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Supplementary Note 1. INOCULATION TESTS ON EUROPEAN GRAPEVINE VARIETIES

Plants. Grapevine saplings were annually supplied from a nursery in mainland Spain (Viveros Villanueva Vides,
SL), consisting of one-year-old rootstocks grafted in winter with dormant grapevine cultivars, and grown in 20-L plas-
tic pots with a standard potting mix. Fifty-seven rootstock-scion cultivar combinations were used in the inoculation
assay (Table S1). Potted plants were randomly distributed in 12-plant rows along an insect-proof tunnel exposed
to air temperature and daily dip-irrigated to field capacity, fortnightly sprinkled with a slow-release fertiliser and
treated with insecticides and fungicides when needed until the end of the experiment. Two weeks before the onset
of the inoculation assay, leaf samples of all plants were collected and tested for the presence of Xf through qPCR as
described elsewhere [1].

Isolates and inoculation. We used for the inoculation experiment two isolates of Xf. subsp. fastidiosa (ST1)
recovered from grapevines: XLY 2055/17 (GenBank WGS: QTJS01) and XYL2177/18 (JAAGVM01) [2, 3]. In the
third-year assay, we included an isolate of Xf subsp. multiplex ST81 XYL1981/18 (JAAGVE01) to test whether other
strains in Majorca could cause PD as well. Isolates were grown on BYCE medium at 28ºC for 7-10 days, following
EPPO protocols [4]. Cells were collected by scraping the colonies and suspending them in 1.5 ml Eppendorf tubes each
with 1 ml of phosphate-buffered saline (PBS) solution until obtaining a turbid (108 − 109 cell/ml) suspension. Plants
were mechanically inoculated by pin-prick inoculation [5] with slight modifications. A 10-µl drop of the bacterial
suspension was pipetted on the leaf axil and punctured five times with an entomological needle. Eight-nine replicates
per scion-rootstock combination were inoculated with the bacterial suspension and four-three plants per cultivar with
a drop of PBS as a control at the end of May. Inoculation was repeated two weeks thereafter by piercing the next
leaf axil above that previously inoculated [1].

Disease score. Disease severity was rated by counting the number of symptomatic leaves eight weeks post-inoculation
(WPI) and then biweekly until the 16th week. A disease index was calculated according to Su et al. [6]. To determine
the basipetal and systemic movement of XfPD, we counted the number of symptomatic leaves below the point of
inoculation from the same stems or any stem below at 12 WPI. Symptomatic and asymptomatic plants were tested
by qPCR for Xf infection at 12 WPI taking the petiole of the second and fifth leaf above the point of inoculation. On
the 14th week, five leaves per plant of all inoculated plants were used for XfPD isolation, as described below. Those
plants for which the qPCR was negative and XfPD could not be isolated were treated as not infected.

Data analysis. All statistical analyses on disease scores were carried out using R. 3.5.2 version software [7]. We used
the functions glm and glmer in the R package lme4 [8] for fitting Generalised Linear Models and Generalised Linear
Mixed Models (GLMMs) in the analysis of disease incidence and severity in the inoculation assays. In all tests, we
modelled the response variable (i) disease incidence with the binomial error (logit-link function) and (ii) disease sever-
ity with the Poisson error (log-link function). A within-subject (repeated measures) factorial design was performed to
evaluate differences in disease severity over time among different cultivar-rootstock combinations. Cultivars-rootstock
and time were treated as fixed factors and plant subjects as a random effect. Rootstock and time were analysed
as fixed factors and plant subjects as a random effect. Controls were excluded from the analysis, as lesions did
not develop on them. For each cultivar, we calculated the area under the disease progress curve (AUDPC) from
weeks-post-inoculation and disease index using the package Agricolae. To test whether genotypes within the ST1-
grapevine population vary in virulence, we included a second strain (XYL2177/18) in the 2019 inoculation experiment.

Varietal response to Xf. In our three-year inoculation tests, we included a representative number of local and
international varieties (Table S1). In total, among 886 inoculated-grapevine plants comprising 36 varieties in 57 unique
combinations (scion-rootstock), 86.1% (n = 764) of them developed typical PD symptoms at 16 WPI. In contrast,
none of the grapevine plants inoculated with the strain XYL 1981/17, ST81 subsp. multiplex presented symptoms.
The results of the pathogenicity tests on European grape varieties are shown in Table S1.

Overall, European V. vinifera varieties exhibited significant differences in their susceptibility to XfPD, which could
imply differences in risk of PD establishment at the regional scale (Table S1). When compared between grape major
phenotypic groups, red grape varieties were 1.45 times more prone to XfPD infection than white grape varieties
(χ2 = 41.58, df = 1, P = 1.072 × 10−10), while symptoms were 36.7% more severe in red grapes than in white
grape cultivars (χ2 = 554.54, df = 1, P = 2.2 × 10−16). In addition, we probed whether XfPD strains isolated from
grapevines in Majorca differ in their virulence pooled across all grapevine varieties, finding significant differences in
virulence (χ2 = 68.73, df = 1, P = 2.2× 10−16) and infectiveness (χ2 = 8.07, df = 1, P = 0.0045) (Fig. S1).

Early-season Xf-infections on grapevines are considered to be more likely to survive the following year than late-
season infections [9, 10]. By contrast, varieties developing symptoms, later on, may affect pathogen acquisition
efficiency by vectors and thus decrease the rate of disease transmission. We found a positive correlation (F1,28 = 39.58,



6

P < 0.001; R2 = 0.57) between the number of symptomatic leaves formed above the point of inoculation and those
formed below (Fig. S1). This acropetal/basipetal ratio of infected leaves is indicative of systemic movement of the
pathogen and of a greater probability that infections on vines showing a lower number of symptomatic leaves will be
more likely eliminated by winter pruning or by low temperatures [11]. As a result, we assumed in our model that
Xf-infected plants that develop fewer symptomatic leaves at the end of 16 weeks of incubation will contribute less to
the spread of the disease within vineyards (Fig. S1).

Supplementary Note 2. MODELLING CLIMATE SUITABILITY FOR PD

A. Modified Growing Degree Days (MGDD) from Arrhenius Equation

Feil and Purcell estimated Xf growth rate as a function of temperature, σ(T ), using Arrhenius’ Law, i.e. lnK ∼
−1/T (see Fig. 3 in [9]). The overall dependence on T is nonmonotonic with two different types of behaviour: i) k
grows with T until a maximum value is attained at T = 28 °C = 301.15K; and ii) k decreases beyond the maximum.
Growth is zero beyond the lowest and highest threshold temperatures.

The mathematical form of the Arrhenius’ Law dependence between the growth rate k and the absolute temperature
T reads as follows,

k = A exp(−E/T ) , (S1)

where A is a pre-exponential factor and E an activation energy in units of the Boltzmann constant kB . The original
use of this equation is for the rate constant of a chemical reaction that increases monotonically with T , and so E > 0.
To fit the non-monotonic whole growth behaviour of Xf, we considered two Arrhenius functions with opposite signs
in the activation rate,

k = A1 exp(−E1/T ) +A2 exp(+E2/T ) , (S2)

where E1 > 0 and E2 < 0.

Now let us denote by t, the temperature in Celsius, t = T − 273.15. Importantly, within the bacterial temperature
growth range (10-36 °C) in the Arrhenius equation Eq. (S2), t is quite small respect to b = 273.15, the absolute
(Kelvin) temperature corresponding to 0 °C in T = 273.15 + t. The two exponents in Eq. (S2) can be approximated
now as,

k = A exp

(
− E

b+ t

)
= A exp

(
− E

b(1 + t/b)

)
≈ A exp

[
−E

b

(
1− t

b

)]
= A exp

(
−E

b

)
exp

(
E

b2
t

)
≈

A exp

[
−E

b

](
1 +

E

b2
t

)
= A exp

(
−E

b

)
+A

E

b2
exp

(
−E

b

)
t = B + Ct ,

(S3)

where we assume that t/b = t/273.15 ≪ 1 and (Et/(b2) = (Et)/(273.152) ≪ 1, whereas B and C are constants. In
particular, C > 0 if E > 0 fits the region before the maximum in which the growth rate increases, while C < 0 if
E < 0 fits the region after the maximum where k decreases. The positive/negative sign stems from the coefficient of
the linear term in t, E/b2.
Each exponential in Eq. (S2) can be expressed with a simple straight line, valid in our temperature range. This

approach can be extended by adding more exponential terms in Eq. (S2) to further improve the fit with a multi-
linear dependence between XfPD growth rate and temperature, obtaining a function proportional to XfPD growth rate
F (T ) = C · σ(T ) (see Fig. S3).

Now, this multi-linear fit to the XfPD growth rate can be used to redefine the classical Growing Degree-Days (GDD)
metric into the new Modified Growing Degree Days (MGDD). GDDs are computed as the integral of a particular
function of temperature

GDD(t) =

∫ t

t0

f(T (t))dt (S4)

where f(T ) is defined as

f(T (t)) =

{
T (t)− Tbase if T ≥ Tbase

0 if T < Tbase
(S5)
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Considering different slopes relating XfPD growth rate and temperature at different temperature intervals, as shown
in Fig. S3, we modified this particular function to now account for XfPD growth,

MGDD(t) =

∫ t

t0

F (T (t))dt = C ·
∫ t

t0

σ(T (t))dt (S6)

We wish to stress that the use of a multilinear form to represent MGDDs Fig. S3 stems from the fundamental
temperature dependence of the kinetics of bacterial growth as described by the Arrhenius equation, and is not an
arbitrary simplified representation. Moreover, the MGDD function is fitted using the whole set of data published in
[9], and is not simply based on the knowledge of the cardinal temperatures, as customarily done when writing smooth
interpolating functions with the sole input of the cardinal temperatures (see, e.g., [12]).

B. Relation between MGDD and within-plant bacterial population

The usual growth cycle of bacteria consists of several phases (lag, exponential, stationary and death phase), being
of most interest to environmental microbiologists the interval between the lag and the onset of the stationary phase
[13]. During the exponential phase, the rate of increase of cells is proportional to the number of cells present at any
particular time. Thus, the evolution of the bacterial population, N , over time is given by the following differential
equation,

dN

dt
= σN =⇒ N(t) = N0 · exp(σt) , (S7)

where σ is the specific growth rate constant.

As shown in the previous section, the growth rate of Xf has specific temperature dependence, σ(T ). In our study,
temperature varies over time, so we can write the growth rate as a time-dependent quantity, σ(T (t)). With this, the
evolution of the bacterial population will be given by

N(t) = N0 exp

(∫ tf

t0

σ(T (t))dt

)
. (S8)

Recalling Eq. (S6) we can write the previous equation as

N(t) =
N0

C
· exp(MGDD(t)) = C ′ ·N0 exp(MGDD(t)) (S9)

Indeed, the same can be done considering the logistic differential equation (that includes the stationary phase),

dN

dt
= σ(T (t)) ·N ·

(
1− N

K

)
(S10)

whose solution is

N(t) =
K

1 + C exp
(
−
∫ tf
t0

σ(T (t))
) (S11)

and using Eq. (S6) it can be rewritten as

N(t) =
K

1 + C ′ exp(−MGDD(t))
(S12)

and thereby the bacterial population after a given time t is related to the MGDD by Eq. (S12).

Note: We are assuming a correspondence between in vitro and in planta growth rates of Xf.
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C. Epidemiological and theoretical basis

A standard SIR model was considered as a basis to assess the risk of PD outbreaks worldwide (see Section Supple-
mentary Note 4 for an analytical derivation of the relation between a vector-borne disease model and a standard SIR
model). The model is represented by the following three equations,

Ṡ = −βSI/N

İ = βSI/N − γI

Ṙ = γI ,

(S13)

where S is the susceptible host population, I is the infected population, R is the dead population and the total
population N is conserved, S + I + R = N , as hosts die only when they contract the disease. The transmission of
the disease from infected hosts to susceptible ones is mediated by the transmission rate β while the death of infected
individuals is regulated by the mortality rate γ.
Analysing the non-trivial fixed point, x = (N, 0, 0), it can be proved the existence of an epidemic threshold. As S

is a monotonically decreasing function, which implies S(t) < S0, one can write the following relation,

dI

dt
= I (βS/N − γ) ≤ I (βN/N − γ) = γI (β/γ − 1) = γI (R0 − 1) , (S14)

where R0 = β/γ. Thus, R0 < 1 implies dI/dt < 0 ∀t and I0 > I(t) as t → ∞, basically meaning that the epidemic

dies out, while for R0 > 1, I(t) grows initially until S(tc) = γ/β, at which İ(tc) = 0, and the epidemic starts waning
out. R0 corresponds to the so-called basic reproduction number and measures the number of secondary infections
given by a primary infection in a fully susceptible population.

We wish to model the risk of PD establishment in a susceptible (healthy) population. For this, we characterised
the maximum growth rate of the epidemic, when S(t) ∼ S(0). Thus, the growth is well approximated under these
conditions with the (linearised) differential equation,

dI/dt = βSI − γI ≈ γI(βN/γ − 1) = γI(R0 − 1) . (S15)

where we have assumed the initial conditions, S0 ≈ N , I(0) ≈ 0 and R(0) = 0. This linear differential equation can
be integrated exactly,

I(t) = I(0) exp(γ(R0 − 1)t) . (S16)

As explained in the main text, to account for the effect of temperature in the epidemic process we modify the previous
expression as follows

I(t) = I(0) exp(γ(R0 − 1)t) · F (MGDD(t)) · G ((CDD(t)) = I(0) exp(γ(R0 − 1)t) ·Π(t) , (S17)

where Π(t) = F(MGDD(t)) · G(CDD(t)) is the cumulative probability of chronic infection that depends on temper-
ature.

D. Determination of R0 for Europe

Unlike the validation of our model based on the distribution of PD in the USA, there are no spatiotemporal
data on PD outbreaks available in Europe to estimate R0. One way to solve this problem is to use data on the
incidence of almond leaf scorch disease in Majorca to fit a SIR model and obtain an approximation of R0. The initial
date of introduction and progression of the almond leaf scorch epidemics is well characterised and both diseases are
transmitted by P. spumarius [1, 3]. Using γ = 1/14years−1 as the mortality rate [3], the best fit was provided by
βopt = 0.8, giving rise to R0 = 11.2, which is in good agreement with the order of magnitude of R0 = 8 in the United
States (Fig. S5). To find a proper scenario for PD in Europe, we considered a constant transmission rate βopt

1 and
applied an average mortality rate γ ∼ 1/5years−1 of PD infected vines [14], which gives rise to R0 = 4. Finally, we
used the information on the climate suitability for the vector in Majorca (≈ 0.8 on average) to determine a baseline
scenario for Europe, R0 = 4/0.8 = 5. Thus we can argue that R0 = 5 is a good proxy for modelling the establishment
of PD in Europe. The use of R0 = 5 is furthermore corroborated by the reasonability of the predictions obtained.

1 As the vector that transmits both ALSD and PD is the same (Philaenus spumarius) we considered that the transmission rate should
not vary much.
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E. Simulation details

To assess the risk of Xf establishment in vineyards, we performed spatiotemporal simulations for the world’s largest
wine-growing areas. The cell size of the abstract grid was determined by the resolution of the data collected from
ERA5-Land, 0.1 °×0.1 °, so the spatial resolution is approximately 9 km in the latitudes of the Mediterranean basin.
A small initial infected-plant population was introduced annually into each cell assuming that if the conditions are
or become favourable the disease will propagate locally. We chose Ii(0) = 1 to re-scale the results to any initial
population size, and implemented Eq. (S17) in each cell. Simulation time was discretised in years and computed
in two steps incorporating summer (F (MGDD)) and winter (F ′(CDD)) periods. To implement Eq. (S17) we took
into account that the MGDD and CDD differ at each time step; thereby it required to convert Eq. (S16) into a
mathematical map. The equation can be expressed as,

I(t) = I(0) exp(γ(R0 − 1)t) = I(0) [exp(γ(R0 − 1))]
t
, (S18)

where t is the discrete-time in years, so that

I(t− 1) = I(0) [exp(γ(R0 − 1))]
t−1

, (S19)

and, thus,

I(t) = I(t− 1) exp(γ(R0 − 1)) . (S20)

The discretized form of Eq. (S17) is then

I(ti) = I(ti−1) exp(γ(R0 − 1)) · F (MGDD(ti)) · F ′(CDD(ti)) . (S21)

A risk index was created to represent the relative velocity of PD local exponential propagation,

r(τ) = max

{
log(I(τ)/I(0))

γ(R0 − 1)τ
,−1

}
, (S22)

where τ is the simulated time, R0 is the basic reproduction number and I(0) the initial condition (initial number
of infected plants). The index ranges from -1 to 1 as the maximum risk value always occurs under optimal climatic
conditions (F (MGDD) = F (CDD) = 1) and thus I(τ) = I(0) exp((R0 − 1)τ). The minimum risk was intentionally
cut off at -1 to use a symmetric scale, as otherwise, the logarithmic scale is unbounded.

The numerator of the risk index defined in Eq. (S22) is formally similar to the definition of Lyapunov exponents
(LEs), which characterise predictability in chaotic systems (the denominator normalises this quantity to its maximum
value). This is not surprising because both the risk of Eq. (S22) and the growth of perturbations in chaotic systems
correspond to an exponential process. Following this analogy, we would expect a growing exponential process in the
risk of the establishment if r > 0, while a decreasing exponential that goes to 0 would denote no risk if r < 0. However,
Lyapunov exponents are (normally) calculated for autonomous (i.e. unforced, and so steady) dynamical systems, while
Eq. (S21) has 2 forcing terms (i.e. is non-autonomous). The result is a non-exponential behaviour found when |r|
is small. So beyond the expected regions with growing exponential and decreasing exponential behaviour, we find a
transition zone, where the system is oscillatory and not exponential, as neither growth in more auspicious years for
XfPD or decrease in less auspicious ones prevails, and neither of the growing or decreasing pure exponential behaviours
manifests.

We define the borderlines of this transition region by I(τ) ≤ 10 ·I(0) in the southern boundary and I(τ) ≥ 0.05 ·I(0)
in the northern one when τ = 40 years. Basically, for the upper boundary, we assume that if an initial infection
is multiplied by 10 after 40 years, then the exponential growth would be unstoppable. Conversely, if an initial
introduction of infected individuals decays more than 95% of its original value after 40 years, we then assume that
the exponential decay would continue and clearly PD cannot be established. Since τ, γ are fixed, the limits of the
transition zones depend on R0 and it is given by the risk index instead of the number of infected plants as follows,

Upper limit: rmax
trans =

log(10)

γ (R0 − 1) τ

Lower limit: rmin
trans =

log(0.05)

γ (R0 − 1) τ

. (S23)

For instance, with γ = 0.2 years−1, τ = 39 years and R0 = 5 (values used for Europe) the transition zones are
delimited by −0.09 < r(τ) < 0.075. So, the model outputs can be associated with the following behaviours:
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1. Epidemic-risk zones: r(τ) > rmax
trans. The risk index rj(τ) is ranked as high (rj(τ) > 0.9), moderate (0.9-0.66),

low (0.66-0.33) and very low (0.33-rmax
trans).

2. Transition-risk zones: rmin
trans < r(τ) < rmax

trans. In this zone the incidence, I(t), predicted by the model does not
grow clearly, but neither it does disappear, and incidence oscillates. This region is expected to be very sensitive
to changes induced by climate change, and transit to epidemic-risk zones with low growth rates.

3. Non-risk zone: r(τ) < rmin
trans. Incidence decrease exponentially due to the combined effect of the MGDD and

CDD, or to the (low) vector abundance in the case of predictions for Europe. Cells in this region with rj not
far from −0.1 could become transitional due to the effect of climate change.

F. Vector distribution influence

Information on the climatic suitability of the vector P. spumarius [15] was used to modulate the value of the basic
reproduction number. We assumed a linear dependence of β, the transmission rate, with the vector climatic suitability
resulting in each of the model cells,

R0(x) =
βv(x)

γ
= R0 · v(x) , (S24)

where x illustrates the space dependence.
In Section Supplementary Note 4 we show an analytical derivation of the linear dependence between R0 and the

vector population (i.e. the number of vectors). Then, assuming that climatic suitability (i.e. probability of presence)
is directly related to the number of vectors we obtain the linear scaling between R0 and climatic suitability for vectors.

Supplementary Note 3. FUTURE RISK EXTRAPOLATION

To project PD risk in a climate change scenario, historical CDD and MGDD data were calculated to generate
annual time series for each location recorded in the data set. To obtain the time trend of the variables in each pixel, a
linear model was fitted using Sklearn’s LinearRegression module in Python [16]. The interannual climatic variability
was also included as a Gaussian noise distribution by calculating the mean and fluctuations of the variance around the
trend of the MGDD and CDD metrics for any record in the data set. We show in Fig. S10 the determination of the
trend of the metrics MGDD and CDD for Lecce and Bordeaux. Fig. S11 shows three realisations to extrapolate the
MGDD and CDD metrics for Bordeaux after applying Gaussian noise to the trend. This risk extrapolation to 2050
implies a linear extrapolation of past MGDD and CDD tendencies. Note that because MGDD and CDD functions
are nonlinear this is just a rough approximation to the future risk, as non-linearities could play a major role in a
climate change scenario.

Supplementary Note 4. SIR MODEL AND R0 LINEAR SCALING WITH VECTOR POPULATION
FROM A VECTOR-BORNE DISEASE MODEL

We show how a linear scaling between the vector population and the basic reproduction number can be obtained
from a vector-borne disease model. Moreover, a SIR model can be derived from the same vector-borne disease model
(under some assumptions).

In a model defined according to the following processes,

SH + IV
β→ IH + IV IH

γ→ RH SV + IH
α→ IV + IH SV

µ→ ∅ IV
µ→ ∅ , (S25)

where the birth of new susceptible vectors is described as a source term, the host-vector compartmental model can
be written as,

ṠH = −βSHIv/NH

İH = βSHIv/NH − γIH

ṘH = γIH

Ṡv = δC − αSvIH/NH − µSv

İv = αSvIH/NH − µIv ,

(S26)
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when a standard incidence [17] is considered.
The model describes the infection of susceptible hosts (SH) at a rate β through their interaction with infected

vectors (Iv), while susceptible vectors (Sv) are infected at a rate α through their interaction with infected hosts (IH).
Infected hosts exit the infected compartment at a rate γ, while infected vectors stay infected for the rest of their
life since they are not affected by the pathogen. The model assumes that vectors die naturally (or disappear from
the population by some mechanism) at a rate µ and are born (appear) at a constant rate δ, being susceptible. The
constant term C sets the scale of the stationary value of the vector population.

A. Linear scaling of R0 with vector population

The standard methods of calculation of R0 are based on the linear stability analysis of the disease-free equilib-
rium, either directly, through the linear analysis of the fixed point that yields the stability condition from which
R0 can be obtained, or using the Next Generation Method (NGM) [18] that provides directly R0 by solving a suit-
able linear problem. The disease-free equilibrium of the model (the fixed point) is given by IH = Iv = 0 yielding

Ṡv = 0 =⇒ Sv = δC/µ = N∗
v , where N∗

v is the stationary value of the vector population.

As shown in [19], both methods yield the following relation for the basic reproduction number,

R0 =
βα

γµ

C

NH

δ

µ

SH(0)

NH
=

βα

γµ

N∗
v

NH

SH(0)

NH
, (S27)

in which the basic reproduction number scales linearly with the vector population.

B. Reduction to a SIR model

In a time-scale where the vector population changes faster than the host population (a good approximation for
XfPD-related diseases), the former will almost instantaneously reach the stationary value. Thus, if 1/µ ≪ 1/γ, or
equivalently if µ ≫ γ, we can rewrite the time derivative of the vector infected population as

ϵİv =
α

µ
Sv

IH
NH

− Iv , (S28)

with ϵ = 1/µ being a small parameter. Then, İv can be neglected and the infected vector population can be obtained
from the relationship,

Iv ≈ α

µ

SvIH
NH

. (S29)

Furthermore, if λNH ≫ IH (which is indeed plausible in this limit) the model can be written as a SIR model with
constant coefficients,

ṠH = −βeff
SHIH
NH

İH = βeff
SHIH
NH

− γIH

ṘH = γIH ,

(S30)

where βeff =
β′

λ
=

βαN∗
v

µNH
.

Note that in the SIR model reduction, the effective βeff coefficient depends linearly on the vector population N∗
v .
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FIGURES
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FIG. S1. Factors influencing Xf-Philaenus spumarius-Vitis vinifera pathosystem.(a) Virulence differences between
Xf subsp. fastidiosa isolates on grapevines. Bars represent the mean number of symptomatic infected leaves four months after
inoculating. Both isolates XYL2055/17 (n= 316 inoculated plants) and XYL2177/18 (n= 260) were collected from vineyards on
Majorca. Scores were pooled among the 21 varieties inoculated;(b)conceptual graph of the population dynamics of P. spumarius
on vineyards in Majorca and the effect on winter curing. Blue: density function of P. spumarius; red line: proportion of P.
spumarius carrying Xf; blue line: proportion of plants recovering according to the time they are infected;(c) bimodal density
function of the number of symptomatic leaves. The blue dash line marks 5 symptomatic leaves; and (d)correlation between the
upward and downward movement of XfPD within the canes from the inoculation point. Each point depicts the mean distance
travelled in both directions by the bacteria.
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FIG. S2. Experimental setup. Greenhouse facilities and general view of its interior and the arrangement of the vine plants.
The metallic structure is covered with an anti-thrips mesh.
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FIG. S3. Relationship between MGDD and temperature. Contribution to the MGDD resulting from the fitting to the
data in (1). The original Arrhenius plot, log k vs. 1/T in kelvin was converted to a linear dependence in Celsius temperature t
(cf. Eq. (S3))

.
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FIG. S4. Trends in the risk-epidemic zones during the 1981-2019 period (A) and the areas encompassed below
the CDD < 314 line (B) comprising land areas between 103oW and 70oW of the United States

.
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FIG. S5. ROC curve illustrating the model validation procedure with spatiotemporal data from PD distribution
in the US. TPR is the true positive rate and FPR the false positive rate. The model accuracy reaches its optimum in R0 ≈ 8
by maximising the true positive rate and minimising the false positive rate. The spatiotemporal PD distribution in the US was
obtained from data collected from publications between 2001 and 2015.
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FIG. S6. Fitting a SIR model to the progress of the almond leaf scorch disease in the Balearic Islands from
1993 onward. The best match was obtained with R0 = 11.2. Points represent an estimate of the proportion of infected trees
(incidence) from dendrochronological analysis and detection of Xf DNA in growth rings by qPCR. The incidence of ALSD in
2012 and 2017 was independently validated by field and Google Map Street View image observations.

.
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FIG. S7. Model validation for an R0 = 8 scenario with presence/absence data (black/white stars) of PD in the
United States. Panel (A) corresponds to data from California in 2015 while the other panels show data from 2002, 2005, 2006
and 2001 (respectively) in the east of the United States. The last panel clarifies the validation zones previously mentioned.
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FIG. S8. Average climatic suitability for Philaenus spumarius in Europe. The map shows the climatic suitability of
the vector estimated from a generalized additive model of insect distribution and the correlation of two bioclimatic descriptors,
a climatic humidity index for the period of 8 coldest months of the year and the average maximum temperature in spring.
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FIG. S9. Trends in MGDD (A) and CDD (B) values and oscillations during 1981-2019 for seven wine regions
with different climates from Europe and the US. MGDDs show a slight upward trend and lesser oscillations than the
CDDs.
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FIG. S10. Determination of MGDD and CDD metric trends and future projections for two different European
regions. The MGDD (A) and CDD (B) trends show steeper slopes in the temperate climate of Bordeaux than in the
Mediterranean climate of Lecce.
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FIG. S11. Interannual climatic variability extrapolations of MGDD (A) and CDD (B) for Bordeaux. A linear
model was fitted using Sklearn’s LinearRegression module in Python and the interannual climatic variability was included as
a Gaussian noise distribution by calculating the mean and fluctuations of the variance around MGDD and CDD trends.
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FIG. S12. Risk index computed with (A) MGDD from the Arrhenius-based fit and (B) MGDD from the beta function fit.
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FIG. S13. Difference in risk index when computed using MGDD calculated from the Arrhenius-based fit or the beta function
fit.
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TABLES

TABLE S1: Summary of the inoculation tests on grapevine varieties ranked from most to less susceptible in
the disease index. Thirty-six local, regional and international varieties were screened in combination with eight rootstocks.
The number of symptomatic leaves was counted 16 weeks after inoculation and infections were confirmed by qPCR. DI: disease
index; AUDCP: area under the disease progress curve.

Scion Rootstock Nº leaves DI AUDCP % Positive Year
Gorgollassa R110 24.5 ± 8.8 5.00 31.29 100 2018
Sauvignon Blanc R110 16.5 ± 3.3 5.00 28.37 100 2018
Tempranillo SO4 15.7 ± 4.0 5.00 37.22 100 2019
Garnacha tintorera R110 19.0 ± 7.4 5.00 32.17 94.44 2019
Tempranillo 41B 13.8 ± 2.7 4.89 13.43 0.00 2020
Syrah R140 13.6 ±3.0 4.86 29.46 98.21 2019
Tempranillo Blanco R110 16.0 ± 4.9 4.83 41.61 94.44 2019
Chardonnay R110 16.6 ± 5.6 4.83 26.39 94.44 was019
Bobal R110 15.2 ± 6.8 4.78 25.44 94.44 2019
Prensal 161/49 15.7 ± 5.0 4.75 21.37 100 2018
Viura SO4 16.7 ± 4.7 4.75 26.25 100 2018
Garnacha tintorera P1103 15.8 ± 6.8 4.72 35.94 94.44 2019
Graciano R140 14.3 ± 5.6 4.61 22.44 88.89 2019
Airen R110 15.2 ± 5.9 4.61 23.06 94.44 2019
Mandó R110 11 ± 3.6 4.56 21.22 100 2018
Tempranillo R110 RJ43 11.9 ± 3.0 4.56 31.17 100 2019
Tempranillo R110 RJ78 11.7 ± 3.8 4.50 34.33 94.44 2019
Tempranillo 41B 12.4 ± 4.7 4.44 26.06 61.11 2019
Garnacha R110 11.1 ± 3.4 4.44 25.00 83.33 2019
Viura P1103 20.3 ± 8.4 4.37 25.875 87.5 2018
Malvasia R110 13.8 ± 6.5 4.33 26.71 71.73 2019
Tempranillo R110 RJ43 12.2 ± 5.9 4.33 24.23 88.89 2020
Pedro Ximenez R140 10.0 ± 4.33 4.33 16.87 0.00 2020
Hondarrabi Beltza 196-17 11.2 ± 4.6 4.22 19.90 87.5 2019
Tempranillo P1103 12.7 ± 6.3 4.17 30.62 62.5 2018
Albariño R110 9.5 ± 4.3 4.06 24.50 66.67 2019
Garnacha tintorera P1103 13.1 ± 8.0 4.0 16.85 88.89 2020
Tempranillo R110 11.7 ± 7.0 3.94 26.72 77.78 2019
Merlot R110 16.4 ± 13.1 3.75 24.87 75 2018
Manto Negro R110 11.9 ± 3.1 3.75 16.37 2018
Macabeo (Viura) R110 13.0 ±9.6 3.72 19.54 70.83 2019
Pinot Noir R110 10.3 ± 7.1 3.67 13.42 44.44 2020
Tempranillo Blanco R110 11.2 ± 8.4 3.56 17.31 55.56 2020
Syrah R110 9.0 ± 5.6 3.50 12.37 100 2018
Verdejo R110 9.5 ± 6.6 3.50 13.89 72.22 2019
Airen R110 8.7 ± 5.3 3.44 15.98 2020
Monastrell R110 12.3 ± 8.8 3.39 20.33 67.78 2019
Mencia R110 12.4 ± 9.8 3.39 18.28 61.11 2019
Cabernet R110 8.2 ± 6.0 3.33 11.56 72.22 2019
Tempranillo SO4 8.0 ± 4.9 3.33 20.44 44.44 2020
Garnacha tintorera R110 9.2 ± 7.6 3.33 15.68 55.56 2020
Chardonnay R110 7.0 ± 3.6 3.33 8.45 66.67 2020
Viura R140 10.5 ± 10.0 3.20 14.10 70 2018
Pedro Ximénez R110 7.5 ± 4.9 3.17 12.67 66.67 2019
Garnacha R110 9.2 ± 8.2 3.11 16.77 33.33 2020
Pinot Noir R110 8.4 ± 5.0 3.00 11.28 61.11 2019
Cabernet Sauvignon R110 6.6 ± 4.5 2.89 7.22 77.78 2020
Syrah R140 12.2 ± 10.0 2.89 15.44 55.56 2018
Hondarrabi zuri SO4 6.9 ± 6.3 2.78 12.78 61.11 2019
Chardonnay R110 8.4 ± 6.1 2.62 13.50 75 2018
Graciano R140 6.7 ± 5.7 2.56 8.12 55.56 2020
Tempranillo R140 8.1 ± 8.8 2.50 19.50 50 2018
Tempranillo R110 RJ78 5.3 ± 5.2 2.44 11.88 55.56 2020
Prensal R110 5.4 ± 5.5 2.37 9.25 2018
Tempranillo SO4 9.7 ± 11.2 2.37 11.87 50 2018
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Giró Ros 161/49 6.1 ± 7.6 2.29 7.71 2018
Giró Negre R110 5.2 ± 5.7 2.25 8.87 62.5 2018
Viognier R110 4.7 ± 5.0 2.25 6.50 75 2018
Callet R110 7.9 ± 9.8 2.25 8.87 37.5 2018
Tempranillo R110 3.9 ± 3.6 2.11 9.22 0.00 2020
Hondarrabi beltza 196-17 3.1 ± 1.8 1.89 5.89 11.11 2020
Tempranillo R110 4.0 ± 4.9 1.75 7.62 25 2018
Argamussa R110 3.2 ± 4.5 1.62 4.25 2018
Tempranillo 41B 5.6 ± 11.1 1.25 7.37 25 2018
Albariño R110 2.1 ± 2.1 1.22 5.23 33.33 2020
Vinater Blanc R110 2.0 ± 3.5 1.00 3.75 25 2018
Hondarrabi zuri SO4 1.6 ± 1.3 1 5.78 0.00 2020
Cabernet R110 2.9 ± 6.7 0.87 3.00 25 2018
Syrah 41B 1.7 ± 3.9 0.87 3.75 12.5 2018
Esperó de Gall R110 4.0 ± 10.9 0.75 4.62 12.5 2018
Sauvignon Blanc SO4 0.5 ± 0.5 0.50 2.50 0 2018
Giró Ros R110 0.6 ± 1.9 0.37 1.50 0 2018
Mancés R110 0.4 ± 0.7 0.25 1.25 2018
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TABLE S2: PD risk areas in Europe after running the model under a R0 = 5 scenario and a homogeneous spatial
vector distribution. The epidemic-risk zones are classified according to the relative disease growth rates defined by the risk
index, as very low, low, moderate and high growth rates. The total risk refers to the sum of the epidemic-risk zones

Country
No risk
(km2)

Transition
(km2)

Very low
(km2)

Low
(km²)

Moderate
(km2)

High
(km²)

Total risk
(km2)

Total surf.
(km2)

Risk
(%)

Russia 4218776.2 15657.4 1698.2 0.0 0.0 0.0 1698.2 4236131.7 0.0
Norway 325425.8 0.0 0.0 0.0 0.0 0.0 0.0 325425.8 0.0
France 450678.5 36199.6 40474.0 8328.0 7015.8 1632.9 57450.7 544328.8 10.6
Sweden 441708.8 0.0 0.0 0.0 0.0 0.0 0.0 441708.8 0.0
Belarus 207565.9 0.0 0.0 0.0 0.0 0.0 0.0 207565.9 0.0
Ukraine 568981.5 0.0 0.0 0.0 0.0 0.0 0.0 568981.5 0.0
Poland 311522.7 0.0 0.0 0.0 0.0 0.0 0.0 311522.7 0.0
Austria 83265.0 0.0 0.0 0.0 0.0 0.0 0.0 83265.0 0.0
Hungary 92310.6 0.0 0.0 0.0 0.0 0.0 0.0 92310.6 0.0
Moldova 32139.5 0.0 0.0 0.0 0.0 0.0 0.0 32139.5 0.0
Romania 233239.3 1931.3 0.0 0.0 0.0 0.0 0.0 235170.6 0.0
Lithuania 64627.5 0.0 0.0 0.0 0.0 0.0 0.0 64627.5 0.0
Latvia 64206.0 0.0 0.0 0.0 0.0 0.0 0.0 64206.0 0.0
Estonia 45484.5 0.0 0.0 0.0 0.0 0.0 0.0 45484.5 0.0
Germany 354502.2 0.0 0.0 0.0 0.0 0.0 0.0 354502.2 0.0
Bulgaria 101668.8 8931.7 1277.8 0.0 0.0 0.0 1277.8 111878.3 1.1
Greece 37695.7 17152.2 17587.4 10467.4 14551.7 32116.9 74723.4 129571.2 57.7
Albania 18895.5 2417.9 2422.0 2045.2 2235.5 2142.2 8844.9 30158.3 29.3
Croatia 45699.9 2126.4 3268.6 1675.6 1059.9 270.0 6274.1 54100.3 11.6
Switzerland 46218.7 0.0 0.0 0.0 0.0 0.0 0.0 46218.7 0.0
Luxembourg 2705.7 0.0 0.0 0.0 0.0 0.0 0.0 2705.7 0.0
Belgium 30473.9 0.0 0.0 0.0 0.0 0.0 0.0 30473.9 0.0
Netherlands 36858.5 0.0 0.0 0.0 0.0 0.0 0.0 36858.5 0.0
Portugal 14211.9 14208.9 13810.1 5606.1 24768.7 15835.4 60020.2 88441.0 67.9
Spain 204150.9 41606.9 51545.3 53202.4 68116.9 85165.1 258029.7 503787.5 51.2
Ireland 68233.5 0.0 0.0 0.0 0.0 0.0 0.0 68233.5 0.0
Italy 112614.5 39537.2 46508.2 22088.7 30406.2 48759.8 147762.9 299914.6 49.3
Denmark 42273.9 0.0 0.0 0.0 0.0 0.0 0.0 42273.9 0.0
United Kingdom 242926.1 0.0 0.0 0.0 0.0 0.0 0.0 242926.1 0.0
Iceland 106696.1 0.0 0.0 0.0 0.0 0.0 0.0 106696.1 0.0
Slovenia 20237.3 258.0 86.4 0.0 0.0 0.0 86.4 20581.6 0.4
Finland 329375.9 0.0 0.0 0.0 0.0 0.0 0.0 329375.9 0.0
Slovakia 48140.8 0.0 0.0 0.0 0.0 0.0 0.0 48140.8 0.0
Czechia 80827.3 0.0 0.0 0.0 0.0 0.0 0.0 80827.3 0.0
Bosnia and Herz. 49554.0 449.7 0.0 0.0 0.0 0.0 0.0 50003.7 0.0
Macedonia 22838.2 2031.8 92.7 0.0 0.0 0.0 92.7 24962.7 0.4
Serbia 75992.9 0.0 0.0 0.0 0.0 0.0 0.0 75992.9 0.0
Montenegro 11374.8 363.7 455.1 729.9 365.7 0.0 1550.7 13289.1 11.7
Kosovo 11159.8 0.0 0.0 0.0 0.0 0.0 0.0 11159.8 0.0
Cyprus 404.2 0.0 0.0 0.0 101.1 4849.4 4950.5 5354.7 92.5
Czech Republic 78515.7 0.0 0.0 0.0 0.0 0.0 0.0 78515.7 0.0
Malta 0.0 0.0 0.0 0.0 0.0 199.6 199.6 199.6 100.0
TOTAL (%) 92.1 1.8 1.8 1.0 1.5 1.9 6.1
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TABLE S3: PD risk areas in the United States after running the model under a R0 = 8 scenario and using a
homogeneous spatial vector distribution. The epidemic-risk zones are classified according to the relative disease growth
rates defined by the risk index, as very low, low, moderate and high growth rates. The total risk refers to the sum of the
epidemic-risk zones

State
No risk
(km2)

Transition
(km2)

Very low
(km2)

Low
(km2)

Moderate
(km2)

High
(km2)

Total risk
(km2)

Total surf.
(km2)

High Risk
(%)

Maine 84556.5 0.0 0.0 0.0 0.0 0.0 0.0 84556.5 0.0
Massachusetts 20786.1 0.0 0.0 0.0 0.0 0.0 0.0 20786.1 0.0
Michigan 150179.3 0.0 0.0 0.0 0.0 0.0 0.0 150179.3 0.0
Montana 374475.7 0.0 0.0 0.0 0.0 0.0 0.0 374475.7 0.0
Nevada 239109.2 10675.3 7185.7 6918.9 10316.1 7978.1 32398.8 282183.3 2.8
New Jersey 15959.2 3802.3 286.4 0.0 0.0 0.0 286.4 20047.9 0.0
New York 127539.0 0.0 0.0 0.0 0.0 0.0 0.0 127539.0 0.0
North Carolina 15610.8 5709.3 16350.4 43864.7 40185.4 7502.2 107902.7 129222.9 5.8
Ohio 107590.9 0.0 0.0 0.0 0.0 0.0 0.0 107590.9 0.0
Pennsylvania 114772.4 0.0 0.0 0.0 0.0 0.0 0.0 114772.4 0.0
Rhode Island 2668.1 0.0 0.0 0.0 0.0 0.0 0.0 2668.1 0.0
Tennessee 3381.8 12419.7 65922.2 28656.9 0.0 0.0 94579.1 110380.6 0.0
Texas 3902.5 33646.7 35766.7 52625.6 196753.6 361569.4 646715.3 684264.5 52.8
Utah 211955.9 3627.2 1177.9 294.9 0.0 0.0 1472.9 217055.9 0.0
Washington 175209.0 171.5 0.0 0.0 0.0 0.0 0.0 175380.5 0.0
Wisconsin 144203.8 0.0 0.0 0.0 0.0 0.0 0.0 144203.8 0.0
Puerto Rico 1404.8 0.0 0.0 0.0 0.0 7724.3 7724.3 9129.1 84.6
Maryland 14568.2 5458.2 7044.3 291.0 0.0 0.0 7335.3 27361.8 0.0
Alabama 318.7 0.0 0.0 22524.9 41945.8 69646.2 134116.8 134435.5 51.8
Alaska 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Arizona 89575.0 35856.7 16806.9 16919.7 37585.5 98303.0 169615.1 295046.9 33.3
Arkansas 0.0 8360.6 32714.2 46834.2 45982.8 0.0 125531.1 133891.7 0.0
California 130849.5 16184.8 22280.4 24793.2 61482.8 153642.1 262198.5 409232.7 37.5
Colorado 271791.7 0.0 0.0 0.0 0.0 0.0 0.0 271791.7 0.0
Connecticut 13262.1 0.0 0.0 0.0 0.0 0.0 0.0 13262.1 0.0
Delaware 950.0 2104.5 2308.4 0.0 0.0 0.0 2308.4 5362.9 0.0
District of Columbia 0.0 95.9 0.0 0.0 0.0 0.0 0.0 95.9 0.0
Florida 7163.0 0.0 0.0 0.0 0.0 142674.1 142674.1 149837.0 95.2
Georgia 525.5 202.1 3743.7 12387.4 35802.7 98902.3 150836.1 151563.7 65.3
Hawaii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Idaho 217685.6 0.0 0.0 0.0 0.0 0.0 0.0 217685.6 0.0
Illinois 136793.2 7722.9 0.0 0.0 0.0 0.0 0.0 144516.1 0.0
Indiana 91742.6 680.6 0.0 0.0 0.0 0.0 0.0 92423.1 0.0
Iowa 146768.4 0.0 0.0 0.0 0.0 0.0 0.0 146768.4 0.0
Kansas 202913.0 14336.5 0.0 0.0 0.0 0.0 0.0 217249.5 0.0
Kentucky 34786.1 58906.9 10265.3 0.0 0.0 0.0 10265.3 103958.3 0.0
Louisiana 6742.9 0.0 0.0 0.0 7966.1 108206.6 116172.7 122915.6 88.0
Minnesota 216457.3 0.0 0.0 0.0 0.0 0.0 0.0 216457.3 0.0
Mississippi 425.4 0.0 0.0 15007.2 54227.2 52624.1 121858.4 122283.8 43.0
Missouri 137772.8 36249.4 7829.0 0.0 0.0 0.0 7829.0 181851.2 0.0
Nebraska 194010.3 0.0 0.0 0.0 0.0 0.0 0.0 194010.3 0.0
New Hampshire 23784.7 0.0 0.0 0.0 0.0 0.0 0.0 23784.7 0.0
New Mexico 157196.9 31788.4 41306.7 41030.4 39489.5 0.0 121826.6 310812.0 0.0
North Dakota 180238.7 0.0 0.0 0.0 0.0 0.0 0.0 180238.7 0.0
Oklahoma 5031.2 45640.5 55077.9 58037.9 15414.7 0.0 128530.5 179202.2 0.0
Oregon 250298.0 601.0 0.0 0.0 0.0 0.0 0.0 250898.9 0.0
South Carolina 621.0 0.0 504.1 6161.4 38977.1 34104.7 79747.3 80368.3 42.4
South Dakota 200669.1 0.0 0.0 0.0 0.0 0.0 0.0 200669.1 0.0
Vermont 25033.8 0.0 0.0 0.0 0.0 0.0 0.0 25033.8 0.0
Virginia 44241.9 16964.7 28695.0 14762.2 787.6 0.0 44244.8 105451.4 0.0
West Virginia 62442.7 388.6 0.0 0.0 0.0 0.0 0.0 62831.4 0.0
Wyoming 252512.5 0.0 0.0 0.0 0.0 0.0 0.0 252512.5 0.0
TOTAl (%) 63.1 4.5 4.6 5.0 8.1 14.7 32.4
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TABLE S4: Potential distribution of PD in other world winegrowing regions. In most areas of China and Australia
Vitis vinifera is not cultivated and epidemic-risk zones with high growth rate correspond mainly to tropical areas in China,
Australia, South Africa and Argentina

Country
No risk
(km2)

Transition
(km2)

Very low
(km2)

Low
(km2)

Moderate
(km2)

High
(km2)

Total risk
(km2)

Total surf.
(km2)

China 6,775,583.3 310,343.4 210,930.5 344,733.5 412,623.0 992,222.9 1,960,509.9 9,046,436.6
Australia 504,652.3 304,843.1 441,018.7 1,326,213.9 2,723,453.3 2,375,828.0 6,866,513.9 7,676,009.3
South Africa 216,593.4 183,726.3 119,839.8 152,000.0 279,105.5 264,223.2 815,168.6 1,215,488.2
Argentina 992,376.1 147,879.8 94,103.6 219,457.6 373,916.3 946,469.6 1,633,947.1 2,774,202.9
Chile 703,655.9 56,582.7 21,095.3 20,039.7 8,831.6 912.9 50,879.5 811,118.1
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TABLE S5: Predicted PD risk areas for the US in 2050 considering a R0 = 8 scenario and a homogeneous spatial
vector distribution.The epidemic-risk zones are classified according to the relative disease growth rates defined by the risk
index, as very low, low, moderate and high growth rates. The total risk refers to the sum of the epidemic-risk zones

State
No risk
(km2)

Transition
(km2)

Very low
(km2)

Low
(km2)

Moderate
(km2)

High
(km2)

Total risk
(km2)

Total surf.
(km2)

High Risk
(%)

Maine 84556.5 0.0 0.0 0.0 0.0 0.0 0.0 84556.5 0.00
Massachusetts 20786.1 0.0 0.0 0.0 0.0 0.0 0.0 20786.1 0.00
Michigan 150179.3 0.0 0.0 0.0 0.0 0.0 0.0 150179.3 0.00
Montana 374475.7 0.0 0.0 0.0 0.0 0.0 0.0 374475.7 0.00
Nevada 230224.5 12349.0 8292.8 7785.0 10192.0 13339.9 39609.8 282183.3 4.73
New Jersey 10757.6 7004.1 2286.2 0.0 0.0 0.0 2286.2 20047.9 0.00
New York 126420.4 1118.7 0.0 0.0 0.0 0.0 0.0 127539.0 0.00
North Carolina 10300.2 4402.8 8608.6 28108.0 65840.0 11963.4 114520.0 129222.9 9.26
Ohio 107301.6 289.3 0.0 0.0 0.0 0.0 0.0 107590.9 0.00
Pennsylvania 114677.9 94.5 0.0 0.0 0.0 0.0 0.0 114772.4 0.00
Rhode Island 2668.1 0.0 0.0 0.0 0.0 0.0 0.0 2668.1 0.00
Tennessee 2287.5 1094.3 23757.5 79714.6 3526.7 0.0 106998.8 110380.6 0.00
Texas 2712.5 0.0 52099.2 46607.7 162037.0 420808.2 681552.0 684264.5 61.50
Utah 210192.6 2645.6 3333.5 785.8 98.4 0.0 4217.7 217055.9 0.00
Washington 165773.8 8239.3 1367.4 0.0 0.0 0.0 1367.4 175380.5 0.00
Wisconsin 144203.8 0.0 0.0 0.0 0.0 0.0 0.0 144203.8 0.00
Puerto Rico 1404.8 0.0 0.0 0.0 0.0 7724.3 7724.3 9129.1 84.61
Maryland 11612.4 4005.1 8649.1 3095.1 0.0 0.0 11744.2 27361.8 0.00
Alabama 318.7 0.0 0.0 3640.8 44508.9 85967.1 134116.8 134435.5 63.95
Alaska 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
Arizona 75250.5 27661.4 25822.3 14381.2 26927.3 125004.2 192135.0 295046.9 42.37
Arkansas 0.0 0.0 17518.8 41463.7 55669.6 19239.6 133891.7 133891.7 14.37
California 123859.6 9565.1 17917.7 21731.4 40312.5 195846.4 275808.0 409232.7 47.86
Colorado 254538.0 15192.6 2061.1 0.0 0.0 0.0 2061.1 271791.7 0.00
Connecticut 13262.1 0.0 0.0 0.0 0.0 0.0 0.0 13262.1 0.00
Delaware 381.4 854.1 3646.1 481.3 0.0 0.0 4127.4 5362.9 0.00
District of Columbia 0.0 95.9 0.0 0.0 0.0 0.0 0.0 95.9 0.00
Florida 7163.0 0.0 0.0 0.0 0.0 142674.1 142674.1 149837.0 95.22
Georgia 525.5 0.0 1011.1 4960.7 28065.0 117001.4 151038.2 151563.7 77.20
Hawaii 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
Idaho 213207.3 4478.4 0.0 0.0 0.0 0.0 0.0 217685.6 0.00
Illinois 118982.3 18687.9 6845.9 0.0 0.0 0.0 6845.9 144516.1 0.00
Indiana 84089.4 8333.7 0.0 0.0 0.0 0.0 0.0 92423.1 0.00
Iowa 146768.4 0.0 0.0 0.0 0.0 0.0 0.0 146768.4 0.00
Kansas 150938.1 45593.5 20717.9 0.0 0.0 0.0 20717.9 217249.5 0.00
Kentucky 15434.8 35258.9 52177.1 1087.4 0.0 0.0 53264.5 103958.3 0.00
Louisiana 6742.9 0.0 0.0 0.0 0.0 116172.7 116172.7 122915.6 94.51
Minnesota 216457.3 0.0 0.0 0.0 0.0 0.0 0.0 216457.3 0.00
Mississippi 425.4 0.0 0.0 505.3 43071.5 78281.7 121858.4 122283.8 64.02
Missouri 85361.3 56135.2 37967.8 2386.8 0.0 0.0 40354.7 181851.2 0.00
Nebraska 194010.3 0.0 0.0 0.0 0.0 0.0 0.0 194010.3 0.00
New Hampshire 23784.7 0.0 0.0 0.0 0.0 0.0 0.0 23784.7 0.00
New Mexico 136331.4 23902.7 42991.2 44481.8 51305.3 11799.5 150577.8 310812.0 3.80
North Dakota 180238.7 0.0 0.0 0.0 0.0 0.0 0.0 180238.7 0.00
Oklahoma 0.0 591.9 72476.3 69012.7 37121.2 0.0 178610.2 179202.2 0.00
Oregon 246416.5 2593.2 1889.3 0.0 0.0 0.0 1889.3 250898.9 0.00
South Carolina 621.0 0.0 0.0 1008.5 20253.1 58485.6 79747.3 80368.3 72.77
South Dakota 200669.1 0.0 0.0 0.0 0.0 0.0 0.0 200669.1 0.00
Vermont 25033.8 0.0 0.0 0.0 0.0 0.0 0.0 25033.8 0.00
Virginia 34490.9 11887.3 26642.0 30564.0 1867.2 0.0 59073.2 105451.4 0.00
West Virginia 56238.8 6592.6 0.0 0.0 0.0 0.0 0.0 62831.4 0.00
Wyoming 252512.5 0.0 0.0 0.0 0.0 0.0 0.0 252512.5 0.00
TOTAL (%) 59.6 4.0 5.6 5.2 7.6 18.1 36.5
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TABLE S6: Predicted PD risk areas in Europe in 2050 after running the model under a R0 = 5 scenario and a
homogeneous spatial vector distribution. The epidemic-risk zones are classified according to the relative disease growth
rates defined by the risk index, as very low, low, moderate and high growth rates. The total risk refers to the sum of the
epidemic-risk zones

Country
No risk
(km2)

Transition
(km2)

Very low
(km2)

Low
(km2)

Moderate
(km2)

High
(km2)

Total risk
(km2)

Total surf.
(km2)

Risk
(%)

Russia 4137884.7 60049.2 26738.7 10380.6 1078.6 0.0 38197.8 4236131.7 0.009
Norway 325425.8 0.0 0.0 0.0 0.0 0.0 0.0 325425.8 0.000
France 359832.7 62597.8 44497.8 53645.1 12403.9 11351.5 121898.3 544328.8 0.224
Sweden 441708.8 0.0 0.0 0.0 0.0 0.0 0.0 441708.8 0.000
Belarus 207565.9 0.0 0.0 0.0 0.0 0.0 0.0 207565.9 0.000
Ukraine 554548.4 13746.3 686.9 0.0 0.0 0.0 686.9 568981.5 0.001
Poland 311522.7 0.0 0.0 0.0 0.0 0.0 0.0 311522.7 0.000
Austria 81778.5 1486.5 0.0 0.0 0.0 0.0 0.0 83265.0 0.000
Hungary 39573.1 52737.6 0.0 0.0 0.0 0.0 0.0 92310.6 0.000
Moldova 32139.5 0.0 0.0 0.0 0.0 0.0 0.0 32139.5 0.000
Romania 206222.0 26493.7 2193.0 262.0 0.0 0.0 2455.0 235170.6 0.010
Lithuania 64627.5 0.0 0.0 0.0 0.0 0.0 0.0 64627.5 0.000
Latvia 64206.0 0.0 0.0 0.0 0.0 0.0 0.0 64206.0 0.000
Estonia 45484.5 0.0 0.0 0.0 0.0 0.0 0.0 45484.5 0.000
Germany 352649.4 1852.8 0.0 0.0 0.0 0.0 0.0 354502.2 0.000
Bulgaria 79172.5 22404.3 8386.3 1823.8 91.4 0.0 10301.5 111878.3 0.092
Greece 26086.7 9737.9 16221.2 17005.3 16275.7 44244.4 93746.6 129571.2 0.724
Albania 15635.2 2599.8 2987.2 2322.3 2885.1 3728.7 11923.4 30158.3 0.395
Croatia 22617.4 21932.1 2299.4 2657.7 2822.7 1770.9 9550.8 54100.3 0.177
Switzerland 46133.9 84.8 0.0 0.0 0.0 0.0 0.0 46218.7 0.000
Luxembourg 2705.7 0.0 0.0 0.0 0.0 0.0 0.0 2705.7 0.000
Belgium 30473.9 0.0 0.0 0.0 0.0 0.0 0.0 30473.9 0.000
Netherlands 36858.5 0.0 0.0 0.0 0.0 0.0 0.0 36858.5 0.000
Portugal 8015.9 5731.6 10805.1 12859.2 10320.1 40709.0 74693.5 88441.0 0.845
Spain 164633.8 40868.5 37919.6 54271.7 69026.9 137067.0 298285.2 503787.5 0.592
Ireland 68233.5 0.0 0.0 0.0 0.0 0.0 0.0 68233.5 0.000
Italy 83746.9 16519.8 31548.9 51473.6 38878.2 77747.1 199647.8 299914.6 0.666
Denmark 42273.9 0.0 0.0 0.0 0.0 0.0 0.0 42273.9 0.000
United Kingdom 242926.1 0.0 0.0 0.0 0.0 0.0 0.0 242926.1 0.000
Iceland 106696.1 0.0 0.0 0.0 0.0 0.0 0.0 106696.1 0.000
Slovenia 19211.5 596.6 429.2 258.0 86.4 0.0 773.5 20581.6 0.038
Finland 329375.9 0.0 0.0 0.0 0.0 0.0 0.0 329375.9 0.000
Slovakia 45501.4 2639.5 0.0 0.0 0.0 0.0 0.0 48140.8 0.000
Czechia 80827.3 0.0 0.0 0.0 0.0 0.0 0.0 80827.3 0.000
Bosnia and Herz. 44542.6 4741.3 719.9 0.0 0.0 0.0 719.9 50003.7 0.014
Macedonia 17314.7 4234.1 3228.6 185.4 0.0 0.0 3414.0 24962.7 0.137
Serbia 47601.5 28391.5 0.0 0.0 0.0 0.0 0.0 75992.9 0.000
Montenegro 10920.5 181.8 363.5 454.8 911.4 457.1 2186.8 13289.1 0.165
Kosovo 9705.9 1453.9 0.0 0.0 0.0 0.0 0.0 11159.8 0.000
Cyprus 404.2 0.0 0.0 0.0 0.0 4950.5 4950.5 5354.7 0.925
Czech Republic 78515.7 0.0 0.0 0.0 0.0 0.0 0.0 78515.7 0.000
Malta 0.0 0.0 0.0 0.0 0.0 199.6 199.6 199.6 1.000
TOTAL (%) 87.6 3.8 1.9 2.0 1.5 3.2 8.6
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TABLE S7: PD risk areas in Europe after running the model under a R0 = 5 scenario and a spatial heterogeneous
vector distribution (climatic suitability). The epidemic-risk zones are classified according to the relative disease growth
rates defined by the risk index, as very low, low, moderate and high growth rates. The total risk refers to the sum of the
epidemic-risk zones

Country
No risk
(km2)

Transition
(km2)

Very low
(km2)

Low
(km²)

Moderate
(km2)

High
(km²)

Total risk
(km2)

Total surf.
(km2)

Risk (%)

Russia 4232704.4 3071.1 356.2 0.0 0.0 0.0 356.2 4236131.7 0.01
Norway 325425.8 0.0 0.0 0.0 0.0 0.0 0.0 325425.8 0.00
France 465951.2 57913.5 13241.5 6307.1 915.5 0.0 20464.1 544328.8 3.76
Sweden 441708.8 0.0 0.0 0.0 0.0 0.0 0.0 441708.8 0.00
Belarus 207565.9 0.0 0.0 0.0 0.0 0.0 0.0 207565.9 0.00
Ukraine 568981.5 0.0 0.0 0.0 0.0 0.0 0.0 568981.5 0.00
Poland 311522.7 0.0 0.0 0.0 0.0 0.0 0.0 311522.7 0.00
Austria 83265.0 0.0 0.0 0.0 0.0 0.0 0.0 83265.0 0.00
Hungary 92310.6 0.0 0.0 0.0 0.0 0.0 0.0 92310.6 0.00
Moldova 32139.5 0.0 0.0 0.0 0.0 0.0 0.0 32139.5 0.00
Romania 235170.6 0.0 0.0 0.0 0.0 0.0 0.0 235170.6 0.00
Lithuania 64627.5 0.0 0.0 0.0 0.0 0.0 0.0 64627.5 0.00
Latvia 64206.0 0.0 0.0 0.0 0.0 0.0 0.0 64206.0 0.00
Estonia 45484.5 0.0 0.0 0.0 0.0 0.0 0.0 45484.5 0.00
Germany 354502.2 0.0 0.0 0.0 0.0 0.0 0.0 354502.2 0.00
Bulgaria 110786.1 1092.2 0.0 0.0 0.0 0.0 0.0 111878.3 0.00
Greece 54287.5 27613.1 14844.7 17064.6 15761.4 0.0 47670.7 129571.2 36.79
Albania 19731.4 2885.8 2884.8 4561.5 94.8 0.0 7541.1 30158.3 25.01
Croatia 46319.6 2653.4 3094.4 1585.5 447.4 0.0 5127.3 54100.3 9.48
Switzerland 46218.7 0.0 0.0 0.0 0.0 0.0 0.0 46218.7 0.00
Luxembourg 2705.7 0.0 0.0 0.0 0.0 0.0 0.0 2705.7 0.00
Belgium 30473.9 0.0 0.0 0.0 0.0 0.0 0.0 30473.9 0.00
Netherlands 36858.5 0.0 0.0 0.0 0.0 0.0 0.0 36858.5 0.00
Portugal 19522.6 17715.8 45036.6 6166.1 0.0 0.0 51202.7 88441.0 57.89
Spain 262517.4 158650.5 66501.5 12133.5 3984.6 0.0 82619.6 503787.5 16.40
Ireland 68233.5 0.0 0.0 0.0 0.0 0.0 0.0 68233.5 0.00
Italy 133949.2 73040.4 41264.5 40374.0 11286.5 0.0 92924.9 299914.6 30.98
Denmark 42273.9 0.0 0.0 0.0 0.0 0.0 0.0 42273.9 0.00
United Kingdom 242926.1 0.0 0.0 0.0 0.0 0.0 0.0 242926.1 0.00
Iceland 106696.1 0.0 0.0 0.0 0.0 0.0 0.0 106696.1 0.00
Slovenia 20237.3 258.0 86.4 0.0 0.0 0.0 86.4 20581.6 0.42
Finland 329375.9 0.0 0.0 0.0 0.0 0.0 0.0 329375.9 0.00
Slovakia 48140.8 0.0 0.0 0.0 0.0 0.0 0.0 48140.8 0.00
Czechia 80827.3 0.0 0.0 0.0 0.0 0.0 0.0 80827.3 0.00
Bosnia and Herz. 49823.6 180.1 0.0 0.0 0.0 0.0 0.0 50003.7 0.00
Macedonia 24962.7 0.0 0.0 0.0 0.0 0.0 0.0 24962.7 0.00
Serbia 75992.9 0.0 0.0 0.0 0.0 0.0 0.0 75992.9 0.00
Montenegro 11465.8 363.7 728.9 730.8 0.0 0.0 1459.7 13289.1 10.98
Kosovo 11159.8 0.0 0.0 0.0 0.0 0.0 0.0 11159.8 0.00
Cyprus 404.2 0.0 1413.8 2223.9 1312.8 0.0 4950.5 5354.7 92.45
Czech Republic 78515.7 0.0 0.0 0.0 0.0 0.0 0.0 78515.7 0.00
Malta 0.0 0.0 0.0 0.0 199.6 0.0 199.6 199.6 100.00
TOTAL (%) 93.5 3.4 1.9 0.9 0.3 0.0 3.1
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TABLE S8: Surface of European vineyards in risk of PD given by the intersection of (Corine-Land-Cover)
and the projected model in the ERA5-land data under a R0 = 5 scenario with the layer of vector climatic
suitability.The epidemic-risk zones are classified according to the relative disease growth rates defined by the risk index, as
very low (0.1-0.33), low (0.33-0.66), moderate (0.66-0.9) and high exponential growth rates (> 90). The total risk refers to the
sum of the epidemic-risk zones.

Country
No risk
(Ha)

Transition
(Ha)

Very low
(Ha)

Low
(Ha)

Moderate
(Ha)

High
(Ha)

Risk
(%)

Albania 1639.0 441.6 111.6 1370.8 0.0 0.00 41.61
Austria 66546.4 0.0 0.0 0.0 0.0 0.00 0.00
Bulgaria 112643.1 3203.0 0.0 0.0 0.0 0.00 0.00
Switzerland 14480.2 0.0 0.0 0.0 0.0 0.00 0.00
Cyprus 0.0 0.0 195.4 9535.4 4406.8 0.00 100
Czech Republic 16936.4 0.0 0.0 0.0 0.0 0.00 0.00
Germany 129648.9 0.0 0.0 0.0 0.0 0.00 0.00
Greece 13769.2 20611.6 13507.5 8536.7 24319.0 0.00 57.42
Spain 283550.1 696641.5 64083.4 5168.8 1211.1 0.00 6.71
France 371289.7 407458.9 282369.5 65302.9 3518.5 0.00 31.08
Croatia 16218.9 1519.1 3215.6 2578.3 1343.8 0.00 28.69
Hungary 100567.3 0.0 0.0 0.0 0.0 0.00 0.00
Italy 160369.5 180285.6 83666.8 116198.0 80098.6 0.00 45.11
Luxembourg 1633.9 0.0 0.0 0.0 0.0 0.00 0.00
Montenegro 0.0 1.9 2627.5 229.2 0.0 0.00 99.93
Macedonia 27731.9 0.0 0.0 0.0 0.0 0.00 0.00
Malta 25.7 0.0 0.0 0.0 27.4 0.00 51.54
Portugal 43689.1 74177.4 91311.8 2073.6 0.0 0.00 44.21
Romania 224664.7 0.0 0.0 0.0 0.0 0.00 0.00
Serbia 8610.0 0.0 0.0 0.0 0.0 0.00 0.00
Slovenia 25971.2 1173.9 840.6 0.0 0.0 0.00 3.00
Slovakia 20603.2 0.0 0.0 0.0 0.0 0.00 0.00
TOTAL (%) 42.1 35.6 13.9 5.4 3.0 0.00
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TABLE S9: Predicted PD risk in 2050 in European vineyards (Corine-Land-Cover) considering a R0 = 5 scenario
and the vector climatic suitability.The epidemic-risk zones are classified according to the relative disease growth rates
defined by the risk index, as very low, low, moderate and high growth rates. The total risk refers to the sum of the epidemic-
risk zones

Country
No risk
(Ha)

Transition
(Ha)

Very low
(Ha)

Low
(Ha)

Moderate
(Ha)

High
(Ha)

Risk
(%)

Albania 766.7 921.5 475.7 1353.4 45.8 0.00 52.62
Austria 66546.4 0.0 0.0 0.0 0.0 0.00 0.00
Bulgaria 109593.3 5725.8 526.9 0.0 0.0 0.00 0.45
Switzerland 14480.2 0.0 0.0 0.0 0.0 0.00 0.00
Cyprus 0.0 0.0 848.6 12325.1 964.0 0.00 100.00
Czech Republic 16936.4 0.0 0.0 0.0 0.0 0.00 0.00
Germany 129648.9 0.0 0.0 0.0 0.0 0.00 0.00
Greece 13374.0 13093.0 24516.5 7907.9 21852.7 0.00 67.22
Spain 365465.7 617535.3 60443.8 5999.0 1211.1 0.00 6.44
France 245133.5 198142.5 510451.2 170502.6 5709.7 0.00 60.77
Croatia 15852.8 243.1 1880.0 6198.6 701.1 0.00 35.29
Hungary 100567.3 0.0 0.0 0.0 0.0 0.00 0.00
Italy 92799.8 131235.1 228546.2 155434.6 12602.7 0.00 63.90
Luxembourg 1633.9 0.0 0.0 0.0 0.0 0.00 0.00
Montenegro 0.0 0.0 1.9 2856.6 0.0 0.00 100.00
Macedonia 26532.8 1199.1 0.0 0.0 0.0 0.00 0.00
Malta 25.7 0.0 0.0 0.0 27.4 0.00 51.54
Portugal 19428.0 76697.5 101259.2 13867.1 0.0 0.00 54.50
Romania 224664.7 0.0 0.0 0.0 0.0 0.00 0.00
Serbia 8610.0 0.0 0.0 0.0 0.0 0.00 0.00
Slovenia 22469.8 1606.6 3068.7 840.6 0.0 0.00 13.97
Slovakia 20603.2 0.0 0.0 0.0 0.0 0.00 0.00
TOTAL (%) 38.4 26.9 23.9 9.7 1.1 0.0
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