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Abstract
Gauge invariance is a powerful tool to determine the dynamics of the elec-
troweak and strong forces. The particle content, structure and symmetries
of the Standard Model Lagrangian are discussed. Special emphasis is given
to the many phenomenological tests which have established this theoretical
framework as the Standard Theory of electroweak interactions.

1 Introduction
The Standard Model (SM) is a gauge theory, based on the symmetry group SU(3)C ⊗SU(2)L⊗U(1)Y ,
which describes strong, weak, and electromagnetic interactions, via the exchange of the corresponding
spin-1 gauge fields: eight massless gluons and one massless photon, respectively, for the strong and elec-
tromagnetic interactions, and three massive bosons, W ± and Z , for the weak interaction. The fermionic
matter content is given by the known leptons and quarks, which are organized in a three-fold family
structure: [

νe u
e− d′

]
,

[
νµ c
µ− s ′

]
,

[
ντ t
τ− b′

]
, (1)

where (each quark appears in three different colours)[
νl qu
l− qd

]
≡

(
νl
l−

)
L

,

(
qu
qd

)
L

, l−R , quR , qdR , (2)

plus the corresponding antiparticles. Thus, the left-handed fields are SU(2)L doublets, while their right-
handed partners transform as SU(2)L singlets. The three fermionic families in Eq. (1) appear to have
identical properties (gauge interactions); they differ only by their mass and their flavour quantum number.

The gauge symmetry is broken by the vacuum, which triggers the Spontaneous Symmetry Break-
ing (SSB) of the electroweak group to the electromagnetic subgroup:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
SSB−→ SU(3)C ⊗ U(1)QED . (3)

The SSB mechanism generates the masses of the weak gauge bosons, and gives rise to the appearance
of a physical scalar particle in the model, the so-called Higgs. The fermion masses and mixings are also
generated through the SSB.

The SM constitutes one of the most successful achievements in modern physics. It provides a
very elegant theoretical framework, which is able to describe the known experimental facts in particle
physics with high precision. These lectures [1] provide an introduction to the electroweak sector of
the SM, i.e., the SU(2)L ⊗ U(1)Y part [2–5]. The strong SU(3)C piece is discussed in more detail
in Ref. [6]. The power of the gauge principle is shown in Section 2, where the simpler Lagrangians
of quantum electrodynamics and quantum chromodynamics are derived. The electroweak theoretical
framework is presented in Sections 3 and 4, which discuss, respectively, the gauge structure and the SSB
mechanism. Section 5 summarizes the present phenomenological status and shows the main precision
tests performed at the Z peak. The flavour structure is discussed in Section 6, where knowledge of the
quark mixing angles is briefly reviewed and the importance of CP violation tests is emphasized. Finally,
a few comments on open questions, to be investigated at future facilities, are given in the summary.
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Some useful but more technical information has been collected in several appendices: a minimal
amount of quantum field theory concepts are given in Appendix A; Appendix B summarizes the most im-
portant algebraic properties of SU(N) matrices; and a short discussion on gauge anomalies is presented
in Appendix C.

2 Gauge invariance
2.1 Quantum electrodynamics
Let us consider the Lagrangian describing a free Dirac fermion:

L0 = i ψ(x)γµ∂µψ(x) − mψ(x)ψ(x) . (4)

L0 is invariant under global U(1) transformations

ψ(x)
U(1)−→ ψ′(x) ≡ exp {iQθ}ψ(x) , (5)

where Qθ is an arbitrary real constant. The phase of ψ(x) is then a pure convention-dependent quantity
without physical meaning. However, the free Lagrangian is no longer invariant if one allows the phase
transformation to depend on the space–time coordinate, i.e., under local phase redefinitions θ = θ(x),
because

∂µψ(x) U(1)−→ exp {iQθ} (∂µ + iQ ∂µθ) ψ(x) . (6)

Thus, once a given phase convention has been adopted at the reference point x0, the same convention
must be taken at all space–time points. This looks very unnatural.

The ‘gauge principle’ is the requirement that the U(1) phase invariance should hold locally. This
is only possible if one adds an extra piece to the Lagrangian, transforming in such a way as to cancel
the ∂µθ term in Eq. (6). The needed modification is completely fixed by the transformation (6): one
introduces a new spin-1 (since ∂µθ has a Lorentz index) field Aµ(x), transforming as

Aµ(x) U(1)−→ A′µ(x) ≡ Aµ(x)− 1
e
∂µθ , (7)

and defines the covariant derivative

Dµψ(x) ≡ [∂µ + ieQAµ(x)] ψ(x) , (8)

which has the required property of transforming like the field itself:

Dµψ(x)
U(1)−→ (Dµψ)′ (x) ≡ exp {iQθ}Dµψ(x) . (9)

The Lagrangian

L ≡ i ψ(x)γµDµψ(x) − mψ(x)ψ(x) = L0 − eQAµ(x)ψ(x)γµψ(x) (10)

is then invariant under local U(1) transformations.
The gauge principle has generated an interaction between the Dirac spinor and the gauge field

Aµ, which is nothing else than the familiar vertex of Quantum Electrodynamics (QED). Note that the
corresponding electromagnetic charge Q is completely arbitrary. If one wantsAµ to be a true propagating
field, one needs to add a gauge-invariant kinetic term

LKin ≡ −1
4
Fµν(x)F µν(x) , (11)

where Fµν ≡ ∂µAν − ∂νAµ is the usual electromagnetic field strength. A possible mass term for the
gauge field, Lm = 1

2m
2AµAµ, is forbidden because it would violate gauge invariance; therefore, the

photon field is predicted to be massless. Experimentally, we know that mγ < 6 · 10−17 eV [7].
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The total Lagrangian in Eqs. (10) and (11) gives rise to the well-known Maxwell equations:

∂µF
µν = Jν ≡ eQψγνψ , (12)

where Jν is the fermion electromagnetic current. From a simple gauge-symmetry requirement, we have
deduced the right QED Lagrangian, which leads to a very successful quantum field theory.

2.1.1 Lepton anomalous magnetic moments
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Fig. 1: Feynman diagrams contributing to the lepton anomalous magnetic moment

The most stringent QED test comes from the high-precision measurements of the e [8] and µ [9]
anomalous magnetic moments al ≡ (gγl − 2)/2 , where ~µl ≡ gγl (e/2ml) ~Sl:

ae = (1 159 652 180.85 ± 0.76) · 10−12 , aµ = (11 659 208.0 ± 6.3) · 10−10 . (13)

To a measurable level, ae arises entirely from virtual electrons and photons; these contributions are
fully known toO(α4) and someO(α5) corrections have been already computed [10–14]. The impressive
agreement achieved between theory and experiment has promoted QED to the level of the best theory
ever built to describe Nature. The theoretical error is dominated by the uncertainty in the input value of
the QED coupling α ≡ e2/(4π). Turning things around, ae provides the most accurate determination of
the fine structure constant [15]:

α−1 = 137.035 999 710 ± 0.000 000 096 . (14)

The anomalous magnetic moment of the muon is sensitive to small corrections from virtual heav-
ier states; compared to ae, they scale with the mass ratio m2

µ/m
2
e. Electroweak effects from virtual

W± and Z bosons amount to a contribution of (15.4 ± 0.2) · 10−10 [10, 11], which is larger than the
present experimental precision. Thus aµ allows one to test the entire SM. The main theoretical uncer-
tainty comes from strong interactions. Since quarks have electric charge, virtual quark–antiquark pairs
induce hadronic vacuum polarization corrections to the photon propagator [Fig. 1(c)]. Owing to the
non-perturbative character of the strong interaction at low energies, the light-quark contribution cannot
be reliably calculated at present. This effect can be extracted from the measurement of the cross-section
σ(e+e− → hadrons) and from the invariant-mass distribution of the final hadrons in τ decays, which
unfortunately provide slightly different results [16–18]:

ath
µ =

{
(11 659 180.2 ± 5.6) · 10−10 (e+e− data) ,
(11 659 199.7 ± 6.3) · 10−10 (τ data) .

(15)

The quoted uncertainties include also the smaller light-by-light scattering contributions [Fig. 1(d)] [19].
The difference between the SM prediction and the experimental value (13) corresponds to 3.3σ (e+e−)
or 0.9σ (τ ). New precise e+e− and τ data sets are needed to settle the true value of ath

µ .
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Fig. 2: Tree-level Feynman diagram for the e+e− annihilation into hadrons

2.2 Quantum chromodynamics
2.2.1 Quarks and colour
The large number of known mesonic and baryonic states clearly signals the existence of a deeper level
of elementary constituents of matter: quarks. Assuming that mesons are M ≡ qq̄ states, while baryons
have three quark constituents, B ≡ qqq, one can nicely classify the entire hadronic spectrum. However,
in order to satisfy the Fermi–Dirac statistics one needs to assume the existence of a new quantum number,
colour, such that each species of quark may have NC = 3 different colours: qα, α = 1, 2, 3 (red, green,
blue). Baryons and mesons are then described by the colour-singlet combinations

B =
1√
6
εαβγ |qαqβqγ〉 , M =

1√
3
δαβ |qαq̄β〉 . (16)

In order to avoid the existence of non-observed extra states with non-zero colour, one needs to further
postulate that all asymptotic states are colourless, i.e., singlets under rotations in colour space. This
assumption is known as the confinement hypothesis, because it implies the non-observability of free
quarks: since quarks carry colour they are confined within colour-singlet bound states.

A direct test of the colour quantum number can be obtained from the ratio

Re+e− ≡
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

. (17)

The hadronic production occurs through e+e− → γ∗, Z∗ → qq̄ → hadrons (Fig. 2). Since quarks are
assumed to be confined, the probability to hadronize is just one; therefore, summing over all possible
quarks in the final state, we can estimate the inclusive cross-section into hadrons. The electroweak
production factors which are common with the e+e− → γ∗, Z∗ → µ+µ− process cancel in the ratio
(17). At energies well below the Z peak, the cross-section is dominated by the γ-exchange amplitude;
the ratio Re+e− is then given by the sum of the quark electric charges squared:

Re+e− ≈ NC

Nf∑
f=1

Q2
f =


2
3 NC = 2 , (Nf = 3 : u, d, s)

10
9 NC = 10

3 , (Nf = 4 : u, d, s, c)
11
9 NC = 11

3 , (Nf = 5 : u, d, s, c, b)

. (18)

The measured ratio is shown in Fig. 3. Although the simple formula (18) cannot explain the
complicated structure around the different quark thresholds, it gives the right average value of the cross-
section (away from thresholds), provided that NC is taken to be three. The agreement is better at larger
energies. Notice that strong interactions have not been taken into account; only the confinement hypoth-
esis has been used.

Electromagnetic interactions are associated with the fermion electric charges, while the quark
flavours (up, down, strange, charm, bottom, top) are related to electroweak phenomena. The strong
forces are flavour conserving and flavour independent. On the other side, the carriers of the electroweak
interaction (γ, Z , W±) do not couple to the quark colour. Thus it seems natural to take colour as the
charge associated with the strong forces and try to build a quantum field theory based on it [20, 21].
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Fig. 3: World data on the ratio Re+e− [7]. The broken lines show the naive quark model approximation with
NC = 3. The solid curve is the 3-loop perturbative QCD prediction.

2.2.2 Non-Abelian gauge symmetry
Let us denote qαf a quark field of colour α and flavour f . To simplify the equations, let us adopt a vector
notation in colour space: qTf ≡ (q1

f , q
2
f , q

3
f ). The free Lagrangian

L0 =
∑
f

q̄f (iγµ∂µ −mf ) qf (19)

is invariant under arbitrary global SU(3)C transformations in colour space,

qαf −→ (qαf )′ = Uαβ q
β
f , U U † = U †U = 1 , detU = 1 . (20)

The SU(3)C matrices can be written in the form

U = exp
{
i
λa

2
θa

}
, (21)

where 1
2 λ

a (a = 1, 2, . . . , 8) denote the generators of the fundamental representation of the SU(3)C
algebra, and θa are arbitrary parameters. The matrices λa are traceless and satisfy the commutation
relations [

λa

2
,
λb

2

]
= i fabc

λc

2
, (22)

with fabc the SU(3)C structure constants, which are real and totally antisymmetric. Some useful prop-
erties of SU(3) matrices are collected in Appendix B.

As in the QED case, we can now require the Lagrangian to be also invariant under local SU(3)C
transformations, θa = θa(x). To satisfy this requirement, we need to change the quark derivatives by
covariant objects. Since we have now eight independent gauge parameters, eight different gauge bosons
Gµa(x), the so-called gluons, are needed:

Dµqf ≡
[
∂µ + igs

λa

2
Gµa(x)

]
qf ≡ [∂µ + igsG

µ(x)] qf . (23)

Notice that we have introduced the compact matrix notation

[Gµ(x)]αβ ≡
(
λa

2

)
αβ

Gµa(x) . (24)
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Fig. 4: Interaction vertices of the QCD Lagrangian

We wantDµqf to transform in exactly the same way as the colour-vector qf ; this fixes the transformation
properties of the gauge fields:

Dµ −→ (Dµ)′ = U Dµ U † , Gµ −→ (Gµ)′ = U Gµ U † +
i

gs
(∂µU)U † . (25)

Under an infinitesimal SU(3)C transformation,

qαf −→ (qαf )′ = qαf + i

(
λa

2

)
αβ

δθa q
β
f ,

Gµa −→ (Gµa)′ = Gµa −
1
gs
∂µ(δθa) − fabc δθbGµc . (26)

The gauge transformation of the gluon fields is more complicated than the one obtained in QED for the
photon. The non-commutativity of the SU(3)C matrices gives rise to an additional term involving the
gluon fields themselves. For constant δθa, the transformation rule for the gauge fields is expressed in
terms of the structure constants f abc; thus, the gluon fields belong to the adjoint representation of the
colour group (see Appendix B). Note also that there is a unique SU(3)C coupling gs. In QED it was
possible to assign arbitrary electromagnetic charges to the different fermions. Since the commutation
relation (22) is non-linear, this freedom does not exist for SU(3)C .

To build a gauge-invariant kinetic term for the gluon fields, we introduce the corresponding field
strengths:

Gµν(x) ≡ − i

gs
[Dµ, Dν ] = ∂µGν − ∂νGµ + igs [Gµ, Gν ] ≡ λa

2
Gµνa (x) ,

Gµνa (x) = ∂µGνa − ∂νGµa − gs fabcGµb Gνc . (27)

Under a gauge transformation,

Gµν −→ (Gµν)′ = U Gµν U † , (28)

and the colour trace Tr(GµνGµν) = 1
2 G

µν
a Gaµν remains invariant.

Taking the proper normalization for the gluon kinetic term, we finally have the SU(3)C invariant
Lagrangian of Quantum Chromodynamics (QCD):

LQCD ≡ −1
4
Gµνa Gaµν +

∑
f

q̄f (iγµDµ −mf ) qf . (29)

It is worth while to decompose the Lagrangian into its different pieces:

LQCD = − 1
4

(∂µGνa − ∂νGµa) (∂µGaν − ∂νGaµ) +
∑
f

q̄αf (iγµ∂µ −mf ) qαf
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Fig. 5: Two- and three-jet events from the hadronic Z boson decays Z → qq̄ and Z → qq̄G (ALEPH) [22]

− gsG
µ
a

∑
f

q̄αf γµ

(
λa

2

)
αβ

qβf (30)

+
gs
2
fabc (∂µGνa − ∂νGµa)GbµG

c
ν −

g2
s

4
fabcfadeG

µ
b G

ν
c G

d
µG

e
ν .

The first line contains the correct kinetic terms for the different fields, which give rise to the corre-
sponding propagators. The colour interaction between quarks and gluons is given by the second line; it
involves the SU(3)C matrices λa. Finally, owing to the non-Abelian character of the colour group, the
Gµνa Gaµν term generates the cubic and quartic gluon self-interactions shown in the last line; the strength
of these interactions (Fig. 4) is given by the same coupling gs which appears in the fermionic piece of
the Lagrangian.

In spite of the rich physics contained in it, the Lagrangian (29) looks very simple because of its
colour symmetry properties. All interactions are given in terms of a single universal coupling gs, which
is called the strong coupling constant. The existence of self-interactions among the gauge fields is a new
feature that was not present in QED; it seems then reasonable to expect that these gauge self-interactions
could explain properties like asymptotic freedom (strong interactions become weaker at short distances)
and confinement (the strong forces increase at large distances), which do not appear in QED [6].

Without any detailed calculation, one can already extract qualitative physical consequences from
LQCD. Quarks can emit gluons. At lowest order in gs, the dominant process will be the emission of a
single gauge boson; thus the hadronic decay of the Z should result in some Z → qq̄G events, in addition
to the dominant Z → qq̄ decays. Figure 5 clearly shows that 3-jet events, with the required kinematics,
indeed appear in the LEP data. Similar events show up in e+e− annihilation into hadrons, away from the
Z peak. The ratio between 3-jet and 2-jet events provides a simple estimate of the strength of the strong
interaction at LEP energies (s = M 2

Z ): αs ≡ g2
s/(4π) ∼ 0.12.

3 Electroweak unification
3.1 Experimental facts
Low-energy experiments have provided a large amount of information about the dynamics underlying
flavour-changing processes. The detailed analysis of the energy and angular distributions in β decays,
such as µ− → e−ν̄e νµ or n → p e−ν̄e , made clear that only the left-handed (right-handed) fermion
(antifermion) chiralities participate in those weak transitions; moreover, the strength of the interaction
appears to be universal. This is further corroborated through the study of other processes like π− →
e−ν̄e or π− → µ−ν̄µ , which show that neutrinos have left-handed chiralities while anti-neutrinos are
right-handed.
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From neutrino scattering data, we learned the existence of different neutrino types (νe 6= νµ) and
that there are separately conserved lepton quantum numbers which distinguish neutrinos from antineu-
trinos; thus we observe the transitions ν̄e p → e+n , νe n → e−p , ν̄µ p→ µ+n or νµ n→ µ−p , but
we do not see processes like νe p 6→ e+n , ν̄e n 6→ e−p , ν̄µ p 6→ e+n or νµ n 6→ e−p .

Together with theoretical considerations related to unitarity (a proper high-energy behaviour) and
the absence of flavour-changing neutral-current transitions (µ− 6→ e−e−e+), the low-energy information
was good enough to determine the structure of the modern electroweak theory [23]. The intermediate
vector bosons W± and Z were theoretically introduced and their masses correctly estimated, before their
experimental discovery. Nowadays, we have accumulated huge numbers of W ± and Z decay events,
which bring much direct experimental evidence of their dynamical properties.

3.1.1 Charged currents

W

e

µ

−

ν

ν

, d  , d  



e−

µ−

W

e

µ

+

ν



ν

−µ

e−

Fig. 6: Tree-level Feynman diagrams for µ− → e−ν̄e νµ and νµ e
− → µ−νe

The interaction of quarks and leptons with the W ± bosons (Fig. 6) exhibits the following features:

– Only left-handed fermions and right-handed antifermions couple to the W ±. Therefore, there is
a 100% breaking of parity P (left ↔ right) and charge conjugation C (particle ↔ antiparticle).
However, the combined transformation CP is still a good symmetry.

– The W± bosons couple to the fermionic doublets in Eq. (1), where the electric charges of the two
fermion partners differ in one unit. The decay channels of the W − are then:

W− → e−ν̄e , µ−ν̄µ , τ−ν̄τ , d ′ ū , s ′ c̄ . (31)

Owing to the very high mass of the top quark [24], mt = 171 GeV > MW = 80.4 GeV, its
on-shell production through W− → b ′ t̄ is kinematically forbidden.

– All fermion doublets couple to the W± bosons with the same universal strength.
– The doublet partners of the up, charm, and top quarks appear to be mixtures of the three quarks

with charge − 1
3 :  d ′

s ′

b ′

 = V

 d
s
b

 , V V† = V†V = 1 . (32)

Thus, the weak eigenstates d ′ , s ′ , b ′ are different than the mass eigenstates d , s , b . They are
related through the 3× 3 unitary matrix V, which characterizes flavour-mixing phenomena.

– The experimental evidence of neutrino oscillations shows that νe, νµ and ντ are also mixtures
of mass eigenstates. However, the neutrino masses are tiny:

∣∣m2
ν3
−m2

ν2

∣∣ ∼ 2.5 · 10−3 eV2 ,
m2
ν2
−m2

ν1
∼ 8 · 10−5 eV2 [7].
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Fig. 7: Tree-level Feynman diagrams for e+e− → µ+µ− and e+e− → ν ν̄

3.1.2 Neutral currents
The neutral carriers of the electromagnetic and weak interactions have fermionic couplings (Fig. 7) with
the following properties:

– All interacting vertices are flavour conserving. Both the γ and the Z couple to a fermion and its
own antifermion, i.e., γ f f̄ and Z f f̄ . Transitions of the type µ 6→ eγ or Z 6→ e±µ∓ have
never been observed.

– The interactions depend on the fermion electric charge Qf . Fermions with the same Qf have
exactly the same universal couplings. Neutrinos do not have electromagnetic interactions (Qν =
0), but they have a non-zero coupling to the Z boson.

– Photons have the same interaction for both fermion chiralities, but the Z couplings are different for
left-handed and right-handed fermions. The neutrino coupling to the Z involves only left-handed
chiralities.

– There are three different light neutrino species.

3.2 The SU(2)L ⊗U(1)Y theory
Using gauge invariance, we have been able to determine the right QED and QCD Lagrangians. To
describe weak interactions, we need a more elaborated structure, with several fermionic flavours and
different properties for left- and right-handed fields; moreover, the left-handed fermions should appear
in doublets, and we would like to have massive gauge bosons W ± and Z in addition to the photon.
The simplest group with doublet representations is SU(2). We want to include also the electromagnetic
interactions; thus we need an additional U(1) group. The obvious symmetry group to consider is then

G ≡ SU(2)L ⊗ U(1)Y , (33)

where L refers to left-handed fields. We do not specify, for the moment, the meaning of the subindex Y
since, as we shall see, the naive identification with electromagnetism does not work.

For simplicity, let us consider a single family of quarks, and introduce the notation

ψ1(x) =
(
u
d

)
L

, ψ2(x) = uR , ψ3(x) = dR . (34)

Our discussion will also be valid for the lepton sector, with the identification

ψ1(x) =
(

νe
e−

)
L

, ψ2(x) = νeR , ψ3(x) = e−R . (35)

As in the QED and QCD cases, let us consider the free Lagrangian

L0 = i ū(x) γµ ∂µu(x) + i d̄(x) γµ ∂µd(x) =
3∑
j=1

i ψj(x) γµ ∂µψj(x) . (36)
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L0 is invariant under global G transformations in flavour space:

ψ1(x) G−→ ψ′1(x) ≡ exp {iy1β} UL ψ1(x) ,

ψ2(x) G−→ ψ′2(x) ≡ exp {iy2β} ψ2(x) , (37)

ψ3(x) G−→ ψ′3(x) ≡ exp {iy3β} ψ3(x) ,

where the SU(2)L transformation

UL ≡ exp
{
i
σi
2
αi
}

(i = 1, 2, 3) (38)

acts only on the doublet field ψ1. The parameters yi are called hypercharges, since the U(1)Y phase
transformation is analogous to the QED one. The matrix transformation UL is non-Abelian as in QCD.
Notice that we have not included a mass term in Eq. (36) because it would mix the left- and right-handed
fields [see Eq. (A.17)], therefore spoiling our symmetry considerations.

We can now require the Lagrangian to be also invariant under local SU(2)L ⊗ U(1)Y gauge
transformations, i.e., with αi = αi(x) and β = β(x). In order to satisfy this symmetry requirement, we
need to change the fermion derivatives by covariant objects. Since we have now four gauge parameters,
αi(x) and β(x), four different gauge bosons are needed:

Dµψ1(x) ≡
[
∂µ + i g W̃µ(x) + i g ′ y1 Bµ(x)

]
ψ1(x) ,

Dµψ2(x) ≡ [∂µ + i g ′ y2Bµ(x)] ψ2(x) , (39)

Dµψ3(x) ≡ [∂µ + i g ′ y3Bµ(x)] ψ3(x) ,

where
W̃µ(x) ≡ σi

2
W i
µ(x) (40)

denotes a SU(2)L matrix field. Thus we have the correct number of gauge fields to describe the W ±, Z
and γ.

We want Dµψj(x) to transform in exactly the same way as the ψj(x) fields; this fixes the trans-
formation properties of the gauge fields:

Bµ(x) G−→ B′µ(x) ≡ Bµ(x)− 1
g ′
∂µβ(x), (41)

W̃µ
G−→ W̃ ′µ ≡ UL(x) W̃µ U

†
L(x) +

i

g
∂µUL(x)U †L(x), (42)

where UL(x) ≡ exp
{
i σi2 α

i(x)
}

. The transformation of Bµ is identical to the one obtained in QED for
the photon, while the SU(2)L W i

µ fields transform in a way analogous to the gluon fields of QCD. Note
that the ψj couplings to Bµ are completely free as in QED, i.e., the hypercharges yj can be arbitrary
parameters. Since the SU(2)L commutation relation is non-linear, this freedom does not exist for the
W i
µ: there is only a unique SU(2)L coupling g.

The Lagrangian

L =
3∑
j=1

i ψj(x) γµDµψj(x) (43)

is invariant under localG transformations. In order to build the gauge-invariant kinetic term for the gauge
fields, we introduce the corresponding field strengths:

Bµν ≡ ∂µBν − ∂νBµ , (44)

10

A. PICH

10



W̃µν ≡ − i
g

[(
∂µ + i g W̃µ

)
,
(
∂ν + i g W̃ν

)]
= ∂µW̃ν − ∂νW̃µ + ig [Wµ,Wν ] , (45)

W̃µν ≡ σi
2
W i
µν , W i

µν = ∂µW
i
ν − ∂νW i

µ − g εijkW j
µW

k
ν . (46)

Bµν remains invariant under G transformations, while W̃µν transforms covariantly:

Bµν
G−→ Bµν , W̃µν

G−→ UL W̃µν U
†
L . (47)

Therefore, the properly normalized kinetic Lagrangian is given by

Lkin = −1
4
Bµν B

µν − 1
2

Tr
[
W̃µν W̃

µν
]

= −1
4
Bµν B

µν − 1
4
W i
µνW

µν
i . (48)

Since the field strengths W i
µν contain a quadratic piece, the Lagrangian Lkin gives rise to cubic and

quartic self-interactions among the gauge fields. The strength of these interactions is given by the same
SU(2)L coupling g which appears in the fermionic piece of the Lagrangian.

The gauge symmetry forbids the writing of a mass term for the gauge bosons. Fermionic masses
are also not possible, because they would communicate the left- and right-handed fields, which have
different transformation properties, and therefore would produce an explicit breaking of the gauge sym-
metry. Thus, the SU(2)L ⊗ U(1)Y Lagrangian in Eqs. (43) and (48) contains only massless fields.

3.3 Charged-current interaction

23/2

W

quqd g
(1− γ  )

5 23/2

W

l νl
−

5
(1− γ  )

g

Fig. 8: Charged-current interaction vertices

The Lagrangian (43) contains interactions of the fermion fields with the gauge bosons,

L −→ −g ψ1γ
µW̃µψ1 − g ′Bµ

3∑
j=1

yj ψjγ
µψj . (49)

The term containing the SU(2)L matrix

W̃µ =
σi

2
W i
µ =

1
2

(
W 3
µ

√
2W †µ√

2Wµ −W 3
µ

)
(50)

gives rise to charged-current interactions with the boson field Wµ ≡ (W 1
µ +iW 2

µ )/
√

2 and its complex-
conjugate W †µ ≡ (W 1

µ − iW 2
µ)/
√

2 (Fig. 8). For a single family of quarks and leptons,

LCC = − g

2
√

2

{
W †µ [ūγµ(1− γ5)d + ν̄eγ

µ(1− γ5)e] + h.c.
}
. (51)

The universality of the quark and lepton interactions is now a direct consequence of the assumed gauge
symmetry. Note, however, that Eq. (51) cannot describe the observed dynamics, because the gauge
bosons are massless and, therefore, give rise to long-range forces.
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γ

f f
e Q

f
2

Z

f f

θ θs  c
e

f f(v  − a      )γ5

Fig. 9: Neutral-current interaction vertices

3.4 Neutral-current interaction
Equation (49) contains also interactions with the neutral gauge fields W 3

µ and Bµ. We would like to
identify these bosons with the Z and the γ. However, since the photon has the same interaction with both
fermion chiralities, the singlet gauge boson Bµ cannot be equal to the electromagnetic field. That would
require y1 = y2 = y3 and g ′yj = eQj , which cannot be simultaneously true.

Since both fields are neutral, we can try with an arbitrary combination of them:(
W 3
µ

Bµ

)
≡
(

cos θW sin θW
− sin θW cos θW

) (
Zµ
Aµ

)
. (52)

The physical Z boson has a mass different from zero, which is forbidden by the local gauge symmetry.
We will see in the next section how it is possible to generate non-zero boson masses, through the SSB
mechanism. For the moment, we just assume that something breaks the symmetry, generating the Z
mass, and that the neutral mass eigenstates are a mixture of the triplet and singlet SU(2)L fields. In
terms of the fields Z and γ, the neutral-current Lagrangian is given by

LNC = −
∑
j

ψj γ
µ
{
Aµ

[
g
σ3

2
sin θW + g ′ yj cos θW

]
+ Zµ

[
g
σ3

2
cos θW − g ′ yj sin θW

]}
ψj .

(53)
In order to get QED from the Aµ piece, one needs to impose the conditions:

g sin θW = g ′ cos θW = e , Y = Q− T3 , (54)

where T3 ≡ σ3/2 and Q denotes the electromagnetic charge operator

Q1 ≡
(
Qu/ν 0

0 Qd/e

)
, Q2 = Qu/ν , Q3 = Qd/e . (55)

The first equality relates the SU(2)L and U(1)Y couplings to the electromagnetic coupling, providing the
wanted unification of the electroweak interactions. The second identity fixes the fermion hypercharges
in terms of their electric charge and weak isospin quantum numbers:

Quarks: y1 = Qu − 1
2 = Qd + 1

2 = 1
6 , y2 = Qu = 2

3 , y3 = Qd = −1
3 ,

Leptons: y1 = Qν − 1
2 = Qe + 1

2 = −1
2 , y2 = Qν = 0 , y3 = Qe = −1 .

A hypothetical right-handed neutrino would have both electric charge and weak hypercharge equal to
zero. Since it would not couple either to the W± bosons, such a particle would not have any kind of
interaction (sterile neutrino). For aesthetic reasons, we shall not consider right-handed neutrinos any
longer.

Using the relations (54), the neutral-current Lagrangian can be written as

LNC = LQED + LZNC , (56)
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Table 1: Neutral-current couplings

u d νe e

2 vf 1− 8
3 sin2 θW −1 + 4

3 sin2 θW 1 −1 + 4 sin2 θW

2 af 1 −1 1 −1

where
LQED = −eAµ

∑
j

ψjγ
µQjψj ≡ −eAµ Jµem (57)

is the usual QED Lagrangian and

LZNC = − e

2 sin θW cos θW
JµZ Zµ (58)

contains the interaction of the Z boson with the neutral fermionic current

JµZ ≡
∑
j

ψjγ
µ
(
σ3 − 2 sin2 θWQj

)
ψj = Jµ3 − 2 sin2 θW Jµem . (59)

In terms of the more usual fermion fields, LZNC has the form (Fig. 9)

LZNC = − e

2 sin θW cos θW
Zµ
∑
f

f̄γµ(vf − afγ5) f , (60)

where af = T f3 and vf = T f3
(
1− 4|Qf | sin2 θW

)
. Table 1 shows the neutral-current couplings of the

different fermions.

3.5 Gauge self-interactions

� � � �� � � �� � � �� � � �

W +

W −

γ , Z 

γ , Z 

� � � �� � � �� � � �� � � � � � � �� � � �
� � � �� � � �

W −

, Zγ

W

W + + +

W −−

WW

Fig. 10: Gauge boson self-interaction vertices

In addition to the usual kinetic terms, the Lagrangian (48) generates cubic and quartic self-
interactions among the gauge bosons (Fig. 10):

L3 = ie cot θW
{

(∂µW ν − ∂νW µ)W †µZν −
(
∂µW ν† − ∂νW µ†

)
WµZν +WµW

†
ν (∂µZν − ∂νZµ)

}
+ ie

{
(∂µW ν − ∂νW µ)W †µAν −

(
∂µW ν† − ∂νW µ†

)
WµAν +WµW

†
ν (∂µAν − ∂νAµ)

}
;

(61)

L4 = − e2

2 sin2 θW

{(
W †µW

µ
)2 −W †µW µ†WνW

ν

}
− e2 cot2 θW

{
W †µW

µZνZ
ν −W †µZµWνZ

ν
}
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− e2 cot θW
{

2W †µW
µZνA

ν −W †µZµWνA
ν −W †µAµWνZ

ν
}

− e2
{
W †µW

µAνA
ν −W †µAµWνA

ν
}
.

Notice that at least a pair of charged W bosons are always present. The SU(2)L algebra does not generate
any neutral vertex with only photons and Z bosons.

4 Spontaneous symmetry breaking

Fig. 11: Although Nicolás likes the symmetric food configuration, he must break the symmetry deciding which
carrot is more appealing. In three dimensions, there is a continuous valley where Nicolás can move from one carrot
to the next without effort.

So far, we have been able to derive charged- and neutral-current interactions of the type needed
to describe weak decays; we have nicely incorporated QED into the same theoretical framework and,
moreover, we have got additional self-interactions of the gauge bosons, which are generated by the non-
Abelian structure of the SU(2)L group. Gauge symmetry also guarantees that we have a well-defined
renormalizable Lagrangian. However, this Lagrangian has very little to do with reality. Our gauge bosons
are massless particles; while this is fine for the photon field, the physical W ± and Z bosons should be
quite heavy objects.

In order to generate masses, we need to break the gauge symmetry in some way; however, we also
need a fully symmetric Lagrangian to preserve renormalizability. This dilemma may be solved by the
possibility of getting non-symmetric results from an invariant Lagrangian.

Let us consider a Lagrangian, which

1. is invariant under a group G of transformations;
2. has a degenerate set of states with minimal energy, which transform under G as the members of a

given multiplet.

If one of those states is arbitrarily selected as the ground state of the system, the symmetry is said to be
spontaneously broken.

A well-known physical example is provided by a ferromagnet: although the Hamiltonian is in-
variant under rotations, the ground state has the spins aligned into some arbitrary direction; moreover,
any higher-energy state, built from the ground state by a finite number of excitations, would share this
anisotropy. In a Quantum Field Theory, the ground state is the vacuum; thus the SSB mechanism will
appear when there is a symmetric Lagrangian, but a non-symmetric vacuum.
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The horse in Fig. 11 illustrates in a very simple way the phenomenon of SSB. Although the left
and right carrots are identical, Nicolás must take a decision if he wants to get food. What is important
is not whether he goes left or right, which are equivalent options, but that the symmetry gets broken. In
two dimensions (discrete left–right symmetry), after eating the first carrot Nicolás would need to make
an effort to climb the hill in order to reach the carrot on the other side; however, in three dimensions
(continuous rotation symmetry) there is a marvelous flat circular valley along which Nicolás can move
from one carrot to the next without any effort.

The existence of flat directions connecting the degenerate states of minimal energy is a general
property of the SSB of continuous symmetries. In a Quantum Field Theory it implies the existence of
massless degrees of freedom.

4.1 Goldstone theorem

|φ|

V(φ)

2
ϕ

|φ|
ϕ

1

V(φ)

Fig. 12: Shape of the scalar potential for µ2 > 0 (left) and µ2 < 0 (right). In the second case there is
a continuous set of degenerate vacua, corresponding to different phases θ, connected through a massless field
excitation ϕ2.

Let us consider a complex scalar field φ(x), with Lagrangian

L = ∂µφ
†∂µφ− V (φ) , V (φ) = µ2φ†φ+ h

(
φ†φ

)2
. (62)

L is invariant under global phase transformations of the scalar field

φ(x) −→ φ′(x) ≡ exp {iθ}φ(x) . (63)

In order to have a ground state the potential should be bounded from below, i.e., h > 0. For the
quadratic piece there are two possibilities, shown in Fig. 12:

1. µ2 > 0: The potential has only the trivial minimum φ = 0. It describes a massive scalar particle
with mass µ and quartic coupling h.

2. µ2 < 0: The minimum is obtained for those field configurations satisfying

|φ0| =

√
−µ2

2h
≡ v√

2
> 0 , V (φ0) = −h

4
v4 . (64)

Owing to the U(1) phase-invariance of the Lagrangian, there is an infinite number of degenerate
states of minimum energy, φ0(x) = v√

2
exp {iθ}. By choosing a particular solution, θ = 0 for

example, as the ground state, the symmetry gets spontaneously broken. If we parametrize the
excitations over the ground state as

φ(x) ≡ 1√
2

[v + ϕ1(x) + i ϕ2(x)] , (65)
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where ϕ1 and ϕ2 are real fields, the potential takes the form

V (φ) = V (φ0)− µ2ϕ2
1 + h v ϕ1

(
ϕ2

1 + ϕ2
2

)
+
h

4
(
ϕ2

1 + ϕ2
2

)2
. (66)

Thus ϕ1 describes a massive state of mass m2
ϕ1

= −2µ2, while ϕ2 is massless.

The first possibility (µ2 > 0) is just the usual situation with a single ground state. The other
case, with SSB, is more interesting. The appearance of a massless particle when µ2 < 0 is easy to
understand: the field ϕ2 describes excitations around a flat direction in the potential, i.e., into states
with the same energy as the chosen ground state. Since those excitations do not cost any energy, they
obviously correspond to a massless state.

The fact that there are massless excitations associated with the SSB mechanism is a completely
general result, known as the Goldstone theorem [25]: if a Lagrangian is invariant under a continuous
symmetry group G, but the vacuum is only invariant under a subgroup H ⊂ G, then there must exist as
many massless spin-0 particles (Goldstone bosons) as broken generators (i.e., generators of G which do
not belong to H).

4.2 The Higgs–Kibble mechanism
At first sight, the Goldstone theorem has very little to do with our mass problem; in fact, it makes it worse
since we want massive states and not massless ones. However, something very interesting happens when
there is a local gauge symmetry [26, 27].

Let us consider [3] an SU(2)L doublet of complex scalar fields

φ(x) ≡
(
φ(+)(x)
φ(0)(x)

)
. (67)

The gauged scalar Lagrangian of the Goldstone model in Eq. (62),

LS = (Dµφ)†Dµφ− µ2φ†φ− h
(
φ†φ

)2
(h > 0 , µ2 < 0) , (68)

Dµφ =
[
∂µ + i g W̃ µ + i g ′ yφBµ

]
φ , yφ = Qφ − T3 =

1
2
, (69)

is invariant under local SU(2)L ⊗ U(1)Y transformations. The value of the scalar hypercharge is fixed
by the requirement of having the correct couplings between φ(x) and Aµ(x); i.e., the photon does not
couple to φ(0), and φ(+) has the right electric charge.

The potential is very similar to the one considered before. There is a infinite set of degenerate
states with minimum energy, satisfying

∣∣〈0|φ(0)|0〉∣∣ =

√
−µ2

2h
≡ v√

2
. (70)

Note that we have made explicit the association of the classical ground state with the quantum vacuum.
Since the electric charge is a conserved quantity, only the neutral scalar field can acquire a vacuum
expectation value. Once we choose a particular ground state, the SU(2)L ⊗ U(1)Y symmetry gets
spontaneously broken to the electromagnetic subgroup U(1)QED, which by construction still remains a
true symmetry of the vacuum. According to the Goldstone theorem three massless states should then
appear.

Now, let us parametrize the scalar doublet in the general form

φ(x) = exp
{
i
σi
2
θi(x)

} 1√
2

(
0

v +H(x)

)
, (71)

16

A. PICH

16



with four real fields θi(x) and H(x). The crucial point is that the local SU(2)L invariance of the La-
grangian allows us to rotate away any dependence on θi(x). These three fields are precisely the would-be
massless Goldstone bosons associated with the SSB mechanism.

The covariant derivative (69) couples the scalar multiplet to the SU(2)L ⊗ U(1)Y gauge bosons.
If one takes the physical (unitary) gauge θi(x) = 0 , the kinetic piece of the scalar Lagrangian (68) takes
the form:

(Dµφ)†Dµφ
θi=0−→ 1

2
∂µH∂

µH + (v +H)2

{
g2

4
W †µW

µ +
g2

8 cos2 θW
ZµZ

µ

}
. (72)

The vacuum expectation value of the neutral scalar has generated a quadratic term for the W ± and the
Z , i.e., those gauge bosons have acquired masses:

MZ cos θW = MW =
1
2
v g . (73)

Therefore, we have found a clever way of giving masses to the intermediate carriers of the weak
force. We just add LS to our SU(2)L ⊗ U(1)Y model. The total Lagrangian is invariant under gauge
transformations, which guarantees the renormalizability of the associated Quantum Field Theory [28].
However, SSB occurs. The three broken generators give rise to three massless Goldstone bosons which,
owing to the underlying local gauge symmetry, can be eliminated from the Lagrangian. Going to the
unitary gauge, we discover that the W± and the Z (but not the γ, because U(1)QED is an unbroken
symmetry) have acquired masses, which are moreover related as indicated in Eq. (73). Notice that
Eq. (52) has now the meaning of writing the gauge fields in terms of the physical boson fields with
definite mass.

It is instructive to count the number of degrees of freedom (d.o.f.). Before the SSB mechanism,
the Lagrangian contains massless W± and Z bosons, i.e., 3 × 2 = 6 d.o.f., due to the two possible
polarizations of a massless spin-1 field, and four real scalar fields. After SSB, the three Goldstone modes
are ‘eaten’ by the weak gauge bosons, which become massive and, therefore, acquire one additional
longitudinal polarization. We have then 3 × 3 = 9 d.o.f. in the gauge sector, plus the remaining scalar
particle H , which is called the Higgs boson. The total number of d.o.f. remains of course the same.

4.3 Predictions
We have now all the needed ingredients to describe the electroweak interaction within a well-defined
Quantum Field Theory. Our theoretical framework implies the existence of massive intermediate gauge
bosons, W± and Z . Moreover, the Higgs–Kibble mechanism has produced a precise prediction1 for the
W± and Z masses, relating them to the vacuum expectation value of the scalar field through Eq. (73).
Thus MZ is predicted to be bigger than MW in agreement with the measured masses [29, 30]:

MZ = 91.1875 ± 0.0021 GeV , MW = 80.398 ± 0.025 GeV . (74)

From these experimental numbers, one obtains the electroweak mixing angle

sin2 θW = 1− M2
W

M2
Z

= 0.223 . (75)

We can easily get an independent estimate of sin2 θW from the decay µ− → e−ν̄e νµ. The mo-
mentum transfer q2 = (pµ − pνµ)2 = (pe + pνe)2 . m2

µ is much smaller than M 2
W . Therefore the

1Note, however, that the relationMZ cos θW = MW has a more general validity. It is a direct consequence of the symmetry
properties of LS and does not depend on its detailed dynamics.
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W propagator in Fig. 6 shrinks to a point and can be well approximated through a local four-fermion
interaction, i.e.,

g2

M2
W − q2

≈ g2

M2
W

=
4πα

sin2 θWM
2
W

≡ 4
√

2GF . (76)

The measured muon lifetime, τµ = (2.197019 ± 0.000021) · 10−6 s [31], provides a very precise deter-
mination of the Fermi coupling constant GF :

1
τµ

= Γµ =
G2
Fm

5
µ

192π3
f(m2

e/m
2
µ) (1 + δRC) , f(x) ≡ 1− 8x+ 8x3 − x4 − 12x2 log x . (77)

Taking into account the radiative corrections δRC, which are known to O(α2) [32, 33], one gets [31]:

GF = (1.166371 ± 0.000006) · 10−5 GeV−2 . (78)

The measured values of α−1 = 137.035999710 (96), MW and GF imply

sin2 θW = 0.215 , (79)

in very good agreement with Eq. (75). We shall see later that the small difference between these two
numbers can be understood in terms of higher-order quantum corrections. The Fermi coupling also gives
a direct determination of the electroweak scale, i.e., the scalar vacuum expectation value:

v =
(√

2GF
)−1/2

= 246 GeV . (80)

4.4 The Higgs boson
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Fig. 13: Higgs couplings to the gauge bosons

The scalar Lagrangian in Eq. (68) has introduced a new scalar particle into the model: the Higgs
H . In terms of the physical fields (unitary gauge), LS takes the form

LS =
1
4
h v4 + LH + LHG2 , (81)

where

LH =
1
2
∂µH∂

µH − 1
2
M2
H H

2 − M2
H

2v
H3 − M2

H

8v2
H4 , (82)
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LHG2 = M2
W W †µW

µ

{
1 +

2
v
H +

H2

v2

}
+

1
2
M2
Z ZµZ

µ

{
1 +

2
v
H +

H2

v2

}
(83)

and the Higgs mass is given by
MH =

√
−2µ2 =

√
2h v . (84)

The Higgs interactions (Fig. 13) have a very characteristic form: they are always proportional to the mass
(squared) of the coupled boson. All Higgs couplings are determined by MH , MW , MZ , and the vacuum
expectation value v.

So far the experimental searches for the Higgs have only provided a lower bound on its mass,
corresponding to the exclusion of the kinematical range accessible at LEP and the Tevatron [7]:

MH > 114.4 GeV (95% C.L.) . (85)

4.5 Fermion masses

H

f

f

fm
v

Fig. 14: Fermionic coupling of the Higgs boson

A fermionic mass term Lm = −mψψ = −m (ψLψR + ψRψL
)

is not allowed, because it breaks
the gauge symmetry. However, since we have introduced an additional scalar doublet into the model, we
can write the following gauge-invariant fermion-scalar coupling:

LY = −c1
(
ū, d̄
)
L

(
φ(+)

φ(0)

)
dR − c2

(
ū, d̄
)
L

(
φ(0)∗

−φ(−)

)
uR − c3 (ν̄e, ē)L

(
φ(+)

φ(0)

)
eR + h.c. ,

(86)
where the second term involves the C-conjugate scalar field φc ≡ i σ2 φ

∗. In the unitary gauge (after
SSB), this Yukawa-type Lagrangian takes the simpler form

LY = − 1√
2

(v +H)
{
c1 d̄d+ c2 ūu+ c3 ēe

}
. (87)

Therefore, the SSB mechanism generates also fermion masses:

md = c1
v√
2
, mu = c2

v√
2
, me = c3

v√
2
. (88)

Since we do not know the parameters ci, the values of the fermion masses are arbitrary. Note,
however, that all Yukawa couplings are fixed in terms of the masses (Fig. 14):

LY = −
(

1 +
H

v

) {
md d̄d+mu ūu+me ēe

}
. (89)

5 Electroweak phenomenology
In the gauge and scalar sectors, the SM Lagrangian contains only four parameters: g, g ′, µ2, and h. One
could trade them for α, θW , MW , and MH . Alternatively, we can choose as free parameters:

GF = (1.166 371 ± 0.000 006) · 10−5 GeV−2 [31] ,
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α−1 = 137.035 999 710 ± 0.000 000 096 [15] , (90)
MZ = (91.1875 ± 0.0021) GeV [29, 30]

and the Higgs mass MH . This has the advantage of using the three most precise experimental determi-
nations to fix the interaction. The relations

sin2 θW = 1− M2
W

M2
Z

, M2
W sin2 θW =

πα√
2GF

(91)

determine then sin2 θW = 0.212 and MW = 80.94 GeV. The predicted MW is in good agreement
with the measured value in Eq. (74).

W −

νl

−l , d

, u

i

j

Z

f

f

Fig. 15: Tree-level Feynman diagrams contributing to the W± and Z decays

At tree level (Fig. 15), the decay widths of the weak gauge bosons can easily be computed. The
W partial widths,

Γ
(
W− → ν̄ll

−) =
GFM

3
W

6π
√

2
, Γ

(
W− → ūidj

)
= NC |Vij |2 GFM

3
W

6π
√

2
, (92)

are equal for all leptonic decay modes (up to small kinematical mass corrections). The quark modes
involve also the colour quantum number NC = 3 and the mixing factor Vij relating weak and mass
eigenstates, d ′i = Vij dj . The Z partial widths are different for each decay mode, since its couplings
depend on the fermion charge:

Γ
(
Z → f̄f

)
= Nf

GFM
3
Z

6π
√

2

(|vf |2 + |af |2
)
, (93)

where Nl = 1 and Nq = NC . Summing over all possible final fermion pairs, one predicts the total
widths ΓW = 2.09 GeV and ΓZ = 2.48 GeV, in excellent agreement with the experimental values
ΓW = (2.147 ± 0.060) GeV and ΓZ = (2.4952 ± 0.0023) GeV [29, 30].

The universality of the W couplings implies

Br(W− → ν̄l l
−) =

1
3 + 2NC

= 11.1% , (94)

where we have taken into account that the decay into the top quark is kinematically forbidden. Similarly,
the leptonic decay widths of the Z are predicted to be Γl ≡ Γ(Z → l+l−) = 84.85 MeV. As shown
in Table 2, these predictions are in good agreement with the measured leptonic widths, confirming the
universality of the W and Z leptonic couplings. There is, however, an excess of the branching ratio
W → τ ν̄τ with respect to W → e ν̄e and W → µ ν̄µ , which represents a 2.8σ effect [29, 30].

The universality of the leptonic W couplings can also be tested indirectly, through weak decays
mediated by charged-current interactions. Comparing the measured decay widths of leptonic or semilep-
tonic decays which differ only by the lepton flavour, one can test experimentally that the W interaction
is indeed the same, i.e., that ge = gµ = gτ ≡ g . As shown in Table 3, the present data verify the
universality of the leptonic charged-current couplings to the 0.2% level.
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Table 2: Measured values of Br(W− → ν̄l l
−) and Γ(Z → l+l−) [29, 30]. The average of the three leptonic

modes is shown in the last column (for a massless charged lepton l).

e µ τ l

Br(W− → ν̄ll
−) (%) 10.65 ± 0.17 10.59 ± 0.15 11.44 ± 0.22 10.84 ± 0.09

Γ(Z → l+l−) (MeV) 83.92 ± 0.12 83.99 ± 0.18 84.08 ± 0.22 83.985 ± 0.086

Table 3: Experimental determinations of the ratios gl/gl′ [18, 34]

Γτ→ντe ν̄e/Γµ→νµe ν̄e Γτ→ντπ/Γπ→µ ν̄µ Γτ→ντK/ΓK→µ ν̄µ ΓW→τ ν̄τ/ΓW→µ ν̄µ
|gτ/gµ| 1.0004 ± 0.0022 0.996 ± 0.005 0.979 ± 0.017 1.039 ± 0.013

Γτ→ντµ ν̄µ/Γτ→ντe ν̄e Γπ→µ ν̄µ/Γπ→e ν̄e ΓK→µ ν̄µ/ΓK→e ν̄e ΓK→πµ ν̄µ/ΓK→πe ν̄e
|gµ/ge| 1.0000 ± 0.0020 1.0017 ± 0.0015 1.012 ± 0.009 1.0002 ± 0.0026

ΓW→µ ν̄µ/ΓW→e ν̄e Γτ→ντµ ν̄µ/Γµ→νµe ν̄e ΓW→τ ν̄τ /ΓW→e ν̄e
|gµ/ge| 0.997 ± 0.010 |gτ/ge| 1.0004 ± 0.0023 1.036 ± 0.014

Another interesting quantity is the Z decay width into invisible modes,

Γinv

Γl
≡ Nν Γ(Z → ν̄ ν)

Γl
=

2Nν

(1− 4 sin2 θW )2 + 1
, (95)

which is usually normalized to the charged leptonic width. The comparison with the measured value,
Γinv/Γl = 5.942± 0.016 [29,30], provides very strong experimental evidence for the existence of three
different light neutrinos.

5.1 Fermion-pair production at the Z peak

f−e

e+

f

θ
− e+

f f

eγ , Z

Fig. 16: Tree-level contributions to e+e− → f̄f and kinematical configuration in the centre-of-mass system

Additional information can be obtained from the study of the process e+e− → γ, Z → f̄f
(Fig. 16). For unpolarized e+ and e− beams, the differential cross-section can be written, at lowest
order, as

dσ

dΩ
=

α2

8s
Nf

{
A (1 + cos2 θ) +B cos θ − hf

[
C (1 + cos2 θ) + D cos θ

]}
, (96)

where hf = ±1 denotes the sign of the helicity of the produced fermion f , and θ is the scattering angle
between e− and f in the centre-of-mass system. Here,

A = 1 + 2 vevf Re(χ) +
(
v2
e + a2

e

) (
v2
f + a2

f

) |χ|2 ,
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B = 4 aeaf Re(χ) + 8 veaevfaf |χ|2 ,
C = 2 veaf Re(χ) + 2

(
v2
e + a2

e

)
vfaf |χ|2 ,

D = 4 aevf Re(χ) + 4 veae
(
v2
f + a2

f

) |χ|2 , (97)

and χ contains the Z propagator

χ =
GFM

2
Z

2
√

2πα
s

s−M2
Z + isΓZ/MZ

. (98)

The coefficients A, B, C and D can be experimentally determined by measuring the total cross-
section, the forward–backward asymmetry, the polarization asymmetry, and the forward–backward po-
larization asymmetry, respectively:

σ(s) =
4πα2

3s
Nf A , AFB(s) ≡ NF −NB

NF +NB
=

3
8
B

A
,

APol(s) ≡ σ(hf=+1) − σ(hf=−1)

σ(hf=+1) + σ(hf=−1)
= −C

A
, (99)

AFB,Pol(s) ≡
N

(hf=+1)
F −N (hf=−1)

F −N (hf=+1)
B +N

(hf=−1)
B

N
(hf=+1)
F +N

(hf=−1)
F +N

(hf=+1)
B +N

(hf=−1)
B

= −3
8
D

A
.

Here, NF and NB denote the number of f ’s emerging in the forward and backward hemispheres, respec-
tively, with respect to the electron direction. The measurement of the final fermion polarization can be
done for f = τ by measuring the distribution of the final τ decay products.

For s = M 2
Z , the real part of the Z propagator vanishes and the photon-exchange terms can be

neglected in comparison with the Z-exchange contributions (Γ2
Z/M

2
Z << 1). Equations (99) become

then,
σ0,f ≡ σ(M2

Z) =
12π
M2
Z

ΓeΓf
Γ2
Z

, A0,f
FB ≡ AFB(M2

Z) =
3
4
PePf ,

A0,f
Pol ≡ APol(M2

Z) = Pf , A0,f
FB,Pol ≡ AFB,Pol(M2

Z) =
3
4
Pe , (100)

where Γf is the Z partial decay width into the f̄f final state, and

Pf ≡ −Af ≡ −2 vfaf
v2
f + a2

f

(101)

is the average longitudinal polarization of the fermion f , which only depends on the ratio of the vector
and axial-vector couplings.

With polarized e+e− beams, which have been available at SLC, one can also study the left–right
asymmetry between the cross-sections for initial left- and right-handed electrons, and the corresponding
forward–backward left–right asymmetry:

A0
LR ≡ ALR(M2

Z) =
σL(M2

Z)− σR(M2
Z)

σL(M2
Z) + σR(M2

Z)
= −Pe , A0,f

FB,LR ≡ AFB,LR(M2
Z) = −3

4
Pf .
(102)

At the Z peak, A0
LR measures the average initial lepton polarization, Pe, without any need for final

particle identification, while A0,f
FB,LR provides a direct determination of the final fermion polarization.

Pf is a very sensitive function of sin2 θW . Small higher-order corrections can produce large
variations on the predicted lepton polarization because |vl| = 1

2 |1 − 4 sin2 θW | � 1. Therefore Pl
provides an interesting window to search for electroweak quantum effects.
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Fig. 17: The photon vacuum polarization (left) generates a charge screening effect, making α(s) smaller at larger
distances

5.2 QED and QCD corrections
Before trying to analyse the relevance of higher-order electroweak contributions, it is instructive to con-
sider the numerical impact of the well-known QED and QCD corrections. The photon propagator gets
vacuum polarization corrections, induced by virtual fermion–antifermion pairs. This kind of QED loop
correction can be taken into account through a redefinition of the QED coupling, which depends on the
energy scale. The resulting QED running coupling α(s) decreases at large distances. This can be intu-
itively understood as the charge screening generated by the virtual fermion pairs (Fig. 17). The physical
QED vacuum behaves as a polarized dielectric medium. The huge difference between the electron and
Z mass scales makes this quantum correction relevant at LEP energies [15, 29, 30]:

α(m2
e)
−1 = 137.035 999 710 (96) > α(M 2

Z)−1 = 128.93 ± 0.05 . (103)

The running effect generates an important change in Eq. (91). Since GF is measured at low
energies, while MW is a high-energy parameter, the relation between both quantities is modified by
vacuum-polarization contributions. Changing α by α(M 2

Z), one gets the corrected predictions:

sin2 θW = 0.231 , MW = 79.96 GeV . (104)

The experimental value of MW is in the range between the two results obtained with either α or α(M 2
Z),

showing its sensitivity to quantum corrections. The effect is more spectacular in the leptonic asymmetries
at the Z peak. The small variation of sin2 θW from 0.212 to 0.231 induces a large shift on the vector
Z coupling to charged leptons from vl = −0.076 to −0.038 , changing the predicted average lepton
polarization Pl by a factor of two.

So far, we have treated quarks and leptons on an equal footing. However, quarks are strong-
interacting particles. The gluonic corrections to the decays Z → q̄q and W − → ūidj can be directly
incorporated into the formulae given before by taking an ‘effective’ number of colours:

NC =⇒ NC

{
1 +

αs
π

+ . . .
}
≈ 3.115 , (105)

where we have used the value of αs at s = M2
Z , αs(M2

Z) = 0.119 ± 0.002 [7, 35].
Note that the strong coupling also ‘runs’. However, the gluon self-interactions generate an anti-

screening effect, through gluon-loop corrections to the gluon propagator, which spread out the QCD
charge [6]. Since this correction is larger than the screening of the colour charge induced by virtual
quark–antiquark pairs, the net result is that the strong coupling decreases at short distances. Thus QCD
has the required property of asymptotic freedom: quarks behave as free particles when Q2 →∞ [36,37].

QCD corrections increase the probability of the Z and the W ± to decay into hadronic modes.
Therefore, their leptonic branching fractions become smaller. The effect can be easily estimated from
Eq. (94). The probability of the decay W− → ν̄e e

− gets reduced from 11.1% to 10.8%, improving the
agreement with the measured value in Table 2.
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5.3 Higher-order electroweak corrections
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Fig. 18: Self-energy corrections to the gauge boson propagators

Quantum corrections offer the possibility to be sensitive to heavy particles, which cannot be kine-
matically accessed, through their virtual loop effects. In QED and QCD the vacuum polarization contri-
bution of a heavy fermion pair is suppressed by inverse powers of the fermion mass. At low energies, the
information on the heavy fermions is then lost. This ‘decoupling’ of the heavy fields happens in theories
with only vector couplings and an exact gauge symmetry [38], where the effects generated by the heavy
particles can always be reabsorbed into a redefinition of the low-energy parameters.

The SM involves, however, a broken chiral gauge symmetry. This has the very interesting im-
plication of avoiding the decoupling theorem [38]. The vacuum polarization contributions induced by
a heavy top generate corrections to the W± and Z propagators (Fig. 18), which increase quadratically
with the top mass [39]. Therefore, a heavy top does not decouple. For instance, with mt = 171 GeV,
the leading quadratic correction to the second relation in Eq. (91) amounts to a sizeable 3% effect. The
quadratic mass contribution originates in the strong breaking of weak isospin generated by the top and
bottom quark masses, i.e., the effect is actually proportional to m2

t −m2
b .

Owing to an accidental SU(2)C symmetry of the scalar sector (the so-called custodial symmetry),
the virtual production of Higgs particles does not generate any quadratic dependence on the Higgs mass
at one loop [39]. The dependence on MH is only logarithmic. The numerical size of the corresponding
correction in Eq. (91) varies from a 0.1% to a 1% effect for MH in the range from 100 to 1000 GeV.

W

b b
t

Z

W

b b
t

Z

Fig. 19: One-loop corrections to the Zb̄b vertex, involving a virtual top

Higher-order corrections to the different electroweak couplings are non-universal and usually
smaller than the self-energy contributions. There is one interesting exception, the Z b̄b vertex (Fig. 19),
which is sensitive to the top quark mass [40]. The Zf̄f vertex gets one-loop corrections where a vir-
tual W± is exchanged between the two fermionic legs. Since the W ± coupling changes the fermion
flavour, the decays Z → d̄d, s̄s, b̄b get contributions with a top quark in the internal fermionic lines, i.e.,
Z → t̄t→ d̄idi. Notice that this mechanism can also induce the flavour-changing neutral-current decays
Z → d̄idj with i 6= j. These amplitudes are suppressed by the small CKM mixing factors |VtjV

∗
ti|2.

However, for the Z → b̄b vertex, there is no suppression because |Vtb| ≈ 1.
The explicit calculation [40–43] shows the presence of hard m2

t corrections to the Z → b̄b vertex.
This effect can be easily understood [40] in non-unitary gauges where the unphysical charged scalar
φ(±) is present. The fermionic couplings of the charged scalar are proportional to the fermion masses;
therefore the exchange of a virtual φ(±) gives rise to a m2

t factor. In the unitary gauge, the charged
scalar has been ‘eaten’ by the W± field; thus the effect comes now from the exchange of a longitudinal
W±, with terms proportional to qµqν in the propagator that generate fermion masses. Since the W ±
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couples only to left-handed fermions, the induced correction is the same for the vector and axial-vector
Zb̄b couplings and, for mt = 171 GeV, amounts to a 1.6% reduction of the Z → b̄b decay width [40].

The ‘non-decoupling’ present in the Zb̄b vertex is quite different from the one happening in the
boson self-energies. The vertex correction is not dependent on the Higgs mass. Moreover, while any
kind of new heavy particle coupling to the gauge bosons would contribute to the W and Z self-energies,
the possible new physics contributions to the Zb̄b vertex are much more restricted and, in any case,
different. Therefore, the independent experimental measurement of the two effects is very valuable in
order to disentangle possible new physics contributions from the SM corrections. In addition, since the
‘non-decoupling’ vertex effect is related to WL exchange, it is sensitive to the SSB mechanism.

5.4 Standard Model electroweak fit
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Fig. 20: Combined LEP and SLD measurements of sin2 θlept
eff and Γl (left) and the corresponding effective vector

and axial-vector couplings vl and al (right). The shaded region shows the SM prediction. The arrows point in the
direction of increasing values of mt and MH . The point shows the predicted values if, among the electroweak
radiative corrections, only the photon vacuum polarization is included. Its arrow indicates the variation induced by
the uncertainty in α(M2

Z) [29, 30].

The leptonic asymmetry measurements from LEP and SLD can all be combined to determine the
ratios vl/al of the vector and axial-vector couplings of the three charged leptons, or equivalently the
effective electroweak mixing angle

sin2 θlept
eff ≡ 1

4

(
1− vl

al

)
. (106)

The sum (v2
l + a2

l ) is derived from the leptonic decay widths of the Z , i.e., from Eq. (93) corrected with
a multiplicative factor

(
1 + 3

4
α
π

)
to account for final-state QED corrections. The signs of vl and al are

fixed by requiring ae < 0.
The resulting 68% probability contours are shown in Fig. 20, which provides strong evidence

of the electroweak radiative corrections. The good agreement with the SM predictions, obtained for
low values of the Higgs mass, is lost if only the QED vacuum polarization contribution is taken into
account, as indicated by the point with an arrow. Notice that the uncertainty induced by the input value
of α(M2

Z)−1 = 128.93± 0.05 is sizeable. The measured couplings of the three charged leptons confirm
lepton universality in the neutral-current sector. The solid contour combines the three measurements
assuming universality.
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Fig. 22: The SM prediction of the ratios Rb and
Rd [Rq ≡ Γ(Z → q̄q)/Γ(Z → hadrons)], as a
function of the top mass. The measured value of Rb
(vertical band) provides a determination of mt [29,
30].

The neutrino couplings can also be determined from the invisible Z decay width, by assuming
three identical neutrino generations with left-handed couplings, and fixing the sign from neutrino scat-
tering data. Alternatively, one can use the SM prediction for Γinv to get a determination of the number
of light neutrino flavours [29, 30]:

Nν = 2.9840 ± 0.0082 . (107)

Figure 21 shows the measured values of Al and Ab, together with the joint constraint obtained
from A0,b

FB (diagonal band). The direct measurement of Ab at SLD agrees well with the SM prediction;
however, a much lower value is obtained from the ratio 4

3 A0,b
FB/Al. This is the most significant discrep-

ancy observed in the Z-pole data. Heavy quarks ( 4
3 A0,b

FB/Ab) seem to prefer a high value of the Higgs
mass, while leptons (Al) favour a light Higgs. The combined analysis prefers low values ofMH , because
of the influence of Al.

The strong sensitivity of the ratio Rb ≡ Γ(Z → b̄b)/Γ(Z → hadrons) to the top quark mass is
shown in Fig. 22. Owing to the |Vtd|2 suppression, such a dependence is not present in the analogous
ratio Rd. Combined with all other electroweak precision measurements at the Z peak, Rb provides a
determination of mt in good agreement with the direct and most precise measurement at the Tevatron.
This is shown in Fig. 23, which compares the information on MW and mt obtained at LEP1 and SLD,
with the direct measurements performed at LEP2 and the Tevatron. A similar comparison for mt and
MH is also shown. The lower bound on MH obtained from direct searches excludes a large portion of
the 68% C.L. allowed domain from precision measurements.

Taking all direct and indirect data into account, one obtains the best constraints onMH . The global
electroweak fit results in the ∆χ2 = χ2−χ2

min curve shown in Fig. 24. The lower limit on MH obtained
from direct searches is close to the point of minimum χ2. At 95% C.L., one gets [29, 30]

114.4 GeV < MH < 144 GeV. (108)

The fit provides also a very accurate value of the strong coupling constant, αs(M2
Z) = 0.1186± 0.0027,

in very good agreement with the world average value αs(M2
Z) = 0.119 ± 0.002 [7, 35]. The largest
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02758 ± 0.00035 0.02768
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957
σhad [nb]σ0 41.540 ± 0.037 41.477
RlRl 20.767 ± 0.025 20.744
AfbA0,l 0.01714 ± 0.00095 0.01645
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481
RbRb 0.21629 ± 0.00066 0.21586
RcRc 0.1721 ± 0.0030 0.1722
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.398 ± 0.025 80.374
ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091
mt [GeV]mt [GeV] 170.9 ± 1.8 171.3

Fig. 25: Comparison between the measurements in-
cluded in the combined analysis of the SM and the
results from the global electroweak fit [29, 30]

discrepancy between theory and experiment occurs for A0,b
FB, with the fitted value being nearly 3σ larger

than the measurement. As shown in Fig. 25, a good agreement is obtained for all other observables.

5.5 Gauge self-interactions
At tree level, the W -pair production process e+e− → W+W− involves three different contributions
(Fig. 26), corresponding to the exchange of νe, γ and Z . The cross-section measured at LEP2 agrees
very well with the SM predictions. As shown in Fig. 27, the νe-exchange contribution alone would lead
to an unphysical growing of the cross-section at large energies and, therefore, would imply a violation of
unitarity. Adding the γ-exchange contribution softens this behaviour, but a clear disagreement with the
data persists. The Z-exchange mechanism, which involves the ZWW vertex, appears to be crucial in
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order to explain the data.
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Fig. 27: Measured energy dependence of σ(e+e− → W+W−) (left) and σ(e+e− → ZZ) (right). The three
curves shown for the W -pair production cross-section correspond to only the νe-exchange contribution (upper
curve), νe exchange plus photon exchange (middle curve), and all contributions including also the ZWW vertex
(lower curve). Only the e-exchange mechanism contributes to Z–pair production [29, 30].

Since the Z is electrically neutral, it does not interact with the photon. Moreover, the SM does not
include any local ZZZ vertex. Therefore, the e+e− → ZZ cross-section only involves the contribution
from e exchange. The agreement of the SM predictions with the experimental measurements in both
production channels, W+W− and ZZ , provides a test of the gauge self-interactions. There is a clear
signal of the presence of a ZWW vertex, with the predicted strength, and no evidence for any γZZ or
ZZZ interactions. The gauge structure of the SU(2)L ⊗ U(1)Y theory is nicely confirmed by the data.

5.6 Higgs decays
The couplings of the Higgs boson are always proportional to some mass scale. The Hf f̄ interaction
grows linearly with the fermion mass, while the HWW and HZZ vertices are proportional to M 2

W

and M2
Z , respectively. Therefore, the most probable decay mode of the Higgs will be the one into the

heaviest possible final state. This is clearly illustrated in Fig. 28. The H → bb̄ decay channel is by
far the dominant one below the W+W− production threshold. When MH is large enough to allow
the production of a pair of gauge bosons, H → W+W− and H → ZZ become dominant. For
MH > 2mt, the H → tt̄ decay width is also sizeable, although smaller than the WW and ZZ ones
because of the different dependence of the corresponding Higgs coupling with the mass scale (linear
instead of quadratic).

The total decay width of the Higgs grows with increasing values of MH . The effect is very strong
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Fig. 28: Branching fractions of the different Higgs decay modes (left) and total decay width of the Higgs boson
(right) as function of MH [44]

above the W+W− production threshold. A heavy Higgs becomes then very broad. At MH ∼ 600 GeV,
the width is around 100 GeV; while for MH ∼ 1 TeV, ΓH is already of the same size as the Higgs mass
itself.

The design of the LHC detectors has taken into account all these very characteristic properties in
order to optimize the future search for the Higgs boson.

6 Flavour dynamics
We have learned experimentally that there are six different quark flavours u , d , s , c , b , t , three different
charged leptons e , µ , τ and their corresponding neutrinos νe , νµ , ντ . We can nicely include all
these particles into the SM framework, by organizing them into three families of quarks and leptons, as
indicated in Eqs. (1) and (2). Thus, we have three nearly identical copies of the same SU(2)L ⊗ U(1)Y
structure, with masses as the only difference.

Let us consider the general case of NG generations of fermions, and denote ν ′j , l′j , u′j , d′j the
members of the weak family j (j = 1, . . . , NG), with definite transformation properties under the gauge
group. Owing to the fermion replication, a large variety of fermion-scalar couplings are allowed by the
gauge symmetry. The most general Yukawa Lagrangian has the form

LY = −
∑
jk

{(
ū′j , d̄′j

)
L

[
c
(d)
jk

(
φ(+)

φ(0)

)
d′kR + c

(u)
jk

(
φ(0)∗

−φ(−)

)
u′kR

]

+
(
ν̄ ′j, l̄′j

)
L
c
(l)
jk

(
φ(+)

φ(0)

)
l′kR

}
+ h.c., (109)

where c(d)
jk , c(u)

jk and c(l)
jk are arbitrary coupling constants.

After SSB, the Yukawa Lagrangian can be written as

LY = −
(

1 +
H

v

) {
d′L M′

d d′R + u′L M′
u u′R + l′L M′

l l
′
R + h.c.

}
. (110)

Here, d′, u′ and l′ denote vectors in the NG-dimensional flavour space, and the corresponding mass
matrices are given by

(M′
d)ij ≡ c

(d)
ij

v√
2
, (M′

u)ij ≡ c
(u)
ij

v√
2
, (M′

l)ij ≡ c
(l)
ij

v√
2
. (111)

The diagonalization of these mass matrices determines the mass eigenstates dj , uj and lj , which are
linear combinations of the corresponding weak eigenstates d ′j , u′j and l′j , respectively.
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Fig. 29: Flavour-changing transitions through the charged-current couplings of the W± bosons

The matrix M′
d can be decomposed as2 M′

d = Hd Ud = S†dMd Sd Ud, where Hd ≡
√

M′
dM
′†
d

is an Hermitian positive-definite matrix, while Ud is unitary. Hd can be diagonalized by a unitary
matrix Sd; the resulting matrix Md is diagonal, Hermitian and positive definite. Similarly, one has
M′

u = Hu Uu = S†uMu Su Uu and M′
l = Hl Ul = S†lMl Sl Ul. In terms of the diagonal mass

matrices

Md = diag(md,ms,mb, . . .) , Mu = diag(mu,mc,mt, . . .) , Ml = diag(me,mµ,mτ , . . .) ,
(112)

the Yukawa Lagrangian takes the simpler form

LY = −
(

1 +
H

v

) {
dMd d + uMu u + lMl l

}
, (113)

where the mass eigenstates are defined by

dL ≡ Sd d′L , uL ≡ Su u′L , lL ≡ Sl l
′
L ,

dR ≡ SdUd d′R , uR ≡ SuUu u′R , lR ≡ SlUl l
′
R . (114)

Note, that the Higgs couplings are proportional to the corresponding fermions masses.
Since, f ′L f ′L = fL fL and f ′R f ′R = fR fR (f = d, u, l), the form of the neutral-current part of the

SU(2)L ⊗ U(1)Y Lagrangian does not change when expressed in terms of mass eigenstates. Therefore,
there are no flavour-changing neutral currents in the SM (GIM mechanism [5]). This is a consequence
of treating all equal-charge fermions on the same footing.

However, u ′L d ′L = uL Su S†d dL ≡ uLV dL. In general, Su 6= Sd ; thus, if one writes the weak
eigenstates in terms of mass eigenstates, a NG × NG unitary mixing matrix V, called the Cabibbo–
Kobayashi–Maskawa (CKM) matrix [45, 46], appears in the quark charged-current sector:

LCC = − g

2
√

2

W †µ
∑

ij

ūi γ
µ(1− γ5) Vij dj +

∑
l

ν̄l γ
µ(1− γ5) l

 + h.c.

 . (115)

The matrix V couples any ‘up-type’ quark with all ‘down-type’ quarks (Fig. 29).
If neutrinos are assumed to be massless, we can always redefine the neutrino flavours in such a

way as to eliminate the analogous mixing in the lepton sector: ν ′L l ′L = ν ′L S†l lL ≡ νL lL. Thus we
have lepton-flavour conservation in the minimal SM without right-handed neutrinos. If sterile νR fields
are included in the model, one would have an additional Yukawa term in Eq. (109), giving rise to a
neutrino mass matrix (M′

ν)ij ≡ c
(ν)
ij v/

√
2 . Thus the model could accommodate non-zero neutrino

masses and lepton-flavour violation through a lepton mixing matrix VL analogous to the one present
2The condition det M′

f 6= 0 (f = d, u, l) guarantees that the decomposition M′
f = HfUf is unique: Uf ≡ H−1

f M′
f .

The matrices Sf are completely determined (up to phases) only if all diagonal elements of Mf are different. If there is some
degeneracy, the arbitrariness of Sf reflects the freedom to define the physical fields. If det M′

f = 0, the matrices Uf and Sf
are not uniquely determined, unless their unitarity is explicitly imposed.
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in the quark sector. Note, however, that the total lepton number L ≡ Le + Lµ + Lτ would still be
conserved. We know experimentally that neutrino masses are tiny and there are strong bounds on lepton-
flavour violating decays: Br(µ± → e±e+e−) < 1.0 · 10−12 [47], Br(µ± → e±γ) < 1.2 · 10−11 [48],
Br(τ± → µ±γ) < 4.5 · 10−8 [49, 50] . . . However, we do have a clear evidence of neutrino oscillation
phenomena.

The fermion masses and the quark mixing matrix V are all determined by the Yukawa couplings
in Eq. (109). However, the coefficients c(f)

ij are not known; therefore we have a bunch of arbitrary
parameters. A general NG×NG unitary matrix is characterized by N 2

G real parameters: NG(NG−1)/2
moduli and NG(NG + 1)/2 phases. In the case of V, many of these parameters are irrelevant, because
we can always choose arbitrary quark phases. Under the phase redefinitions ui → eiφi ui and dj →
eiθj dj , the mixing matrix changes as Vij → Vij ei(θj−φi); thus, 2NG − 1 phases are unobservable.
The number of physical free parameters in the quark-mixing matrix then gets reduced to (NG − 1)2:
NG(NG − 1)/2 moduli and (NG − 1)(NG − 2)/2 phases.

In the simpler case of two generations, V is determined by a single parameter. One then recovers
the Cabibbo rotation matrix [45]

V =

(
cos θC sin θC
− sin θC cos θC

)
. (116)

With NG = 3, the CKM matrix is described by three angles and one phase. Different (but equivalent)
representations can be found in the literature. The Particle data Group [7] advocates the use of the
following one as the ‘standard’ CKM parametrization:

V =

 c12 c13 s12 c13 s13 e−iδ13

−s12 c23 − c12 s23 s13 eiδ13 c12 c23 − s12 s23 s13 eiδ13 s23 c13

s12 s23 − c12 c23 s13 eiδ13 −c12 s23 − s12 c23 s13 eiδ13 c23 c13

 . (117)

Here cij ≡ cos θij and sij ≡ sin θij , with i and j being ‘generation’ labels (i, j = 1, 2, 3). The real
angles θ12, θ23 and θ13 can all be made to lie in the first quadrant, by an appropriate redefinition of quark
field phases; then, cij ≥ 0 , sij ≥ 0 and 0 ≤ δ13 ≤ 2π .

Notice that δ13 is the only complex phase in the SM Lagrangian. Therefore it is the only possible
source of CP-violation phenomena. In fact, it was for this reason that the third generation was assumed
to exist [46], before the discovery of the b and the τ . With two generations, the SM could not explain the
observed CP violation in the K system.

6.1 Quark mixing

W
+ WWWWWW

+

c c

d , s d , s

e  ,+µ+

νe νµ,  u

d , s
__

Fig. 30: Determinations of Vij are done in semileptonic quark decays (left) where a single quark current is present.
Hadronic decay modes (right) involve two different quark currents and are more affected by QCD effects (gluons
can couple everywhere).

Our knowledge of the charged-current parameters is unfortunately not so good as in the neutral-
current case. In order to measure the CKM matrix elements, one needs to study hadronic weak decays
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of the type H → H ′ l−ν̄l or H → H ′ l+νl, which are associated with the corresponding quark
transitions dj → ui l

−ν̄l and ui → dj l
+νl (Fig. 30). Since quarks are confined within hadrons, the

decay amplitude

T [H → H ′ l−ν̄l] ≈ GF√
2

Vij 〈H ′| ūi γµ(1− γ5) dj |H〉
[
l̄ γµ(1− γ5) νl

]
(118)

always involves an hadronic matrix element of the weak left current. The evaluation of this matrix
element is a non-perturbative QCD problem, which introduces unavoidable theoretical uncertainties.

One usually looks for a semileptonic transition where the matrix element can be fixed at some
kinematical point by a symmetry principle. This has the virtue of reducing the theoretical uncertainties
to the level of symmetry-breaking corrections and kinematical extrapolations. The standard example is a
0− → 0− decay such as K → πlν , D → Klν or B → Dlν . Only the vector current can contribute
in this case:

〈P ′(k′)| ūi γµ dj |P (k)〉 = CPP ′
{

(k + k′)µ f+(t) + (k − k′)µ f−(t)
}
. (119)

Here, CPP ′ is a Clebsh–Gordan factor and t = (k − k ′)2 ≡ q2. The unknown strong dynamics is
fully contained in the form factors f±(t). In the limit of equal quark masses, mui − mdj = 0, the
divergence of the vector current is zero; thus qµ (ūiγµdj) = 0, which implies f−(t) = 0 and, moreover,
f+(0) = 1 to all orders in the strong coupling because the associated flavour charge is a conserved
quantity3 . Therefore, one only needs to estimate the corrections induced by the quark mass differences.

Since qµ
[
l̄γµ(1− γ5)νl

] ∼ ml, the contribution of f−(t) is kinematically suppressed in the
electron and muon modes. The decay width can then be written as

Γ(P → P ′lν) =
G2
FM

5
P

192π3
|Vij |2 C2

PP ′ |f+(0)|2 I (1 + δRC) , (120)

where δRC is an electroweak radiative correction factor and I denotes a phase-space integral, which in
the ml = 0 limit takes the form

I ≈
∫ (MP−MP ′)2

0

dt

M8
P

λ3/2(t,M2
P ,M

2
P ′)

∣∣∣∣ f+(t)
f+(0)

∣∣∣∣2 . (121)

The usual procedure to determine |Vij | involves three steps:

1. Measure the shape of the t distribution. This fixes |f+(t)/f+(0)| and therefore determines I .
2. Measure the total decay width Γ. Since GF is already known from µ decay, one gets then an

experimental value for the product |f+(0)| |Vij |.
3. Get a theoretical prediction for f+(0).

It is important to realize that theoretical input is always needed. Thus, the accuracy of the |Vij | determi-
nation is limited by our ability to calculate the relevant hadronic input.

The conservation of the vector and axial-vector QCD currents in the massless quark limit allows
for accurate determinations of the light-quark mixings |Vud| and |Vus|. The present values are shown
in Table 4, which takes into account the recent changes in the K → πe+νe data [7, 34] and the new
|Vus| determinations from Cabibbo suppressed tau decays [52] and from the ratio of decay amplitudes
Γ(K+ → µ+ν̄µ)/Γ(π+ → µ+ν̄µ) [53–55]. Since |Vub|2 is tiny, these two light quark entries provide a
sensible test of the unitarity of the CKM matrix:

|Vud|2 + |Vus|2 + |Vub|2 = 0.9980 ± 0.0012 . (122)
3This is completely analogous to the electromagnetic charge conservation in QED. The conservation of the electromagnetic

current implies that the proton electromagnetic form factor does not get any QED or QCD correction at q2 = 0 and, therefore,
Q(p) = 2Q(u) +Q(d) = |Q(e)|. A detailed proof can be found in Ref. [51].
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Table 4: Direct determinations of the CKM matrix elements Vij . For |Vtb|, 95% C.L. limits are given

CKM entry Value Source

|Vud| 0.97377 ± 0.00027 Nuclear β decay [7]
0.9746 ± 0.0019 n→ p e−ν̄e [7]
0.9728 ± 0.0030 π+ → π0 e+νe [62]

0.97378 ± 0.00027 average
|Vus| 0.2234 ± 0.0024 K → πl+νl [7, 34, 63]

0.2220 ± 0.0033 τ decays [52]
0.2226 + 0.0026

− 0.0014 K+/π+ → µ+νµ, Vud [7, 53–55]
0.226 ± 0.005 Hyperon decays [64–66]

0.2230 ± 0.0015 average
|Vcd| 0.213 ± 0.022 D → πl ν̄l [7]

0.230 ± 0.011 ν d→ cX [7]
0.227 ± 0.010 average

|Vcs| 0.957 ± 0.095 D → Kl ν̄l [7]
0.94 + 0.35

− 0.29 W+ → cs̄ [7]
0.974 ± 0.013 W+ → had. , Vuj , Vcd , Vcb [29, 30]

|Vcb| 0.0392 ± 0.0016 B → D∗l ν̄l [7, 67]
0.0417 ± 0.0007 b→ c l ν̄l [7, 67]
0.0413 ± 0.0006 average

|Vub| 0.0039 ± 0.0006 B → π l ν̄l [7, 67]
0.0045 ± 0.0003 b→ u l ν̄l [7, 67]
0.0044 ± 0.0003 average

|Vtb| /
√∑

q |Vtq|2 > 0.78 t→ bW/qW [68, 69]

|Vtb| > 0.68 ; ≤ 1 pp̄→ tb+X [70]

It is important to notice that at the quoted level of uncertainty radiative corrections play a crucial role.
In the limit of very heavy quark masses, QCD has additional symmetries [56–59] which can be

used to make rather precise determinations of |Vcb|, either from exclusive decays such as B → D∗lν̄l
[60, 61] or from the inclusive analysis of b → c l ν̄l transitions. The control of theoretical uncertainties
is much more difficult for |Vub|, |Vcd| and |Vcs|, because the symmetry arguments associated with the
light and heavy quark limits get corrected by sizeable symmetry-breaking effects.

The most precise determination of |Vcd| is based on neutrino and antineutrino interactions. The
difference of the ratio of double-muon to single-muon production by neutrino and antineutrino beams is
proportional to the charm cross-section off-valence d quarks and, therefore, to |Vcd|. A direct determi-
nation of |Vcs| can also be obtained from charm-tagged W decays at LEP2. Moreover, the ratio of the
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total hadronic decay width of the W to the leptonic one provides the sum [29, 30]∑
i=u,c
j= d,s,b

|Vij |2 = 1.999 ± 0.025 . (123)

Although much less precise than Eq. (122), this result tests unitarity at the 1.25% level. From Eq. (123)
one can also obtain a tighter determination of |Vcs|, using the experimental knowledge on the other CKM
matrix elements, i.e., |Vud|2 + |Vus|2 + |Vub|2 + |Vcd|2 + |Vcb|2 = 1.0512 ± 0.0058 . This gives the
most accurate and final value of |Vcs| quoted in Table 4.

The measured entries of the CKM matrix show a hierarchical pattern, with the diagonal elements
being very close to one, the ones connecting the two first generations having a size

λ ≈ |Vus| = 0.2230 ± 0.0015 , (124)

the mixing between the second and third families being of order λ2, and the mixing between the first
and third quark generations having a much smaller size of about λ3. It is then quite practical to use the
approximate parametrization [71]:

V =


1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 + O
(
λ4
)
, (125)

where
A ≈ |Vcb|

λ2
= 0.831 ± 0.014 ,

√
ρ2 + η2 ≈

∣∣∣∣ Vub

λVcb

∣∣∣∣ = 0.478 ± 0.033 . (126)

Defining to all orders in λ [72] s12 ≡ λ, s23 ≡ Aλ2 and s13 e−iδ13 ≡ Aλ3(ρ − iη), Eq. (125) just
corresponds to a Taylor expansion of Eq. (117) in powers of λ.

6.2 CP violation
While parity and charge conjugation are violated by the weak interactions in a maximal way, the prod-
uct of the two discrete transformations is still a good symmetry (left-handed fermions ↔ right-handed
antifermions). In fact, CP appears to be a symmetry of nearly all observed phenomena. However, a
slight violation of the CP symmetry at the level of 0.2% is observed in the neutral kaon system and more
sizeable signals of CP violation have been recently established at the B factories. Moreover, the huge
matter–antimatter asymmetry present in our Universe is a clear manifestation of CP violation and its
important role in the primordial baryogenesis.

The CPT theorem guarantees that the product of the three discrete transformations is an exact
symmetry of any local and Lorentz-invariant quantum field theory preserving micro-causality. There-
fore, a violation of CP requires a corresponding violation of time reversal. Since T is an antiunitary
transformation, this requires the presence of relative complex phases between different interfering am-
plitudes.

The electroweak SM Lagrangian only contains a single complex phase δ13 (η). This is the sole
possible source of CP violation and, therefore, the SM predictions for CP-violating phenomena are
quite constrained. The CKM mechanism requires several necessary conditions in order to generate an
observable CP-violation effect. With only two fermion generations, the quark mixing mechanism cannot
give rise to CP violation; therefore, for CP violation to occur in a particular process, all three generations
are required to play an active role. In the kaon system, for instance, CP-violation effects can only appear
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at the one-loop level, where the top quark is present. In addition, all CKM matrix elements must be non-
zero and the quarks of a given charge must be non-degenerate in mass. If any of these conditions were
not satisfied, the CKM phase could be rotated away by a redefinition of the quark fields. CP-violation
effects are then necessarily proportional to the product of all CKM angles, and should vanish in the limit
where any two (equal-charge) quark masses are taken to be equal. All these necessary conditions can be
summarized in a very elegant way as a single requirement on the original quark mass matrices M ′

u and
M′

d [73]:
CP violation ⇐⇒ Im

{
det
[
M′

uM
′†
u , M′

d M′†
d

]}
6= 0 . (127)

Without performing any detailed calculation, one can make the following general statements on
the implications of the CKM mechanism of CP violation:

– Owing to unitarity, for any choice of i, j, k, l (between 1 and 3),

Im
[
VijV

∗
ikVlkV

∗
lj

]
= J

3∑
m,n=1

εilmεjkn , (128)

J = c12 c23 c
2
13 s12 s23 s13 sin δ13 ≈ A2λ6η < 10−4 . (129)

Any CP-violation observable involves the product J [73]. Thus, violations of the CP symmetry
are necessarily small.

– In order to have sizeable CP-violating asymmetries A ≡ (Γ − Γ)/(Γ + Γ), one should look for
very suppressed decays, where the decay widths already involve small CKM matrix elements.

– In the SM, CP violation is a low-energy phenomenon, in the sense that any effect should disappear
when the quark mass difference mc −mu becomes negligible.

– B decays are the optimal place for CP-violation signals to show up. They involve small CKM
matrix elements and are the lowest-mass processes where the three quark generations play a direct
(tree-level) role.

The SM mechanism of CP violation is based on the unitarity of the CKM matrix. Testing the
constraints implied by unitarity is then a way to test the source of CP violation. The unitarity tests in
Eqs. (122) and (123) involve only the moduli of the CKM parameters, while CP violation has to do with
their phases. More interesting are the off-diagonal unitarity conditions:

V∗udVus + V∗cdVcs + V∗tdVts = 0 , (130)

V∗usVub + V∗csVcb + V∗tsVtb = 0 , (131)

V∗ubVud + V∗cbVcd + V∗tbVtd = 0 . (132)

These relations can be visualized by triangles in a complex plane which, owing to Eq. (128), have the
same area |J |/2. In the absence of CP violation, these triangles would degenerate into segments along
the real axis.

In the first two triangles, one side is much shorter than the other two (the Cabibbo suppression
factors of the three sides are λ, λ and λ5 in the first triangle, and λ4, λ2 and λ2 in the second one). This
is why CP effects are so small for K mesons (first triangle), and why certain asymmetries in Bs decays
are predicted to be tiny (second triangle). The third triangle looks more interesting, since the three sides
have a similar size of about λ3. They are small, which means that the relevant b-decay branching ratios
are small, but once enough B mesons have been produced, the CP-violation asymmetries are sizeable.
The present experimental constraints on this triangle are shown in Fig. 31, where it has been scaled by
dividing its sides by V∗cbVcd. This aligns one side of the triangle along the real axis and makes its length
equal to 1; the coordinates of the three vertices are then (0, 0), (1, 0) and (ρ̄, η̄) ≡ (1− λ2/2)(ρ, η).
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Fig. 31: Experimental constraints on the SM unitarity triangle [77]
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Fig. 32: B0–B̄0 mixing diagrams. Owing to the unitarity of the CKM matrix, the mixing vanishes for equal up-
type quark masses (GIM mechanism). The mixing amplitude is then proportional to the mass (squared) splittings
between the u, c and t quarks, and is completely dominated by the top contribution.

One side of the unitarity triangle has already been determined in Eq. (126) from the ratio |Vub/Vcb|.
The other side can be obtained from the measured mixing between the B0

d and B̄0
d mesons (Fig. 32),

∆Md = 0.507 ± 0.004 ps−1 [67], which fixes |Vtb|. Additional information has been provided by the
recent observation of B0

s–B̄0
s oscillations at CDF, implying ∆Ms = 17.77 ± 0.12 ps−1 [74]. From the

experimental ratio ∆Md/∆Ms = 0.0286 ± 0.0003, one obtains |Vtd|/|Vts|. A more direct constraint
on the parameter η is given by the observed CP violation in K 0 → 2π decays. The measured value of
|εK | = (2.232 ± 0.007) · 10−3 [7] determines the parabolic region shown in Fig. 31.

B0 decays into CP self-conjugate final states provide independent ways to determine the angles
of the unitarity triangle [75, 76]. The B0 (or B̄0) can decay directly to the given final state f , or do
it after the meson has been changed to its antiparticle via the mixing process. CP-violating effects
can then result from the interference of these two contributions. The time-dependent CP-violating rate
asymmetries contain direct information on the CKM parameters. The gold-plated decay mode is B 0

d →
J/ψKS , which gives a clean measurement of β ≡ − arg(VcdV

∗
cb/VtdV

∗
tb), without strong-interaction

uncertainties. Including the information obtained from other b→ cc̄s decays, one gets [67]:

sin 2β = 0.68 ± 0.03 . (133)

Many additional tests of the CKM matrix from different B decay modes are being pursued at theB
factories. Determinations of the other two angles of the unitarity triangle, α ≡ − arg(VtdV

∗
tb/VudV

∗
ub)

and γ ≡ − arg(VudV
∗
ub/VcdV

∗
cb), have already been obtained [67, 78], and are included in the global fit

shown in Fig. 31 [77, 79]. Complementary and very valuable information could be also obtained from
the kaon decay modes K± → π±νν̄, KL → π0νν̄ and KL → π0e+e− [80].
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Fig. 33: Measured fluxes of 8B solar neutrinos of νµ or ντ type (φµ,τ ) versus the flux of νe (φe) [83]

6.3 Lepton mixing
The so-called ‘solar neutrino problem’ has been a long-standing question since the very first chlorine
experiment at the Homestake mine [81]. The flux of solar νe neutrinos reaching the Earth has been mea-
sured by several experiments to be significantly below the standard solar model prediction [82]. More re-
cently, the Sudbury Neutrino Observatory has provided strong evidence that neutrinos do change flavour
as they propagate from the core of the Sun [83], independently of solar model flux predictions. SNO
is able to detect neutrinos through three different reactions: the charged-current process νed → e−pp
which is only sensitive to νe, the neutral current transition νxd → νxpn which has equal probability for
all active neutrino flavours, and the elastic scattering νxe− → νxe

− which is also sensitive to νµ and ντ ,
although the corresponding cross-section is a factor 6.48 smaller than the νe one. The measured neutrino
fluxes, shown in Fig. 33, demonstrate the existence of a non-νe component in the solar neutrino flux
at the 5.3σ level. The SNO results are in good agreement with the Super-Kamiokande solar measure-
ments [84] and have been further reinforced with the more recent KamLAND data, showing that ν̄e from
nuclear reactors disappear over distances of about 180 km [85].

Another evidence of oscillations has been obtained from atmospheric neutrinos. The known dis-
crepancy between the experimental observations and the predicted ratio of muon to electron neutrinos
has become much stronger with the high precision and large statistics of Super-Kamiokande [86]. The
atmospheric anomaly appears to originate in a reduction of the νµ flux, and the data strongly favours
the νµ → ντ hypothesis. This result has been confirmed by K2K [87] and MINOS [88], observing the
disappearance of accelerator νµ’s at distances of 250 and 735 km, respectively. Super-Kamiokande has
recently reported statistical evidence of ντ appearance at the 2.4σ level [86]. The direct detection of the
produced ντ is the main goal of the ongoing CERN to Gran Sasso neutrino programme.

Thus, we now have clear experimental evidence that neutrinos are massive particles and there is
mixing in the lepton sector. Figures 34 and 35 show the present information on neutrino oscillations,
from solar, atmospheric, accelerator, and reactor neutrino data. A global analysis, combining the full set
of data, leads to the following preferred ranges for the oscillation parameters [7]:

∆m2
21 =

(
8.0 + 0.4
− 0.3

) · 10−5 eV2 , 1.9 · 10−3 < |∆m2
32| / eV2 < 3.0 · 10−3 , (134)

sin2 (2θ12) = 0.86 + 0.03
− 0.04 , sin2 (2θ23) > 0.92 , sin2 (2θ13) < 0.19 , (135)

where ∆m2
ij ≡ m2

i − m2
j are the mass squared differences between the neutrino mass eigenstates νi,j

and θij the corresponding mixing angles in the standard three-flavour parametrization [7]. The ranges
indicate 90% C.L. bounds. In the limit θ13 = 0, solar and atmospheric neutrino oscillations decouple
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because ∆m2� � ∆m2
atm. Thus, ∆m2

21, θ12 and θ13 are constrained by solar data, while atmospheric
experiments constrain ∆m2

32, θ23 and θ13. The angle θ13 is strongly constrained by the CHOOZ reactor
experiment [89]. New planned reactor experiments T2K and NOνA are expected to achieve sensitivities
around sin2 (2θ13) ∼ 0.01.
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Fig. 34: Allowed regions for 2ν oscillations for the
combination of solar (νe) and KamLAND (ν̄e) data,
assuming CPT symmetry [83]
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Non-zero neutrino masses constitute a clear indication of new physics beyond the SM. Right-
handed neutrinos are an obvious possibility to incorporate Dirac neutrino masses. However, the ν iR fields
would be SU(3)C ⊗ SU(2)L ⊗ U(1)Y singlets, without any SM interaction. If such objects do exist, it
would seem natural to expect that they be able to communicate with the rest of the world through some
still unknown dynamics. Moreover, the SM gauge symmetry would allow for a right-handed Majorana
neutrino mass term,

LM = −1
2
νciRMij νjR + h.c. , (136)

where νciR ≡ C ν̄TiR denotes the charge-conjugated field. The Majorana mass matrix Mij could have
an arbitrary size, because it is not related to the ordinary Higgs mechanism. Since both fields ν iR and
νciR absorb ν and create ν̄, the Majorana mass term mixes neutrinos and anti-neutrinos, violating lepton
number by two units. Clearly, new physics is called for.

Adopting a more general effective field theory language, without any assumption about the exis-
tence of right-handed neutrinos or any other new particles, one can write the most general SU(3)C ⊗
SU(2)L ⊗ U(1)Y invariant Lagrangian in terms of the known low-energy fields (left-handed neutrinos
only). The SM is the unique answer with dimension four. The first contributions from new physics ap-
pear through dimension-5 operators, and have also a unique form which violates lepton number by two
units [90]:

∆L = −cij
Λ
L̄i φ̃ φ̃

t Lcj + h.c. , (137)

where Li denotes the i-flavoured SU(2)L lepton doublet, φ̃ ≡ i τ2 φ
∗ and Lci ≡ CL̄Ti . Similar operators

with quark fields are forbidden, owing to their different hypercharges, while higher-dimension operators
would be suppressed by higher powers of the new-physics scale Λ. After SSB, 〈φ(0)〉 = v/

√
2, ∆L

generates a Majorana mass term for the left-handed neutrinos, with4 Mij = cijv
2/Λ. Thus, Majorana

neutrino masses should be expected on general symmetry grounds. Taking mν & 0.05 eV, as suggested
4This relation generalizes the well-known see-saw mechanism (mνL ∼ m2/Λ) [91, 92].
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Table 5: Best published limits (90% C.L.) on lepton-flavour-violating decays [7, 49, 50]

Br(µ− → e−γ) < 1.2 · 10−11 Br(µ− → e−2γ) < 7.2 · 10−11 Br(µ− → e−e−e+) < 1.0 · 10−12

Br(τ− → µ−γ) < 4.5 · 10−8 Br(τ− → e−γ) < 1.1 · 10−7 Br(τ− → e−e−µ+) < 1.1 · 10−7

Br(τ− → e−KS) < 5.6 · 10−8 Br(τ− → µ−KS) < 4.9 · 10−8 Br(τ− → µ+π−π−) < 0.7 · 10−7

Br(τ− → Λπ−) < 7.2 · 10−8 Br(τ− → e−π0) < 1.4 · 10−7 Br(τ− → e−π+π−) < 1.2 · 10−7

Br(τ− → µ−π0) < 1.1 · 10−7 Br(τ− → µ−η) < 1.3 · 10−7 Br(τ− → µ−e+µ−) < 1.3 · 10−7

by atmospheric neutrino data, one gets Λ/cij . 1015 GeV, amazingly close to the expected scale of
Grand Unification.

With non-zero neutrino masses, the leptonic charged-current interactions involve a flavour mix-
ing matrix VL. The data on neutrino oscillations imply that all elements of VL are large, except for
(VL)e3 < 0.18; therefore the mixing among leptons appears to be very different from the one in the
quark sector. The number of relevant phases characterizing the matrix VL depends on the Dirac or Ma-
jorana nature of neutrinos, because if one rotates a Majorana neutrino by a phase, this phase will appear
in its mass term which will no longer be real. With only three Majorana (Dirac) neutrinos, the 3 × 3
matrix VL involves six (four) independent parameters: three mixing angles and three (one) phases.

The smallness of neutrino masses implies a strong suppression of neutrinoless lepton-flavour-
violating processes, which can be avoided in models with other sources of lepton-flavour violation, not
related to mνi . Table 5 shows the best published limits on lepton-flavour-violating decays. The B Fac-
tories are pushing the experimental limits on neutrinoless τ decays beyond the 10−7 level, increasing in
a drastic way the sensitivity to new physics scales. Future experiments could further push some limits
to the 10−9 level, allowing one to explore interesting and totally unknown phenomena. Complementary
information will be provided by the MEG experiment, which will search for µ+ → e+γ events with a
sensitivity of 10−13 [93]. There are also ongoing projects at J-PARC aiming to study µ→ e conversions
in muonic atoms, at the 10−18 level.

At present, we still ignore whether neutrinos are Dirac or Majorana fermions. Another important
question to be addressed in the future concerns the possibility of leptonic CP violation and its relevance
for explaining the baryon asymmetry of our Universe through leptogenesis.

7 Summary
The SM provides a beautiful theoretical framework which is able to accommodate all our present knowl-
edge on electroweak and strong interactions. It is able to explain any single experimental fact and, in
some cases, it has successfully passed very precise tests at the 0.1% to 1% level. In spite of this im-
pressive phenomenological success, the SM leaves too many unanswered questions to be considered as
a complete description of the fundamental forces. We do not understand yet why fermions are replicated
in three (and only three) nearly identical copies. Why the pattern of masses and mixings is what it is. Are
the masses the only difference among the three families? What is the origin of the SM flavour structure?
Which dynamics is responsible for the observed CP violation?

In the gauge and scalar sectors, the SM Lagrangian contains only four parameters: g, g ′, µ2, and
h. We can trade them by α, MZ , GF , and MH ; this has the advantage of using the three most precise
experimental determinations to fix the interaction. In any case, one describes a lot of physics with only
four inputs. In the fermionic flavour sector, however, the situation is very different. With NG = 3, we
have 13 additional free parameters in the minimal SM: 9 fermion masses, 3 quark mixing angles and
1 phase. Taking into account non-zero neutrino masses, we have three more mass parameters plus the
leptonic mixings: three angles and one phase (three phases) for Dirac (or Majorana) neutrinos.
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Clearly, this is not very satisfactory. The source of this proliferation of parameters is the set of
unknown Yukawa couplings in Eq. (109). The origin of masses and mixings, together with the reason for
the existing family replication, constitute at present the main open problem in electroweak physics. The
problem of fermion mass generation is deeply related to the mechanism responsible for the electroweak
SSB. Thus, the origin of these parameters lies in the most obscure part of the SM Lagrangian: the scalar
sector. The dynamics of flavour appears to be terra incognita which deserves a careful investigation.

The SM incorporates a mechanism to generate CP violation, through the single phase naturally
occurring in the CKM matrix. Although the present laboratory experiments are well described, this
mechanism is unable to explain the matter–antimatter asymmetry of our Universe. A fundamental expla-
nation of the origin of CP-violating phenomena is still lacking.

The first hints of new physics beyond the SM have emerged recently, with convincing evidence
of neutrino oscillations showing that νe → νµ,τ and νµ → ντ transitions do occur. The existence of
lepton-flavour violation opens a very interesting window to unknown phenomena.

The Higgs particle is the main missing block of the SM framework. The successful tests of the
SM quantum corrections with precision electroweak data confirm the assumed pattern of SSB, but do
not prove the validity of the minimal Higgs mechanism embedded in the SM. The present experimental
bounds (108) put the Higgs hunting within the reach of the new generation of detectors. The LHC
should find out whether such scalar field indeed exists, either confirming the SM Higgs mechanism or
discovering completely new phenomena.

Many interesting experimental signals are expected to be seen in the near future. New experiments
will probe the SM to a much deeper level of sensitivity and will explore the frontier of its possible
extensions. Large surprises may well be expected, probably establishing the existence of new physics
beyond the SM and offering clues to the problems of mass generation, fermion mixing, and family
replication.
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Appendices
A Basic inputs from quantum field theory
A.1 Wave equations
The classical Hamiltonian of a non-relativistic free particle is given by H = ~p 2/(2m). In quantum
mechanics, energy and momentum correspond to operators acting on the particle wave function. The
substitutions H = i~ ∂

∂ t and ~p = −i~ ~∇ lead then to the Schrödinger equation:

i~
∂

∂t
ψ (~x, t) = − ~

2

2m
~∇2ψ (~x, t) . (A.1)

We can write the energy and momentum operators in a relativistic covariant way as pµ = i ∂µ ≡ i ∂
∂xµ

,
where we have adopted the usual natural units convention ~ = c = 1. The relation E 2 = ~p 2 + m2

determines the Klein–Gordon equation for a relativistic free particle:

(
�+m2

)
φ(x) = 0 , � ≡ ∂µ∂µ =

∂2

∂t2
− ~∇2 . (A.2)

The Klein–Gordon equation is quadratic on the time derivative because relativity puts the space
and time coordinates on an equal footing. Let us investigate whether an equation linear in derivatives
could exist. Relativistic covariance and dimensional analysis restrict its possible form to

(i γµ∂µ −m)ψ(x) = 0 . (A.3)

Since the r.h.s. is identically zero, we can fix the coefficient of the mass term to be −1; this just deter-
mines the normalization of the four coefficients γµ. Notice that γµ should transform as a Lorentz four-
vector. The solutions of Eq. (A.3) should also satisfy the Klein–Gordon relation of Eq. (A.2). Applying
an appropriate differential operator to Eq. (A.3), one can easily obtain the required quadratic equation:

− (i γν∂ν +m) (i γµ∂µ −m)ψ(x) = 0 ≡ (
�+m2

)
ψ(x) . (A.4)

Terms linear in derivatives cancel identically, while the term with two derivatives reproduces the operator
� ≡ ∂µ∂µ provided the coefficients γµ satisfy the algebraic relation

{γµ, γν} ≡ γµγν + γνγµ = 2 gµν , (A.5)

which defines the so-called Dirac algebra. Eq. (A.3) is known as the Dirac equation.
Obviously the components of the four-vector γµ cannot simply be numbers. The three 2× 2 Pauli

matrices satisfy
{
σi, σj

}
= 2 δij , which is very close to the relation (A.5). The lowest-dimensional

solution to the Dirac algebra is obtained with D = 4 matrices. An explicit representation is given by:

γ0 =
(
I2 0
0 −I2

)
, γi =

(
0 σi

−σi 0

)
. (A.6)

Thus, the wave function ψ(x) is a column vector with four components in the Dirac space. The presence
of the Pauli matrices strongly suggests that it contains two components of spin 1

2 . A proper physical
analysis of its solutions shows that the Dirac equation describes simultaneously a fermion of spin 1

2 and
its own antiparticle [94].

It is useful to define the following combinations of gamma matrices:

σµν ≡ i

2
[γµ, γν ] , γ5 ≡ γ5 ≡ i γ0γ1γ2γ3 = − i

4!
εµνρσγ

µγνγργσ . (A.7)
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In the explicit representation (A.6),

σij = εijk
(
σk 0
0 σk

)
, σ0i = i

(
0 σi

σi 0

)
, γ5 =

(
0 I2

I2 0

)
. (A.8)

The matrix σij is then related to the spin operator. Some important properties are

γ0γµγ0 = γµ† , γ0γ5γ
0 = −γ5

† = −γ5 , {γ5, γ
µ} = 0 , (γ5)2 = I4 . (A.9)

Specially relevant for weak interactions are the chirality projectors (PL + PR = 1)

PL ≡ 1− γ5

2
, PR ≡ 1 + γ5

2
, P 2

R = PR , P 2
L = PL , PLPR = PRPL = 0 , (A.10)

which allow us to decompose the Dirac spinor in its left-handed and right-handed chirality parts:

ψ(x) = [PL + PR] ψ(x) ≡ ψL(x) + ψR(x) . (A.11)

In the massless limit, the chiralities correspond to the fermion helicities.

A.2 Lagrangian formalism
The Lagrangian formulation of a physical system provides a compact dynamical description and makes
it easier to discuss the underlying symmetries. Like in classical mechanics, the dynamics is encoded in
the action

S =
∫
d 4x L [φi(x), ∂µφi(x)] . (A.12)

The integral over the four space–time coordinates preserves relativistic invariance. The Lagrangian den-
sity L is a Lorentz-invariant functional of the fields φi(x) and their derivatives. The space integral
L =

∫
d 3x L would correspond to the usual non-relativistic Lagrangian.

The principle of stationary action requires the variation δS of the action to be zero under small
fluctuations δφi of the fields. Assuming that the variations δφi are differentiable and vanish outside some
bounded region of space–time (which allows an integration by parts), the condition δS = 0 determines
the Euler–Lagrange equations of motion for the fields:

∂L
∂φi
− ∂µ

(
∂L

∂ (∂µφi)

)
= 0 . (A.13)

One can easily find appropriate Lagrangians to generate the Klein–Gordon and Dirac equations.
They should be quadratic on the fields and Lorentz invariant, which determines their possible form up to
irrelevant total derivatives. The Lagrangian

L = ∂µφ∗∂µφ−m2 φ∗φ (A.14)

describes a complex scalar field without interactions. Both the field φ(x) and its complex conjugate
φ∗(x) satisfy the Klein–Gordon equation; thus, φ(x) describes a particle of mass m without spin and
its antiparticle. Particles which are their own antiparticles (i.e., with no internal charges) have only
one degree of freedom and are described through a real scalar field. The appropriate Klein–Gordon
Lagrangian is then

L =
1
2
∂µφ∂µφ− 1

2
m2 φ2 . (A.15)

The Dirac equation can be derived from the Lagrangian density

L = ψ (i γµ∂µ −m)ψ . (A.16)
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The adjoint spinor ψ(x) = ψ†(x) γ0 closes the Dirac indices. The matrix γ0 is included to guarantee
the proper behaviour under Lorentz transformations: ψψ is a Lorentz scalar, while ψγµψ transforms as
a four-vector [94]. Therefore, L is Lorentz invariant as it should be.

Using the decomposition (A.11) of the Dirac field in its two chiral components, the fermionic
Lagrangian adopts the form:

L = ψL i γ
µ∂µψL + ψR i γ

µ∂µψR − m
(
ψLψR + ψRψL

)
. (A.17)

Thus, the two chiralities decouple if the fermion is massless.

A.3 Symmetries and conservation laws
Let us assume that the Lagrangian of a physical system is invariant under some set of continuous trans-
formations

φi(x) → φ′i(x) = φi(x) + ε δεφi(x) +O(ε2) , (A.18)

i.e., L [φi(x), ∂µφi(x)] = L [φ′i(x), ∂µφ′i(x)]. One finds then that

δεL = 0 =
∑
i

{[
∂L
∂φi
− ∂µ

(
∂L

∂ (∂µφi)

)]
δεφi + ∂µ

[
∂L

∂ (∂µφi)
δεφi

]}
. (A.19)

If the fields satisfy the Euler–Lagrange equations of motion (A.13), the first term is identically zero;
therefore the system has a conserved current:

Jµ ≡
∑
i

∂L
∂ (∂µφi)

δεφi , ∂µJµ = 0 . (A.20)

This allows us to define a conserved charge

Q ≡
∫
d 3x J0 . (A.21)

The condition ∂µJµ = 0 guarantees that dQ
dt = 0 , i.e., that Q is a constant of motion.

This result, known as Noether’s theorem, can be easily extended to general transformations in-
volving also the space–time coordinates. For every continuous symmetry transformation which leaves
the Lagrangian invariant, there is a corresponding divergenceless Noether’s current and, therefore, a con-
served charge. The selection rules observed in Nature, where there exist several conserved quantities
(energy, momentum, angular momentum, electric charge, etc.), correspond to dynamical symmetries of
the Lagrangian.

A.4 Classical electrodynamics
The well-known Maxwell equations,

~∇ · ~B = 0 , ~∇× ~E +
∂ ~B

∂ t
= 0 , (A.22)

~∇ · ~E = ρ , ~∇× ~B − ∂ ~E

∂ t
= ~J , (A.23)

summarize a large amount of experimental and theoretical work and provide a unified description of the
electric and magnetic forces. The first two equations in (A.22) are easily solved, writing the electromag-
netic fields in terms of potentials:

~E = −~∇V − ∂ ~A

∂ t
, ~B = ~∇× ~A . (A.24)
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It is very useful to rewrite these equations in a Lorentz covariant notation. The charge density ρ
and the electromagnetic current ~J transform as a four-vector Jµ ≡

(
ρ, ~J

)
. The same is true for the

potentials which combine into Aµ ≡
(
V, ~A

)
. The relations (A.24) between the potentials and the fields

then take a very simple form, which defines the field strength tensor:

F µν ≡ ∂µAν − ∂νAµ =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 , F̃ µν ≡ 1
2
εµνρσ Fρσ . (A.25)

In terms of the tensor F µν , the covariant form of the Maxwell equations turns out to be very transparent:

∂µF̃
µν = 0 , ∂µF

µν = Jν . (A.26)

The electromagnetic dynamics is clearly a relativistic phenomenon, but Lorentz invariance was not very
explicit in the original formulation of Eqs. (A.22) and (A.23). Once a covariant formulation is adopted,
the equations become much simpler. The conservation of the electromagnetic current appears now as a
natural compatibility condition:

∂νJ
ν = ∂ν∂µF

µν = 0 . (A.27)

In terms of potentials, ∂µF̃ µν is identically zero while ∂µF µν = Jν adopts the form

�Aν − ∂ν (∂µAµ) = Jν . (A.28)

The same dynamics can be described by many different electromagnetic four-potentials, which
give the same field strength tensor F µν . Thus, the Maxwell equations are invariant under gauge transfor-
mations:

Aµ −→ A′µ = Aµ + ∂µΛ . (A.29)

Taking the Lorentz gauge ∂µA
µ = 0, Eq. (A.28) simplifies to

�Aν = Jν . (A.30)

In the absence of an external current, i.e., with J µ = 0, the four components of Aµ satisfy then a
Klein–Gordon equation with m = 0. The photon is therefore a massless particle.

The Lorentz condition ∂µA
µ = 0 still allows for a residual gauge invariance under transforma-

tions of the type (A.29), with the restriction �Λ = 0. Thus, we can impose a second constraint on
the electromagnetic field Aµ, without changing F µν . Since Aµ contains four fields (µ = 0, 1, 2, 3) and
there are two arbitrary constraints, the number of physical degrees of freedom is just two. Therefore, the
photon has two different physical polarizations.

B SU(N) algebra
SU(N) is the group of N × N unitary matrices, UU † = U †U = 1, with detU = 1. Any SU(N)
matrix can be written in the form

U = exp {i T aθa} , a = 1, 2, . . . , N 2 − 1 , (B.1)

with T a = λa/2 Hermitian, traceless matrices. Their commutation relations

[T a, T b] = i fabc T c (B.2)

define the SU(N) algebra. The N × N matrices λa/2 generate the fundamental representation of the
SU(N) algebra. The basis of generators λa/2 can be chosen so that the structure constants f abc are real
and totally antisymmetric.
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For N = 2, λa are the usual Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (B.3)

which satisfy the commutation relation

[σi, σj ] = 2 i εijk σk . (B.4)

Other useful properties are: {σi, σj} = 2 δij and Tr (σiσj) = 2 δij .
For N = 3, the fundamental representation corresponds to the eight Gell-Mann matrices:

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 ,

(B.5)

λ5 =

 0 0 −i
0 0 0
i 0 0

, λ6 =

 0 0 0
0 0 1
0 1 0

, λ7 =

 0 0 0
0 0 −i
0 i 0

, λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

.
They satisfy the anticommutation relation{

λa, λb
}

=
4
N
δab IN + 2 dabc λc , (B.6)

where IN denotes theN -dimensional unit matrix and the constants dabc are totally symmetric in the three
indices.

For SU(3), the only non-zero (up to permutations) f abc and dabc constants are

1
2
f123 = f147 = −f156 = f246 = f257 = f345 = −f367 =

1√
3
f458 =

1√
3
f678 =

1
2
, (B.7)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1
2
, (B.8)

d118 = d228 = d338 = −2 d448 = −2 d558 = −2 d668 = −2 d778 = −d888 =
1√
3
.

The adjoint representation of the SU(N) group is given by the (N 2 − 1)× (N 2 − 1) matrices
(T aA)bc ≡ −ifabc, which satisfy the commutation relations (B.2). The following equalities

Tr
(
λaλb

)
= 4TF δab , TF =

1
2
,

(λaλa)αβ = 4CF δαβ , CF =
N2 − 1

2N
, (B.9)

Tr(T aAT
b
A) = facdf bcd = CA δab , CA = N ,

define the SU(N) invariants TF , CF and CA. Other useful properties are

(λa)αβ (λa)γδ = 2 δαδδβγ − 2
N
δαβδγδ , Tr

(
λaλbλc

)
= 2 (dabc + ifabc) ,

Tr(T aAT
b
AT

c
A) = i

N

2
fabc ,

∑
b

dabb = 0 , dabcdebc =
(
N − 4

N

)
δae , (B.10)

fabef cde + facefdbe + fadef bce = 0 , fabedcde + faceddbe + fadedbce = 0 .
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+
π0

q γ

γ

Fig. C.1: Triangular quark loops generating the decay π0 → γγ

C Anomalies
Our theoretical framework is based on the local gauge symmetry. However, so far we have discussed
only the symmetries of the classical Lagrangian. It happens sometimes that a symmetry of L gets broken
by quantum effects, i.e., it is not a symmetry of the quantized theory; one says then that there is an
‘anomaly’. Anomalies appear in those symmetries involving both axial (ψγµγ5ψ) and vector (ψγµψ)
currents, and reflect the impossibility of regularizing the quantum theory (the divergent loops) in a way
which preserves the chiral (left/right) symmetries.

A priori there is nothing wrong with having an anomaly. In fact, sometimes they are even wel-
come. A good example is provided by the decay π0 → γγ. There is a chiral symmetry of the QCD
Lagrangian which forbids this transition; the π0 should then be a stable particle, in contradiction with the
experimental evidence. Fortunately, there is an anomaly generated by a triangular quark loop (Fig. C.1)
which couples the axial current A3

µ ≡ (ūγµγ5u − d̄γµγ5d) to two electromagnetic currents and breaks
the conservation of the axial current at the quantum level:

∂µA3
µ =

α

4π
εαβσρ Fαβ Fσρ + O (mu +md) . (C.1)

Since the π0 couples to A3
µ , 〈0|A3

µ|π0〉 = 2i fπpµ , the π0 → γγ decay does finally occur, with a
predicted rate

Γ(π0 → γγ) =
(
NC

3

)2 α2m3
π

64π3f2
π

= 7.73 eV, (C.2)

where NC = 3 denotes the number of quark colours and the so-called pion decay constant, fπ =
92.4 MeV, is known from the π− → µ−ν̄µ decay rate (assuming isospin symmetry). The agreement with
the measured value, Γ = 7.7± 0.6 eV [7], is excellent.

Anomalies are, however, very dangerous in the case of local gauge symmetries, because they
destroy the renormalizability of the Quantum Field Theory. Since the SU(2)L ⊗ U(1)Y model is chiral
(i.e., it distinguishes left from right), anomalies are clearly present. The gauge bosons couple to vector
and axial-vector currents; we can then draw triangular diagrams with three arbitrary gauge bosons (W ±,
Z , γ) in the external legs. Any such diagram involving one axial and two vector currents generates a
breaking of the gauge symmetry. Thus, our nice model looks meaningless at the quantum level.

We have still one way out. What matters is not the value of a single Feynman diagram, but the sum
of all possible contributions. The anomaly generated by the sum of all triangular diagrams connecting
the three gauge bosons Ga, Gb and Gc is proportional to

A = Tr
(
{T a, T b}T c

)
L
− Tr

(
{T a, T b}T c

)
R
, (C.3)

where the traces sum over all possible left- and right-handed fermions, respectively, running along the
internal lines of the triangle. The matrices T a are the generators associated with the corresponding gauge
bosons; in our case, T a = σa/2 , Y .

In order to preserve the gauge symmetry, one needs a cancellation of all anomalous contributions,
i.e., A = 0. Since Tr(σk) = 0, we have an automatic cancellation in two combinations of generators:
Tr ({σi, σj}σk) = 2 δij Tr(σk) = 0 and Tr ({Y, Y }σk) ∝ Tr(σk) = 0 . However, the other two
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combinations Tr ({σi, σj}Y ) and Tr(Y 3) turn out to be proportional to Tr(Q) , i.e., to the sum of
fermion electric charges:∑

i

Qi = Qe +Qν +NC (Qu +Qd) = −1 +
1
3
NC = 0 . (C.4)

Equation (C.4) conveys a very important message: the gauge symmetry of the SU(2)L ⊗ U(1)Y
model does not have any quantum anomaly, provided that NC = 3. Fortunately, this is precisely the right
number of colours to understand strong interactions. Thus, at the quantum level, the electroweak model
seems to know something about QCD. The complete SM gauge theory based on the group SU(3)C ⊗
SU(2)L⊗U(1)Y is free of anomalies and, therefore, renormalizable. The anomaly cancellation involves
one complete generation of leptons and quarks: ν , e , u , d. The SM would not make any sense with
only leptons or quarks.

References
[1] Updated version of the lectures given at the 2004 European School of High-Energy Physics (San

Feliu de Guixols, Spain): A. Pich, The Standard Model of electroweak interactions, Report CERN-
2006-003, ed. R. Fleischer, p. 1 [arXiv:hep-ph/0502010].

[2] S.L. Glashow, Nucl. Phys. 22 (1961) 579.
[3] S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.
[4] A. Salam, in Elementary Particle Theory, ed. N. Svartholm (Almquist and Wiksells, Stockholm,

1969), p. 367.
[5] S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285.
[6] A. Pich, Aspects of Quantum Chromodynamics, arXiv:hep-ph/0001118.
[7] W.-M. Yao et al., Review of particle physics, J. Phys. G33 (2006) 1.
[8] B. Odom et al., Phys. Rev. Lett. 97 (2006) 030801.
[9] Muon g − 2 Collaboration, Phys. Rev. D73 (2006) 072003.

[10] M. Davier and W.J. Marciano, Annu. Rev. Nucl. Part. Sci. 54 (2004) 115.
[11] J.P. Miller, E. de Rafael and B.L. Roberts, arXiv:hep-ph/0703049.
[12] T. Kinoshita and M. Nio, Phys. Rev. D73 (2006) 013003, 053007; D70 (2004) 113001; Phys. Rev.

Lett. 90 (2003) 021803.
[13] T. Aoyama et al., Nucl. Phys. B740 (2006) 138.
[14] A.L. Kataev, Phys. Rev. D74 (2006) 073011.
[15] G. Gabrielse et al., Phys. Rev. Lett. 97 (2006) 030802.
[16] M. Davier et al., Eur. Phys. J. C27 (2003) 497; C31 (2003) 503.
[17] M. Davier, arXiv:hep-ph/0701163.
[18] A. Pich, arXiv:hep-ph/0702074.
[19] J. Bijnens and J. Prades, Mod. Phys. Lett. A22 (2007) 767.
[20] H. Fritzsch and M. Gell-Mann, Proc. XVI International Conference on High Energy Physics,

Batavia, IL, USA, 1972, eds. J.D. Jackson, A. Roberts and R. Donaldson (Fermilab, Batavia, IL,
USA, 1972), Vol. 2, p. 135.

[21] H. Fritzsch, M. Gell-Mann and H. Leutwyl, Phys. Lett. B47 (1973) 365.
[22] ALEPH Collaboration, http://aleph.web.cern.ch/aleph/dali/Z0_examples.html.
[23] A. Pich, arXiv:hep-ph/9412274.
[24] Tevatron Electroweak Working Group, arXiv:hep-ex/0703034.
[25] J. Goldstone, Nuov. Cim. 19 (1961) 154.

47

THE STANDARD MODEL OF ELECTROWEAK INTERACTIONS

47



[26] P.W. Higgs, Phys. Rev. 145 (1966) 1156.
[27] T.W.B. Kibble, Phys. Rev. 155 (1967) 1554.
[28] G. ’t Hooft, Nucl. Phys. B33 (1971) 173.
[29] The LEP Collaborations ALEPH, DELPHI, L3 and OPAL and the LEP Electroweak Working

Group, arXiv:hep-ex/0612034; http://www.cern.ch/LEPEWWG/.
[30] The ALEPH, DELPHI, L3, OPAL and SLD Collaborations, the LEP Electroweak Working Group

and the SLD Electroweak and Heavy Flavour Groups, Phys. Rep. 427 (2006) 257.
[31] MuLan Collaboration, arXiv:0704.1981 [hep-ex].
[32] W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 61 (1988) 1815.
[33] T. van Ritbergen and R.G. Stuart, Phys. Rev. Lett. 82 (1999) 488.
[34] M. Moulson, arXiv:hep-ex/0703013; FLAVIAnet Kaon Working Group, http://ific.uv.es/flavianet/.
[35] S. Bethke, Prog. Part. Nucl. Phys. 58 (2007) 351.
[36] D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343.
[37] H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.
[38] T. Appelquist and J. Carazzone, Phys. Rev. D11 (1975) 2856.
[39] M. Veltman, Nucl. Phys. B123 (1977) 89.
[40] J. Bernabéu, A. Pich and A. Santamaría, Phys. Lett. B200 (1988) 569; Nucl. Phys. B363 (1991)

326.
[41] A.A. Akhundov, D. Yu. Bardin and T. Riemann, Nucl. Phys. B276 (1986) 1.
[42] W. Beenakker and W. Hollik, Z. Phys. C40 (1988) 141.
[43] B.W. Lynn and R.G. Stuart, Phys. Lett. B252 (1990) 676.
[44] D. Denegri, http://cmsinfo.cern.ch/Welcome.html/CMSdocuments/CMSplots/CMSplots.html.
[45] N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.
[46] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 42 (1973) 652.
[47] SINDRUM Collaboration, Nucl. Phys. B299 (1988) 1.
[48] MEGA/LAMPF Collaboration, Phys. Rev. Lett. 83 (1999) 1521.
[49] BELLE Collaboration, arXiv:0705.0650 [hep-ex]; Phys. Lett. B640 (2006) 138; B639 (2006) 159;

B632 (2006) 51; B622 (2005) 218; B589 (2004) 103; Phys. Rev. Lett. 93 (2004) 081803; 92 (2004)
171802.

[50] BABAR Collaboration, Phys. Rev. Lett. 98 (2007) 061803; 96 (2006) 041801; 95 (2005) 191801,
041802; 92 (2004) 121801.

[51] A. Pich, arXiv:hep-ph/9601202.
[52] E. Gámiz, M. Jamin, A. Pich, J. Prades and F. Schwab, Phys. Rev. Lett. 94 (2005) 011803; JHEP

0301 (2003) 060; arXiv:hep-ph/0612154.
[53] W. J. Marciano, Phys. Rev. Lett. 93 (2004) 231803.
[54] M. Jamin, J.A. Oller and A. Pich, Phys. Rev. D74 (2006) 074009.
[55] MILC Collaboration, arXiv:hep-lat/0611024.
[56] N. Isgur and M. Wise, Phys. Lett. B232 (1989) 113; B237 (1990) 527.
[57] B. Grinstein, Nucl. Phys. B339 (1990) 253.
[58] E. Eichten and B. Hill, Phys. Lett. B234 (1990) 511.
[59] H. Georgi, Phys. Lett. B240 (1990) 447.
[60] M. Neubert, Phys. Lett. B264 (1991) 455.
[61] M. Luke, Phys. Lett. B252 (1990) 447.
[62] D. Počanić et al., Phys. Rev. Lett. 93 (2004) 181803.

48

A. PICH

48



[63] J. Portolés, arXiv:hep-ph/0703093.
[64] V. Mateu and A. Pich, JHEP 0510 (2005) 041.
[65] R. Flores-Mendieta, Phys. Rev. D70 (2004) 114036.
[66] N. Cabibbo, E.C. Swallow and R. Winston, Annu. Rev. Nucl. Part. Sci. 53 (2003) 39; Phys. Rev.

Lett. 92 (2004) 251803.
[67] Heavy Flavour Averaging Group, arXiv:0704.3575 [hep-ex].
[68] CDF Collaboration, Phys. Rev. Lett. 95 (2005) 102002.
[69] D0 Collaboration, Phys. Lett. B639 (2006) 616.
[70] D0 Collaboration, Phys. Rev. Lett. 98 (2007) 181802.
[71] L. Wolfenstein Phys. Rev. Lett. 51 (1983) 1945.
[72] A.J. Buras, M.E. Lautenbacher and G. Ostermaier Phys. Rev. D50 (1994) 3433.
[73] C. Jarlskog Phys. Rev. Lett. 55 (1985) 1039; Z. Phys. C29 (1985) 491.
[74] CDF Collaboration, Phys. Rev. Lett. 97 (2006) 242003.
[75] A.B. Carter and A.I. Sanda, Phys. Rev. Lett. 45 (1980) 952; Phys. Rev. D23 (1981) 1567.
[76] I.I. Bigi and A.I. Sanda, Nucl. Phys. B193 (1981) 85.
[77] CKMfitter Group, Eur. Phys. J. C41 (2005) 1; http://ckmfitter.in2p3.fr/.
[78] I.I. Bigi, arXiv:hep-ph/0701273.
[79] UTfit Collaboration, JHEP 0610 (2006) 081; http://utfit.roma1.infn.it/.
[80] A.J. Buras, arXiv:hep-ph/0505175.
[81] R. Davis et al., Phys. Rev. Lett. 20 (1968) 1205.
[82] J. Bahcall and M.H. Pinsonneault, Phys. Rev. Lett. 92 (2004) 121301.
[83] SNO Collaboration, Phys. Rev. Lett. 89 (2002) 011301, 011302; 92 (2004) 181301; Phys. Rev. C72

(2005) 055502; arXiv:nucl-ex/0610020.
[84] Super-Kamiokande Collaboration, Phys. Rev. Lett. 86 (2001) 5656; Phys. Lett. B539 (2002) 179;

Phys. Rev. D69 (2004) 011104; D68 (2003) 092002.
[85] KamLAND Collaboration, Phys. Rev. Lett. 90 (2003) 021802; 92 (2004) 071301; 94 (2005)

081801.
[86] Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 1562; 82 (1999) 2644, 5194; 85

(2000) 3999; 93 (2004) 101801; 97 (2006) 171801; Phys. Rev. D71 (2005) 112005.
[87] K2K Collaboration, Phys. Rev. D74 (2006) 072003; Phys. Rev. Lett. 90 (2003) 041801; 94 (2005)

081802.
[88] MINOS Collaboration, Phys. Rev. Lett. 97 (2006) 191801.
[89] CHOOZ Collaboration, Phys. Lett. B466 (1999) 415.
[90] S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566.
[91] M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity,

eds. P. van Nieuwenhuizen and D.Z. Freedman (North Holland, Stony Brook, NY, 1979), p. 315.
[92] T. Yanagida, in Proc. Workshop on Unified Theories and Baryon Number in the Universe, eds.

O. Sawada and A. Sugamoto (KEK, Tsukuba, Japan, 1979), p. 95.
[93] MEG Collaboration, Nucl. Phys. B (Proc. Suppl.) 162 (2006) 279.
[94] J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

49

THE STANDARD MODEL OF ELECTROWEAK INTERACTIONS

49


