem-
bling conditions are also achievable when the protein con-
centration is raised. Building on this screening of experimental
conditions, we sought to accomplish the NMR characteriza-
tion of RIPK3 (387–518) using concentrated (180–200 μM)
samples. All (100%) 13CA, 13CO, and 13CB nuclei, and 98.5% of
1HA were successfully assigned (Fig. 3A). Residues P395, P491,
and P492 are excluded from the statistics as they are
embedded in PP and PPP repeats, respectively.
Figure 3. NMR characterization of RIPK3 (387–518). A, 1H-15N HSQC spectra
(black, assembling-conditions) recorded on a 800 MHz spectrometer at pH
experimental (black circles) and predicted (gray circles) statistical coil 3JHNHA
(180 μM, assembling conditions) and a diluted (18 μM, assembling conditions
assembling and nonassembling conditions from R1ρ experiments. HSQC, heter
RIPK3, receptor-interacting protein kinase 3.

4 J. Biol. Chem. (2023) 299(4) 104568
No signs of secondary structure are detected in the mono-
meric form of RIPK3 in solution, according to the calculated
neighbor-corrected secondary structure propensities (Fig. 3B)
(10). The lack of structure in this population-weighted
ensemble was further established through 3JHNHA coupling
constants, whose values throughout the sequence matched
those typically observed in statistical coils (Fig. 3C). This result
contrasts with the β-hairpin originally predicted by Sun et al.
(8), the propensity for secondary structure within the core
RHIM region identified by nine different predictors (Fig. 3D),
and the β-structure seen in the amyloid RIPK1:RIPK3 complex
and RIPK3 homo-amyloid fibrils (6, 7). Now, in the era of
AlphaFold2 (11), we have revisited the structural predictions
for RIPK3 (entry Q9Y572). In particular, for the RHIM-
harboring C-terminal domain spanning residues 387 to 518,
AlphaFold2 gives very-low per-residue confidence score
(below 50), with a slight increase (from 50 to 70, with 70 the
confidence threshold of the method) for the RHIM region
(residues ca. 450–465). This appears to reflect the unstruc-
tured nature of the monomeric form of the RHIM and the
propensity of the core region to adopt β-structure upon as-
sembly into the amyloid form.
of RIPK3 (387–518) at 18 μM (red, nonassembling conditions) and 180 μM
4.0 and 25 �C. B, neighbor-corrected secondary structure propensities. C,
values. D, disorder predictions. E, intensity ratio between a concentrated
) sample. F, ΔR2 measurements as the difference in R2 rates obtained under
onuclear single quantum coherence; RHIM, RIP homotypic interaction motif;
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Despite the lack of a clear propensity toward adopting well-
defined structural elements in the monomeric form in solu-
tion, the 1H-15N HSQC of aged samples showed peak broad-
ening for residues within the RHIM region (Fig. 3A), in
agreement with the presence of this motif in the fibril core of
RIPK3 amyloids (6, 7). The intensity ratio between these two
samples under assembling and nonassembling conditions not
only confirmed the site of interaction at the RHIM but also
mapped a 20-residue stretch preceding the RHIM (Fig. 3E).
This result was intriguing, as it suggests that this flanking
segment N-terminal to the RHIM may establish protein–
protein intermolecular interactions during assembly (Fig. 3E),
although it remained invisible in cryo-EM or in SSNMR
studies of RIPK3-containing fibrils (7).

In order to establish whether monomers use this region
preceding the RHIM to directly interact with the fibril surface
in the amyloid-bound state, we prepared a 15N-labeled RIPK3
(387–518) sample to obtain the difference in transverse
relaxation rates, ΔR2, under assembling (at 180 μM) and
nonassembling (at 18 μM) conditions (Figs. 3F and S5). The
individual R2 rates on each sample were derived from R1ρ
measurements collected with a 2 kHz spin lock. Under these
conditions, the resulting ΔR2 (i.e., R2 at 180 μM minus R2 at
18 μM) identifies which residues in the monomer establish
specific contacts with the fibril during the dynamic equilibrium
between unbound and amyloid-bound monomers (Fig. 3F).
Discussion

The DD-, TIR- and RHIM-mediated assembly of higher-
order complexes signals initiation of immunity responses.
Unlike DD-mediated and TIR-mediated signaling, RHIM-
mediated signaling relies on functional homo-amyloid and
hetero-amyloid formation (5, 6, 12). Among RHIM-containing
proteins, RIPK3 is particularly important since it is central to
the assembly of both canonical and noncanonical amyloid
necrosomes to execute necroptosis (13). RHIMs are also
involved in apoptosis (14), and an increasing number of viral
proteins harboring RHIMs interfere with RHIM-mediated
human immunity through the assembly of human:viral
hetero-amyloids (12, 15, 16). Our manuscript presents the first
NMR assignments of a RHIM in its noncomplexed, mono-
meric form, and a first map of the conformational changes
associated with the conversion of this key protein into a
functional amyloid that signals for programmed cell death.
Since RIPK3 is the central protein player that transduces input
from all three necroptosis pathways into a signal for cell death,
such residue-level understanding of its monomer-to-amyloid
conversion will contribute to uncover which mechanism
operate in inflammation, fungal, bacterial, and viral infections.
Our results also provide robust evidence that the paradigmatic
RHIM of RIPK3 that is well-structured in assembled, signaling
complexes (6, 7) is chiefly disordered in the noncomplexed
state. More intriguing, our data reveal that in addition to the
RHIM, its preceding ca. 20-residue stretch readily established
contacts with the fibril surface in the assembled state. While
ongoing efforts will survey the impact of this “pre-RHIM”
region in modulating the assembly of both RIPK3 homo-
amyloids and hetero-amyloids, it should be stressed that this
region has not been detected in any of the previous cryo-EM or
SSNMR studies of RIPK3 fibrils, and neither has it been pre-
viously investigated in functional necroptosis assays.

Experimental procedures

Protein production and purification

The RIPK3 (387–518) construct was expressed as a (His)6-
ubiquitin-RIPK3 fusion protein, with a tobacco etch virus cleav-
age site between ubiquitin and RIPK3 (387–518). The uniformly
13C and/or 15N-labeled protein was expressed in a 1 l batch cul-
ture using a high cell density protocol as described in the
Supplementary Information section. For protein purification, cell
pellets were resuspended in lysis buffer (20 mM Tris, 150 mM
NaCl, 1 mM EDTA, pH 8.0) and sonicated on ice in 45 s bursts 3
to 5 times, followed by centrifugation at 16,000 rpm to obtain
insoluble protein pellet. The insoluble protein pellet was solubi-
lized with 6 M GuHCl, 20 mM Tris-HCl pH 8.0, and 5 mM β-
mercaptoethanol, and (His)6-ubiquitin-RIPK3 was purified using
Ni-NTA agarose (Life Technologies) under denaturing condi-
tions using 8 M urea, 100 mMNaH2PO4, 20 mM Tris, 5 mM β-
mercaptoethanol at pH 6.5 for washing and at pH 4.0 for elution.
(His)6-ubiquitin-RIPK3 (50 μM) was dialyzed out of urea-
containing buffer, into 25 mM NaH2PO4, 150 mM NaCl, pH
7.4, 0.5 mMDTT, to allow fibril assembly. After dialyzing for 1 h,
tobacco etch virus enzyme was added to the sample and dialysis
continued for a further 18 to 24 h. This resulted in cleavage of the
(His)6-ubiquitin tag from the fusion protein, leavingRIPK3fibrils.
The (His)6-ubiquitin tag was soluble, and the fibrils are insoluble;
thus, the two components were separated by centrifugation.
RIPK3 insoluble fibrils were then washed three times with water
to remove traces of (His)6-ubiquitin. Fibril samples were then
incubated in formic acid for 1 h to induce depolymerization and
to generate monomeric isotopically 13C, 15N-labeled
RIPK3(387–518)RIPK3.Thismaterial was lyophilized and stored
at −20 �C. NMR samples were subsequently prepared, as indi-
cated in the main text, by direct dissolution in the corresponding
buffers either with or without a desalting step.

Thioflavin T fluorescence

All ThT experiments were either performed in a POLARstar
Omega microplate reader (BMG Labtech) or using a Jobin-
Yvon Fluoromax-4 instrument. In the former case, fluores-
cence intensity was recorded using a 440 nm (±10 nm)
excitation filter and a 480 nm (±10 nm) emission filter. In the
latter, 2 nm excitation and emission slit widths were used
along with an excitation wavelength of 440 nm and fluores-
cence emission recorded over the range 450 to 550 nm at a
scan speed of 2 nm s−1. Data analysis was performed in
Microsoft Excel and GraphPad Prism. Samples were prepared
as detailed in the Supporting Information file.

Transmission electron microscopy

Samples for electron microscopy were prepared on for-
mvar–carbon–coated copper grids (200 mesh) (ProSciTech
J. Biol. Chem. (2023) 299(4) 104568 5
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Pty Ltd) by floating grids on protein-containing droplets for
1 min, then removing excess liquid and subjecting grids to
three water washes, before staining by floating on a droplet of
2% uranyl acetate solution, removing excess stain solution, and
air-drying overnight. Samples were examined with a FEI
Tecnai T12 electron microscope operating at 120 kV. Images
captured with a Veleta CCD camera and RADIUS 2.0 imaging
software (EMSIS GmbH).

NMR experiments

All NMR experiments were collected at 298 K on a Bruker
Avance Neo 800 MHz (1H frequency) spectrometer equipped
with a TCI cryoprobe and Z-gradients, on 13C,15N-RIPK3
samples. Samples were prepared by solubilization of the
lyophilized material into 8 M urea with 1 mM TCEP, at either
pH 4 or pH 6.5 depending on whether they were subsequently
desalted into 90/10 H2O/D2O containing 1 mM acetic acid
(final pH set to 4) or 20 mM MES (final pH set to 6.5), also
with 1 mM TCEP in all cases. In the case of the sample at pH
4, the pH was raised to 5.0, 5.5, and 6.5 using small amounts
(0.5 μl aliquots) of Na2CO3. The concentration of all the
samples was estimated to be 18 to 20 μM by UV absorbance.
Concentrated samples were prepared by directly dissolving the
lyophilized material into 90/10 H2O/D2O containing 1 mM
acetic acid (final pH set to 4) and 1 mM TCEP (final con-
centration of samples 180–200 μM). All information regarding
pulse sequences employed for backbone and side chain as-
signments as well as for 15 N relaxation studies are detailed in
the Supporting Information file.

Data availability

The dataset generated for this study have been deposited in
the Biological Magnetic Resonance Databank (BMRB) and are
accessible through accession number 51175 (https://bmrb.io/
data_library/summary/index.php?bmrbId=51175).

Supporting information—This article contains supporting informa-
tion (17–33).
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