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 2 

Abstract 28 

Antarctica is no longer pristine due to the confirmed presence of anthropogenic contaminants like 29 

Persistent Organic Pollutants (POPs). Benthic organisms are poorly represented in contamination 30 

studies in Antarctica although they are known to bioaccumulate contaminants. Sponges (Phylum 31 

Porifera) are dominant members in Antarctic benthos, both in terms of abundance and biomass, and 32 

are an important feeding source for other organisms, playing key functional roles in benthic 33 

communities. To the best of our knowledge, legacy chlorinated POPs such as polychlorinated 34 

biphenyls (PCBs), hexachlorobenzene (HCB), and dichlorodiphenyltrichloroethane (DDT) and their 35 

metabolites have never been investigated in this Phylum in Antarctica. The aim of this work was to 36 

evaluate the bioaccumulation of PCBs, HCB, o,p’- and p,p’-DDT and their DDE and DDD isomers 37 

in 35 sponge samples, belonging to 17 different species, collected along the coast of Terra Nova Bay 38 

(Adèlie Cove and Tethys Bay, Ross Sea), and at Whalers Bay (Deception Island, South Shetland 39 

Islands) in Antarctica. Lipid content showed a significant correlation with the three pollutant classes. 40 

The overall observed pattern in the three study sites was ΣPCBs>ΣDDTs>HCB and it was found in 41 

almost every species. The ΣPCBs, ΣDDTs, and HCB ranged from 54.2 to133.7 ng/g lipid weight (lw), 42 

from 17.5 to 38.6 ng/g lw and from 4.8 to 8.5 ng/g lw, respectively. Sponges showed contamination 43 

levels comparable to other Antarctic benthic organisms from previous studies. The comparison 44 

among sponges of the same species from different sites showed diverse patterns for PCBs only in one 45 

out of four cases. The concentration of POPs did not vary significantly among the three sites. The 46 

predominance of lower chlorinated organochlorines in the samples suggested that long-range 47 

atmospheric transportation (LRAT) could be the major driver of contamination as molecules with a 48 

high long range transport potential (e.g. low chlorinated PCBs, HCB) prevails on heavier ones. 49 
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 4 

Introduction 60 

 61 

Due to its geographical isolation and the absence of human activities, except for research, industrial 62 

fishing, and tourism, Antarctica and the Southern Ocean are usually regarded as one of the most 63 

pristine regions on Earth (Kim et al. 2015; Vecchiato et al. 2015; Vergara et al. 2019). Nevertheless, 64 

anthropogenic contaminants can reach Antarctica through long-range transport mechanisms. In fact, 65 

semi-volatile compounds are subjected to the global distillation process consisting of repeated 66 

evaporation and condensation events that can transport Persistent Organic Pollutants (POPs) far from 67 

their emission sources (Wania & Mackay, 1993). Once in the Polar Regions, amplification 68 

mechanisms such as cold condensation (Wania and Mackay, 1993) or snow scavenging (Casal et al. 69 

2019) result in a preferential accumulation of POPs in both the Arctic and Antarctica.  POPs fall out 70 

through dry or wet depositions but also enter marine ecosystems transported by global ocean currents 71 

(Casas et al. 2020; Casas et al. 2022) and from pack ice melting (Casal et al. 2019; Potapowicz et al. 72 

2019).  73 

Among legacy POPs, polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and 74 

dichlorodiphenyltrichloroethane (DDT) are the most studied worldwide (Stockholm Convention, 75 

2004). These persistent and toxic compounds, even if banned or restricted decades ago, are still found 76 

in every region worldwide, including Antarctica (Bargagli, 2008; Corsolini, 2009; Mello et al. 2016; 77 

Morales et al. 2022). Legacy POPs that may have been stored in the deeper layers of glaciers, 78 

perennial pack ice, and ice shelves may further be released during accelerated glacier melt due to 79 

climate change, becoming available again for bioaccumulation in the food webs (Ma et al. 2011; 80 

Potapowicz et al. 2019). Legacy contamination is increasingly being studied, as polar regions are 81 

experiencing some of the most rapid impacts of warming, acidification, and sea ice loss, and 82 

impacting benthic communities (Meredith et al. 2019; Brasier et al. 2021; Di Giglio et al. 2020; 83 

Figuerola et al. 2021, 2022). Bearing that in mind, it is valuable to keep studying the environmental 84 
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 5 

fate of legacy POPs, their transfer through the marine food webs and their potential effects in Arctic 85 

and Antarctic ecosystems.  86 

Antarctic food webs have peculiar characteristics: they are based on very few key species, such as 87 

the Antarctic krill Euphausia superba Dana 1950, and the Antarctic silverfish Pleuragramma 88 

antarctica Boulenger 1902, and thus they are likely fragile and vulnerable, with a very low resilience 89 

(Corsolini, 2009; Corsolini et al. 2017). Antarctic biota contamination studies have often focused on 90 

the most central species (E. superba, P. antarctica and penguins) of the pelagic food webs (Corsolini 91 

et al. 2002; Corsolini et al. 2017). Nevertheless, Southern Ocean benthic organisms are highly 92 

abundant, diverse, and able to bioaccumulate contaminants they are yet poorly represented in 93 

contamination studies (Di Giglio et al.  2020; Brasier et al. 2021; De Castro et al. 2021). 94 

Consequently, knowledge about pollutants accumulation among them is still scarce. This could be 95 

due to the complex logistic sampling in remote areas (e.g. scuba diving, trawling) and the 96 

concentrations of POPs being usually lower than those in other regions (Krasnobaev et al. 2020). 97 

Bates et al. (2017) found that HCB could be remobilised from benthic biota with increasing 98 

temperatures, therefore, especially under global climate change, benthic communities deserve more 99 

attention as they can represent potential secondary sources of legacy pollutants. In this context, there 100 

is an urgent need to identify suitable benthic bioindicator species for environmental pollution 101 

monitoring in polar regions. 102 

Among benthic organisms, the sponges (Phylum Porifera) represent a predominant component in the 103 

Antarctic benthos both in terms of abundance and biomass (Kersken et al. 2016), and are an important 104 

feeding source for many species such as sea stars, sea urchins, and nudibranch molluscs, thus playing 105 

a key role in the dynamics of the community (Dayton et al. 1974; Garcia et al. 1993; Iken et al. 2002; 106 

McClintock 1987, 2005; Cardona et al. 2021). They are suspension-feeders, able to filter thousands 107 

of litres of water per day (Vogel, 1977; Negri et al. 2006), with an excellent retention capacity 108 

allowing them to capture particles in a range of 0.2 – 50 µm, with a lower limit far less than most of 109 

the other filter-feeders (Perez et al. 2004; Batista et al. 2013). Therefore, they may potentially 110 
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 6 

accumulate large amounts of organic pollutants both in dissolved and suspended phases (Perez et al. 111 

2004).  112 

While sponges possess many traits of good bioindicators such as abundance, long lifespan (from years 113 

to millennia, Dayton, 1989; Gatti, 2002), large size (up to meters, Moran & Woods, 2012; van Soest 114 

et al. 2012), and efficient filtration capability (Rainbow, 1995), these organisms are less used than 115 

other filter-feeders as sentinels in biomonitoring programs (Genta-Jouve et al. 2012). This is probably 116 

due to their complex taxonomic identification compared to other common indicator species (Hooper 117 

& van Soest, 2002). However, some authors have already pointed out their potential and usefulness 118 

as indicators for trace elements and heavy metals (Perez et al. 2003; Negri et al. 2006; Batista et al. 119 

2014; Gentric et al. 2016), POPs (Perez et al. 2004; Negri et al. 2006; Gentric et al. 2016), and 120 

polycyclic aromatic hydrocarbons (Negri et al. 2006; Batista et al. 2013; Gentric et al. 2016). 121 

However, among the few studies currently available on POPs in Antarctic benthic organisms (e.g., 122 

Corsolini et al. 2003; Borghesi et al. 2011; Goutte et al. 2013; Grotti et al. 2016; Krasnobaev et al. 123 

2020), none includes sponges.  124 

The main objective of this study was therefore to assess the bioaccumulation of nineteen congeners 125 

of PCBs (including twelve dioxin-like congeners), the p,p’- and o,p’- isomers of DDT, and its main 126 

metabolites, DDD and DDE, as well as HCB (one of the POPs with the greatest atmospheric long-127 

range transport potential), in several species of Antarctic sponges collected in the Ross Sea between 128 

2001 and 2005 (Adèlie Cove; Tethys Bay) and in the Bransfield Strait in 2017 (Whalers Bay, 129 

Deception Island). Secondary objectives were: 1) to evaluate inter-specific differences in the 130 

accumulation patterns and to compare individuals belonging to the same species collected in three 131 

distinct sites; 2) to compare pollutant levels in three differently impacted areas. We expected: i) low 132 

levels of POPs in such organisms due to their low lipid content together with their trophic level, even 133 

with their filtration capability; ii) to find differences in the species-specific pattern due to the 134 

biological variability; iii) Whalers Bay to show higher concentrations than Ross Sea sites due to its 135 

closer geographical position to South America and the number of local sources (increasing tourism 136 
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 7 

and cruise ships in Deception Island, scientific stations, and its industrial past) that may affect POPs 137 

release. 138 

 139 

Materials and methods 140 

 141 

Study area and sponge species 142 

Sponge samples were collected at Whalers Bay (Lat. 62°59′0″ S, Long. 60°34′0″ W, Port Foster, 143 

Deception Island) in the South Shetland Islands archipelago (Bransfield Strait), and at Adèlie Cove 144 

(Lat. 74°45′51″ S, Long. 164°0′34″ E, Terra Nova Bay) and Tethys Bay (Lat. 74°40′60″ S, Long. 145 

164°4′0″ E, Terra Nova Bay) in the Ross Sea. Sampling areas are showed in Figure 1. Whalers Bay 146 

is a sandy beach located on Deception Island, an active volcano with a safe natural harbour, that was 147 

used by sealers as the first centre of their hunting activities during the 19th century (de Ferro et al. 148 

2013). Nearly a century later, it was the most extensive docking station for whale processing factories 149 

ships and housed the Hektor whaling station; the only land based commercial activity in Antarctic 150 

history (Dibbern, 2010). Nowadays, Whalers Bay is one of the most frequently visited locations in 151 

Antarctica by tourists (Dibbern, 2010; de Ferro et al. 2013) with >15,000 visitors per year (IAATO, 152 

International Association of Antarctica Tour Operators, 2018). Whalers Bay also hosts a well-153 

developed rocky area in the southernmost part, where a rich filter-feeder community is found 154 

(Angulo-Preckler et al. 2018). Moreover, the South Shetland Islands archipelago presents one of the 155 

highest concentrations of scientific stations in the world (Barnes et al. 2008) and Deception Island 156 

hosts two summer scientific stations, one from Argentina and one from Spain (Roura, 2012; de Ferro 157 

et al. 2013). The Western Antarctic Peninsula, where Whalers Bay is located, also represents one of 158 

the most impacted areas by industrial fishing (Aronson et al. 2011) that is also increasing in the 159 

Southern Ocean (Chown et al. 2015). 160 

Tethys Bay is a small inlet nearby the Italian Mario Zucchelli Station (MZS); here the sea bottom is 161 

covered by littoral sediments that consists of coarse sands, pebbles, and gravel (Cerrano et al. 2009). 162 
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 8 

Adèlie Cove is a 70-m depth V-shaped bay along the coast of Terra Nova Bay (Povero et al. 2001), 163 

with a bottom characterised by fine sediments rich in organic matter due to the presence of a breeding 164 

colony of Adèlie penguins (Cattaneo-Vietti et al. 2000). The bay is separated from the open sea by a 165 

12-15 m depth sill that represent a natural barrier to the in- and out-flows (Cattaneo-Vietti et al. 2000). 166 

Outside of that sill the bottom becomes coarser and consists of large pebbles (Povero et al. 2001), 167 

where benthic communities dominate and sponges show high diversity and biomass (Cattaneo-Vietti 168 

et al. 2000). Adèlie Cove is located South of the Italian base and far from any other anthropogenic 169 

contamination source. 170 

A total of 35 sponge specimens were collected in the Ross Sea (n = 25) and at Deception Island (n= 171 

10) (Table S1). The Ross Sea samples were collected during the austral summers 2001/2002 at Tethys 172 

Bay and 2004/2005 at Adèlie Cove, in the framework of the XVII and the XX Italian Expedition of 173 

National Research Program in Antarctica (PNRA), respectively. The sampling was conducted along 174 

longitudinal transects (at Adèlie Cove it was conducted outside of the described sill) at a depth of 60-175 

120 m by bottom trawls; samples were then stored in polyethylene bags. The Deception Island 176 

samples were collected by scuba diving at 15–20 m depth during the DISTANTCOM-2 Antarctic 177 

cruise in February 2017, wrapped individually in aluminium foils and stored in polypropylene bags. 178 

All the samples were stored at -20°C until laboratory analyses.  179 

All samples were identified at species-level (Table S1). The sponge species belong to two main 180 

classes: Hexactinellida and Demospongiae, most of them belonging to the second group (Table S1). 181 

Four species were found in both the Ross Sea sites (Table S1). Sponge samples were processed by 182 

standard methods (Rützler, 1978). Skeletal architecture was examined by light microscope. Hand-cut 183 

sections of the ectosome and choanosome were made following Hooper (2000). Taxonomic 184 

identifications were made using the Systema Porifera (Hooper & van Soest, 2002), the revision of 185 

Porifera classification of Morrow & Cárdenas (2015), and the World Porifera Database (WPD) (de 186 

Voogd et al. 2022). 187 

 188 
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 9 

Chemicals and residue analysis 189 

Samples were analysed for 19 PCB congeners including the IUPAC numbers 28, 52, 101, 138, 153, 190 

180, 194, and the dioxin-like IUPAC numbers 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 191 

189; HCB; the o,p’ and p,p’ isomers of DDT,  DDE, and DDD. 192 

Acetone, hexane (Scharlau, Sentmenat Spain), and dichloromethane (Honeywell Riedel-de-Haën™) 193 

purity grade >99,9% were used for glassware washing. During the sample preparation Acetone 194 

Pestinorm® supplied by VWR Chemicals (Leuven, Belgium) and n-hexane ultra resi-analyzed® 195 

supplied by J.T.Baker® (Gliwice, Poland) were used. Labelled compounds solutions were prepared 196 

with n-nonane Picograde® LGC Standards (Wesel, Germany). Sodium sulfate anhydrous (mesh 12-197 

60) Ultra resi-analyzed® and silica gel (mesh 70-230) for column chromatography were supplied 198 

respectively by J.T.Baker® (Center Valley, PA, U.S.A) and Merck (Darmstadt, Germany). Labelled 199 

standard solutions were purchased by Cambridge Isotope Laboratories Inc. (Andover, USA). 200 

Firstly, samples were lyophilised at – 80 °C and 0.2 mbar for 48 h with a Cryodos, Telstar Industrial, 201 

S.L. (Terrassa, Spain) and weighed to calculate the water content. Then, they were manually grounded 202 

with a ceramic mortar and pools of organisms were prepared when the amount was too low (number 203 

of pooled individuals is shown in Table S1); therefore, the total number of samples analysed was 23. 204 

Sample weight was about 5 g (3.50 – 5.03 g) (Table S1). Before extraction, procedural blanks and 205 

samples were spiked with a known amount of a solution containing the following 13C-labelled 206 

compounds: PCB-28, -52, -101, -138, -153, -180, -209, p,p’-DDE, o,p’-DDT, p,p’-DDT, and HCB. 207 

The extraction of the analytes was carried out by matrix solid-phase dispersion and the clean-up using 208 

multi-layer silica gel columns as previously described in Roscales et al. (2016b). Samples were 209 

transferred into vials and concentrated under a gentle nitrogen stream, then reconstituted with 20 µL 210 

of injection standard containing 13C12-PCB-111, -170, -178. The lipid content was determined 211 

gravimetrically using 0.5 g of each sample and following the same procedure used for the analytes 212 

extraction. The extract was rotary evaporated to nearly dryness and then dried at 80 °C until steady 213 

weight. 214 
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 10 

Target compounds were identified and quantified by gas chromatography coupled with low resolution 215 

mass spectrometry (GC-LRMS) following Roscales et al. (2016a). The analyses were performed 216 

using an Agilent 7890A gas chromatograph coupled with an Agilent 5975C mass spectrometer 217 

(Agilent, Palo Alto, CA, USA) in selected ion monitoring (SIM) mode with electron ionization (EI) 218 

at an electron voltage of 70 eV. The injector temperature was 250 °C and the injected volume was 1 219 

µL in splitless mode, the carrier gas was He (0.8 mL/min constant flux at a pressure of 17.9 psi). The 220 

GC was equipped with a BPX5 low bleed (SGE Analytical Science) capillary column (60 m × 0.5 221 

mm i.d. × 0.25 µm film thickness). Oven temperature program started at 120°C, held for 2 min, 222 

increased to 250°C at 35°C/min and held for 30 min, and finally ramped to 310 °C at 15°C/min and 223 

held for 30 min. The transfer line was set at a temperature of 280°C, the source at 230°C, and the 224 

quadrupole at 150°C. The identification was based on the detection at the corresponding retention 225 

time of at least two m/z ions. The relative abundance of the monitored ions was respected. Native 226 

compounds quantification was based on the construction of a linear seven-point calibration curve (1 227 

– 200 pg/µL) using the isotopic dilution technique. 228 

 229 

Quality assurance/quality control (QA/QC) 230 

Results were presented on lipid weight (lw) basis because a significant positive correlation 231 

(Spearman’s correlation test, p < 0.05) was found between the lipid content and the dry weight-based 232 

analyte concentrations (PCB: p=0.0129, r=0.5100; HCB: p=0.0003, r= 0.6995; DDT: p= 0.0311, r= 233 

0.4604). Dry, lipid and wet-weight based concentrations are reported in SI (Tables S2-S7). Analytes 234 

were identified according to: i) retention times of the selected m/z ions within ± 0.1 min of those 235 

found in standard compounds; ii) variations in the relative abundances of the targeted ions ≤ 10 % of 236 

the mean values obtained for the calibration standards. Recoveries of labelled compounds were 237 

satisfactory in all cases (mean ± standard deviation): 93 ± 3 % for HCB, 89 ± 13 % for the PCB 238 

congeners nos. 28, 52, 101, 153, 138, 180, 209 (Σ7PCBs) and 101 ± 13 % for the o,p’-DDT, p,p’-239 

DDT and p,p’-DDE (Σ3DDTs) (Table S8); correspondence between labelled and native compounds 240 
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 11 

for identification and quantification is included in Table S9. One procedural blank was analysed with 241 

each batch, which consisted of 4 or 5 samples to check for laboratory interferences. Limit of detection 242 

(LOD) and limit of quantification (LOQ) were calculated with the signal to noise (s/n) ratio approach 243 

and defined as 3 and 10 times the s/n value, respectively. The average LOD values were in the range 244 

0.8 – 6.0 ng/g lw for PCBs, between 3.3 and 4.6 ng/g lw for DDTs, and 0.8 ng/g lw for HCB. The 245 

LOQs averaged values ranged between 2.8 – 19.9 ng/g lw for PCBs, 11.1 – 15.2 ng/g lw for DDTs, 246 

and 2.5 ng/g lw for HCB. See the SI for detailed LOD and LOQ values and detection frequencies 247 

(Table S10, S11). 248 

 249 

Data analysis 250 

Statistical analyses were performed with Excel 2016 (Microsoft®), GraphPad Prism 5.01 (GraphPad 251 

Software), and XLStat 2016 (Addinsoft©). Values below LOD were substituted with ½LOD. 252 

Compounds below LOD in all samples were excluded from statistical comparisons and total 253 

concentration calculations. Concentrations of the analytes were corrected subtracting the 254 

corresponding procedural blank mean value. No corrections were applied according to recovery 255 

measures since the isotopic dilution technique was used for quantification. Data distribution was 256 

evaluated with Shapiro-Wilk test and was not normal even after a logn transformation. Thus, 257 

concentration variations among samples collected in different sites were evaluated through the non-258 

parametric Kruskal-Wallis test (significance level: p < 0.05). The comparison of homologue patterns 259 

among sites and the evaluation of the contribution of PCB congeners or pollutants classes among 260 

species, were based on descriptive statistics. 261 

 262 

 263 

Results and discussion 264 

 265 
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The lipid contents in the studied sample composites ranged from 0.7 to 8.5% (Table S1), in agreement 266 

with the values reported by McClintock (1987) and Batista et al. (2013) for different sponge species 267 

collected at McMurdo Sound (Antarctica) and along the Brazilian coast, respectively. The significant 268 

positive correlation described above, between the lipid contents and the contaminants, suggests that 269 

they are an important factor for the bioaccumulation.  The water content of the samples ranged from 270 

36 to 88% (Table S1). For both lipid and water content, the range observed may reflect a species-271 

specific variability. All pollutant families showed detectable concentrations in all the samples with a 272 

common concentration pattern: ∑PCB > ∑DDT > HCB in the three study sites (Table 1). Moreover, 273 

the pattern is confirmed in every individual (including the only Hexactinellid specimen) except for 274 

Neopetrosia similis (HCB > ∑PCB > ∑DDT) and one sample of Dendrilla antarctica (∑DDT > 275 

∑PCB > HCB) (Figure 2). In fact, it is interesting to note that the species N. similis collected at Adèlie 276 

Cove showed the highest HCB percentage, exceeding the 60%; this pattern might be due to  individual 277 

variability. For this reason, this outlier value was not included in the statistical calculations. 278 

Noteworthy, ∑DDT percentage in the genus Dendrilla ranged from 30 to 50% while in the other 279 

genus it was between 4 and 30% (Figure 2), regardless of the sampling site, perhaps suggesting a 280 

peculiar inability to degrade the pesticide. Thus, concerning the accumulation pattern, species-281 

specific variability was relevant in less cases than expected. No other relevant differences can be 282 

observed about the pattern in individuals of the same species collected in different site. 283 

 284 

PCBs 285 

Among PCBs, 11 out of 19 were detected at least in one sample (Table 1) including the seven 286 

indicator PCBs -28, -52, -101, -118, -138, -153, -180 and, among the coplanar dioxin-like congeners 287 

(other than -118) three mono-ortho -105, -123, -167 and the non-ortho -126, one of the most toxic 288 

congeners together with the -169 and -77 that resulted <LOD in all the samples. Detection frequencies 289 

of indicator PCBs were always above 90% and in 5 out of 7 cases (only excluding PCB-28 and PCB-290 
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180) reached the 100% confirming the ubiquity of these POPs in the environment (Montone et al. 291 

2003) (Table 1).  292 

 293 

Sponges had similar PCB concentrations to those reported (for most sampling years) by Grotti et al. 294 

(2016) in the mollusc Adamussium colbecki (E. A. Smith, 1902) (Table S12), collected near Mario 295 

Zucchelli station, likely due to its filter-feeding habits. In contrast, sponges showed lower levels of 296 

PCBs (one order of magnitude) than the sea star Odontaster validus (Koehler, 1906) and the sea 297 

urchin Sterechinus neumayeri (Meissner, 1900), previously collected near Mario Zucchelli station 298 

(Borghesi et al. 2011) and near Durmont D’Urville French station (Goutte et al. 2013) (Table S12), 299 

as expected by their different dietary habits (Corsolini et al. 2003a), being relevant predators in 300 

Antarctic ecosystems (Dayton et al. 1974). Ko et al. (2018) reported concentrations two to three 301 

orders of magnitude higher than this study in the brittle star Ophionotus victoriae (Bell, 1902) and S. 302 

neumayeri from Chinese (Chun-Shan) and Australian (Davis) stations (Table S12), this is probably 303 

due to their proximity to that permanent research stations. Our findings also confirm that Antarctica 304 

is one of the least contaminated regions on Earth as the PCB levels found here were three to four 305 

orders of magnitude lower compared to Mediterranean sponge specimens (Perez et al. 2003) (Table 306 

S12). In spite of the major role of anthropogenic activities in Whalers Bay and its closeness to the 307 

American continent compared to the rest of sites, spatial differences were not statistically significant 308 

(p= 0.2829). The Ross Sea sites showed the highest levels of PCBs (Table 1). In contrast, the only 309 

local input of PCBs at Adélie Cove could be the presence of a large Adèlie penguin rookery in the 310 

cove. Wildlife may have a role in the POP redistribution and local amplification, as already reported 311 

in Polar Regions (Evenset et al. 2007; Roosens et al. 2007). In fact, penguins, being intermediate 312 

predators, could accumulate lipophilic pollutants through biomagnification and release them in the 313 

surrounding environment by excreta, abandoned or unhatched eggs, and carcasses (Roosens et al. 314 

2007; Cipro et al. 2019; Corsolini et al. 2019; Morales et al. 2022). Concerning Tethys Bay samples, 315 

the observed values could be related to the presence of local inputs of PCBs from the near research 316 
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station (Cabrerizo et al. 2012; Chen et al. 2015; Vecchiato et al. 2015). The absence of differences 317 

among the sites, nevertheless their different characteristics, could be due to a regional scale 318 

redistribution of the pollutants, due to both oceanic and atmospheric transport, making them more 319 

available than expected for the bioaccumulation in Ross Sea sponges. However, this result has to be 320 

evaluated carefully taking into account that it could be affected by other factors, such as the different 321 

number of samples, species-specific differences and temporal differences in the sampling time. 322 

 323 

 324 

The abundance of the PCB homologues was similar in the studied samples. The PCB homologue 325 

pattern was penta- > hexa- > tetra- > tri- > hepta-CBs in samples from Adèlie Cove and Whalers Bay, 326 

and penta- > hexa- > tetra- = hepta- > tri-CBs for those from Tethys Bay (Figure 3). In the samples 327 

from the Tethys Bay, the presence of high-chlorinated and less volatile congeners like the hexa-CBs 328 

(-138, -153, -167) and hepta-CB (-180), accounting for more than 40% of the total residue (Figure 329 

S1), might confirm a local contamination source from near scientific stations (Chen et al. 2015; 330 

Vecchiato et al. 2015). However, the lower chlorinated congeners nos. 28, 52 and 101 made up about 331 

40% of the residue (Figure S1), also confirming a contribution by the LRAT. Corsolini et al. (2002, 332 

2003b) reported a similar pattern to that observed for E. superba and P. antarcticum collected in the 333 

same area and highlighted its similarity to the Kanechlor technical mixtures (KC-500 and -1000) 334 

profile, used in Asian countries, perhaps suggesting a long-range transportation from those areas.  335 

The Adèlie Cove and Whalers Bay samples showed a high presence of low-chlorinated PCBs: -28, -336 

52, -101, -105, -118, -123, -126, accounting for more than 70% and 80%, respectively (Figure S1). It 337 

is interesting to note that PCB-101 is the most abundant congener in the Whalers Bay samples, far 338 

exceeding the 60% of the total residue. Consistent with our results, the PCB-101 shows a higher 339 

bioaccumulation potential (Log Kow 6.19; Ballschmiter et al. 2005) respect to other prevailing 340 

congeners like PCB-28 (Log Kow 5.58; Ballschmiter et al. 2005) and PCB-52 (Log Kow 5.91; 341 

Ballschmiter et al. 2005) and it has been already reported as one of the dominant congeners in 342 
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Antarctic air (Montone et al. 2003) as well as in penguins (Corsolini et al. 2007). Moreover, the 343 

overall abundance of penta- and hexa-chlorinated congeners was already reported in some lower 344 

trophic level organisms, such as molluscs A. colbecki (Grotti et al. 2016), sea cucumbers 345 

(Heterocucumis steineni Ludwig, 1898), ascidians (Cnemidocarpa verrucosa Lesson, 1830), sea stars 346 

(O. validus), limpets (Nacella concinna Strebel, 1908) and sea urchins (S. neumayeri) (Krasnobaev 347 

et al. 2020). Our results also agree well with a previous study by Goutte et al. (2013), reporting the 348 

predominance of penta- over hexa-CBs in Antarctic benthic species such as the starfish Saliasterias 349 

brachiata Koehler, 1920 and the sea urchin S. neumayeri. 350 

Comparing the individuals belonging to the four species collected at both the Ross Sea sites (Figure 351 

4), the general observed pattern was mostly confirmed; samples from Tethys Bay showed higher 352 

percentage of the heaviest congeners compared to Adèlie Cove specimens in three out of four cases. 353 

However it is interesting to note that Artemisina tubulosa showed a slightly inverted pattern with the 354 

percentages for Tethys Bay moved towards lighter congeners than Adèlie Cove; this could be due to 355 

a species-specific ability to transform and excrete selected congeners by the sponge itself or its 356 

associated microorganisms, like hypothesized for some PCBs in Spongia officinalis (Perez et al. 357 

2003).  358 

 359 

DDTs 360 

Five DDT isomers were >LOD in 30% of samples; the o,p’-DDD isomer was <LOD in all samples 361 

(Table 1). DDTs were mostly undetectable in the samples from the Ross Sea, showing 73% and 77% 362 

of the values <LOD in Tethys Bay and Adèlie Cove samples (excluding the o,p’-DDD isomer), 363 

respectively (Table 1). The DDT isomer concentrations were not reported in one sample from Tethys 364 

Bay due to a co-eluting unknown compound that made the quantification uncertain. Instead, samples 365 

from Deception Island showed values <LOD in 20% of the cases (Table 1).  366 

 367 
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Samples collected at Whalers Bay and Tethys Bay showed concentration values lower than those of 368 

O. validus and higher than those of S. neumayeri reported previously by Borghesi et al. (2011) (Table 369 

S12). However, samples from Adèlie Cove showed values on the same order of magnitude than those 370 

detected in the sea urchin from the same study (Table S12). Focusing on the p,p’-DDE isomer, 371 

sponges from Whalers and Tethys Bays showed similar values to O. validus and higher than A. 372 

colbecki and S. neumayeri as reported by Corsolini et al. (2003a) (Table S12). Adèlie Cove samples 373 

showed concentrations lower than the sea stars and similar to molluscs and sea urchins from the same 374 

study (Table S12). 375 

As discussed for PCBs, dietary differences may explain these results when comparing them to those 376 

from the literature (e.g. lower concentrations in sponges than in predators like O. validus) (Corsolini 377 

et al. 2003a). However, more studies are needed to interpret differences among species.  378 

 379 

Differences in DDT concentrations among sites were not statistically significant (p=0.1575), although 380 

they were higher in sponges from Whalers Bay (Table 1). On one hand, concentrations found in 381 

Whalers Bay could be influenced by its proximity to South America, where this pesticide has been 382 

used along history (Montone et al. 2003; Dickhut et al. 2005; Corsolini et al. 2007) and from which 383 

it could be transported via LRAT to Antarctica (Dickhut et al. 2003; Montone et al. 2005). On the 384 

other hand, local inputs, such as the penguin rookery near Adèlie Cove, could contribute to increasing 385 

concentrations in this site. Inputs from these sources at each site may have flattened the expected 386 

differences among the two areas. Moreover, the frequency of values <LOD in the two areas seems to 387 

be in line with the expected results being higher in the Ross Sea than at Whalers Bay (70% and 20% 388 

respectively). An explanation for these apparently contrasting results could be found in the species-389 

specific characteristics; noteworthy, in fact, the only Ross Sea samples in which DDTs were found 390 

were of the same genus of the Whalers Bay samples (Dendrilla). However, again, other factors such 391 

as the different number of samples analysed, and the year of sampling have to be taken into account. 392 
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The p,p’-DDE showed the highest values in all samples from each site, followed by its precursor p,p’-393 

DDT; thus the ratio p,p’-DDT/p,p’-DDE was <1 (Figure S2), indicating an old contamination event 394 

(Ricking & Schwarzbauer, 2012). Nonetheless, the detection of p,p’-DDT in all samples from 395 

Deception Island and in four samples from the Ross Sea could be related to the current use of this 396 

pesticide against the mosquitoes Anopheles (Stockholm Convention, 2004; Pozo et al. 2017; Zanardi-397 

Lamardo et al. 2019), vector of the malaria disease, as well as other current applications like 398 

antifouling paints (Pozo et al. 2017; Zanardi-Lamardo et al. 2019) and the following LRAT from 399 

those countries where it is applied notwithstanding the Stockholm Convention. Geisz et al. (2008) 400 

also suggested the melting glaciers as a possible secondary mechanism for DDTs to enter the marine 401 

Antarctic ecosystem. Since the Antarctic Peninsula is suffering the highest warming events due to 402 

climate change (Turner et al. 2005), this mechanism could also support Whalers Bay sponges 403 

presenting higher frequencies of detection of DDTs than the Ross Sea samples. An uncompleted 404 

degradation of DDTs by sponges or by their symbiotic bacteria associations may be another reason 405 

of its detection. For example, Krasnobaev et al. (2020) reported concentrations <LOD for p,p’-DDT 406 

in some benthic invertebrates (sea cucumbers, ascidians, sea stars, limpets, and sea urchins) collected 407 

in 2017 (the same year we collected our Whalers Bay samples), near Rothera Point (Western Antarctic 408 

Peninsula), suggesting a complete transformation of DDTs into p,p’-DDE instead of a lack of the still 409 

debated recent input (Van den Brink et al. 2009). Further studies are needed to clarify if our results 410 

were determined mostly by the scarce degradation capability of sponges following an old 411 

contamination event or by a new LRT event due to its continued use in countries where DDT is still 412 

crucial to control malaria. 413 

 414 

HCB 415 

HCB values were <LOD only in one sample collected at Adèlie Cove (Table 1), confirming its global 416 

distribution, persistence, and wide past usage (Bailey, 2001; Wang et al. 2010). 417 
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The HCB concentrations were lower than those previously reported in the seastar O. validus and 418 

higher than in the sea urchin S. neumayeri from Antarctica (Borghesi et al. 2011) (Table S12). 419 

However, our values were lower than in the sea star and sea urchin and of the same order of magnitude 420 

of those reported for the bivalve A. colbecki in a previous study (Corsolini et al. 2003a) (Table S12). 421 

Again, these contrasting results suggest that not only different dietary habits, but also metabolism, 422 

season of sampling, and environmental concentrations could play a key role in determining these 423 

interspecific variabilities. In addition, these comparison results, being not consistent in terms of prey-424 

predator patterns, did not allow further considerations on biomagnification processes as expected for 425 

a benthic trophic web (Evenset et al. 2016; Romero-Romero et al. 2017). 426 

HCB concentrations were of the same order of magnitude in all samples with no significant 427 

differences among sites (p=0.2719) except for some samples from Adèlie Cove and Whalers Bay, 428 

which showed concentrations one order of magnitude higher (Table 1). The lack of significant spatial 429 

variations could be related to the physical-chemical properties of the pesticide: its vapour pressure 430 

combined with water solubility and persistence, in fact, make it widespread globally (Bailey, 2001). 431 

Furthermore, other factors could contribute to the result; for example, in Whalers Bay, changes in the 432 

frequency of snowfalls may locally amplify the HCB concentration, as suggested by Krasnobaev et 433 

al. (2020), and the same may happen by biological transportation in Adèlie Cove.  434 

 435 

Several studies have found that among legacy POPs, HCB predominates in the Antarctic atmosphere, 436 

mainly due to the wide use, high volatility, and persistence of this chemical (Cincinelli et al. 2009; 437 

Kallenborn et al. 2013; Bengtson Nash et al. 2017). Some studies have shown that this pattern 438 

sometimes is also reflected in wildlife, being HCB the most abundant compound in various marine 439 

organisms, such as fish and krill (Corsolini, 2009; Corsolini & Sarà, 2017). Particularly, Corsolini et 440 

al. (2003a) and Krasnobaev et al. (2020) found HCB concentrations above those of DDTs in some 441 

marine invertebrate species collected in 1999/2000 in the Ross Sea and in 2017 in the Western 442 

Antarctic Peninsula. In our study, HCB was the less abundant pollutant in the three study sites 443 
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(ΣPCBs>ΣDDTs>HCB). The peculiarity of sponges in terms of feeding habits, biodegradation 444 

capability, and longevity may be responsible of these diverse POP bioaccumulation profiles and 445 

deserves further efforts to better understand trophodynamic, transportation, and fate of these 446 

pollutants. 447 

 448 

Conclusions 449 

 450 

To the best of our knowledge, no published data are available on the presence of HCB, DDTs and 451 

PCBs in Antarctic Porifera. Sponges showed legacy POP levels comparable to other benthic 452 

organisms from the same habitat and, as expected, much lower than sponge from northern temperate 453 

latitudes, confirming the Southern Ocean as one of the less contaminated ecosystems on Earth. The 454 

samples from the Ross Sea showed, in general, lower concentrations respect to the South Shetland 455 

Island samples, although differences were not statistically significant. In general, long-range 456 

atmospheric transport was confirmed as the major driver for contamination in the Antarctic areas 457 

where the study was performed. However, human presence and activities connected with research 458 

stations, as well as wildlife amplification and ice melting could also affect the bioaccumulation 459 

pattern found in these sponges. Future studies should also focus on increasing threats like tourism 460 

activities and fishing to better understand how and to which extent they could act synergically with 461 

other impacts in affecting the Antarctic ecosystems. While evaluation of species-specific patterns 462 

showed a few interesting results (peculiar patterns observed in the genus Dendrilla and in the N. 463 

similis individuals), further research is needed to clarify which mechanisms are involved in 464 

determining the observed inter- and intraspecific differences. Our results indicate that sponges may 465 

be suitable bioindicators for the benthic marine habitat. Moreover, they provide baseline data for 466 

future monitoring and contamination trend studies that, in the light of climate change, may well 467 

represent valid tools to understand and make predictions on the threats Antarctica has to cope with. 468 

 469 
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Table 1. Concentrations of HCB, PCB congeners and DDT isomers in the sponge samples from the 774 

three study sites (n=number of samples; ng/g lipid weight; mean ± standard deviation, minimum and 775 

maximum values in brackets) and values < LOD (LOD %). 776 

  777 

 
Tethys Bay  

(n=7) 

Adèlie Cove  

(n=13) 

Whalers Bay  

(n=3) 

<LOD 

% 

PCB-28 7.5 ± 6.7 

(<LOD – 21.2) 

14.9 ± 14.9 

(<LOD – 52.4) 

3.5 ± 1.9 

(1.9 – 5.6) 

9 

PCB-52 17.5 ± 18.9 

(<LOD – 43.5) 

21.1 ± 18.9 

(4.4 – 68.6) 

6.0 ± 1.9 

(4.9 – 8.2) 

4 

PCB-101 12.5 ± 12.4 

(<LOD – 36.1) 

30.3 ± 51.1 

(0.3 – 196.2) 

21.5 ± 10.0 

(10.5 – 30.1) 

4 

PCB-105 3.2 ± 1.4 

(<LOD – 5.1) 

6.4 ± 4.0 

(<LOD – 16.5) 

4.1 ± 0.3 

(<LOD – 4.4) 

74 

PCB-118 4.3 ± 3.2 

(0.7 – 9.8) 

10.6 ± 14.0 

(0.8 – 52.1) 

5.1 ± 0.9 

(4.1 – 5.8) 

0 

PCB-123 5.0 ± 2.4 

(<LOD – 8.5) 

9.0 ± 4.8 

(<LOD – 17.0) 

2.7 ± 0.0 

(<LOD – 2.7) 

91 

PCB-126 3.0 ± 1.7 

(<LOD – 5.4) 

6.1 ± 3.2 

(<LOD – 10.9) 

1.7 ± 0.0 

(<LOD – 1.7) 

96 

PCB-138 10.0 ± 6.8 

(2.6 – 21.6) 

12.5 ± 13.0 

(1.5 – 46.3) 

4.4 ± 0.9 

(3.6 – 5.5) 

0 

PCB-153 10.4 ± 12.8 

(1.5 – 38.5) 

12.5 ± 14.2 

(1.5 – 41.9) 

2.9 ± 0.3 

(2.7 – 3.2) 

0 

PCB-167 2.0 ± 1.4 

(<LOD – 4.9) 

2.2 ± 1.2 

(<LOD – 4.2) 

0.7 ± 0.0 

(<LOD – 0.7) 

87 

PCB-180 17.5 ± 30.8 

(<LOD – 86.2) 

8.2 ± 8.1 

(0.5 – 26.0) 

1.4 ± 1.4 

(0.4 – 3.0) 

4 

∑PCB 92.8 ± 47.6 

(27.7 – 164.7) 

133.7 ± 119.3 

(39.8 – 482.8) 

54.2 ± 10.8 

(41.9 – 62.0) 

 

o,p’-DDT 2.5 ± 2.8 

(<LOD – 8.2) 

2.9 ± 1.4 

(<LOD – 5.1) 

3.4 ± 2.8 

(1.5 – 6.6) 

78 

p,p’-DDT 4.8 ± 6.2 5.1 ± 3.6 11.0 ± 2.1 70 
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*mean calculated on 12 samples 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 

 787 

788 

(<LOD – 17.3) (<LOD – 14.7) (9.6 – 13.4) 

o,p’-DDE 1.5 ± 0.6 

(<LOD – 2.2) 

2.7 ± 1.4 

(<LOD – 5.2) 

3.9 ± 1.8 

(1.8 – 5.3) 

78 

p,p’-DDE 7.3 ± 8.9 

(<LOD – 24.5) 

14.1 ± 12.5 

(<LOD – 38.3) 

19.6 ± 5.0 

(13.9 – 23.6) 

30 

p,p’-DDD 1.3 ± 0.6 

(<LOD – 1.9) 

2.4 ± 1.2 

(<LOD – 4.5) 

0.7 ± 0.0 

(<LOD – 0.7) 

91 

∑DDT 17.5 ± 18.3 

(5.6 – 53.7) 

27.2 ± 17.1 

(9.3 – 59.2) 

38.6 ± 7.4 

(31.3 – 46.1) 

 

HCB 4.8 ± 1.8 

(3.0 – 7.3) 

*8.1 ± 5.0 

(<LOD – 19.6) 

8.5 ± 4.0 

(5.7 – 13.1) 

4 
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Figure legends 789 

Figure 1: a) Antarctic continent with the indication of the two areas where the sampling site are 790 

located; b) Deception Island area in the South Shetland Archipelago (n=10, year of sampling 2017); 791 

c) coastal area of Victoria Land in the Ross Sea (Tethys Bay: n=7, year of sampling 2001-2002; 792 

Adèlie Cove: n=18, year of sampling 2004-2005). Black stars show the sampling site. Red symbols 793 

indicate summer-only stations or facilities (e.g., Enigma Lake and Browning Pass airstrips) and blue-794 

red symbols year-round stations. Blue dots indicate important bird areas. 795 

Figure 2: Contributions (%) of PCBs, DDTs, and HCB in the 23 Antarctic sponge species from the 796 

three study sites (Whalers Bay, Tethys Bay, Adèlie Cove). 797 

Figure 3: Homologue pattern (%) in sponges from the three study sites (Adèlie Cove; Tethys Bay; 798 

Whalers Bay). 799 

Figure 4: Percentage contribution of PCB congeners to the total residue (%) in eight Antarctic sponges 800 

belonging to four different species and collected from Adèlie Cove (AC) and Tethys Bay (TB). 801 
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Highlights 

- First data about legacy chlorinated POPs in Antarctic sponges are reported 

- Antarctic sponges are suitable organisms for legacy POPs contamination studies 

- Sponges showed levels of contamination comparable to other benthic organisms 

- DDTs and HCB concentrations in sponges: South Shetland Island > Ross Sea  
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