Supplementary Material: High-Sensitive TRBC1-Based Flow Cytometric Assessment of T-Cell Clonality in T $\alpha \beta$-Large Granular Lymphocytic Leukemia

Noemí Muñoz-García, F. Javier Morán-Plata, Neus Villamor, Margarida Lima ${ }^{\mp}$, Susana Barrena, Sheila Mateos, Carolina Caldas, Jacques J.M. van Dongen, Alberto Orfao and Julia Almeida

Protocol S1. Combining sample aliquots stained with a CD45 antibody conjugated to 8 different fluorochromes into only two antibody combinations ready to be measured in the flow cytometer.

1. Prepare 1 to 8 tubes with $100 \mu \mathrm{~L}$ of peripheral blood
2. Add the appropriate volume of each TCRV β, CD45, and TRBC1 antibodies per tube (as described in Supplementary Table 1, Panel II) in combination with $50 \mu \mathrm{~L} /$ tube of Brilliant Stain Buffer (Becton/Dickinson Biosciences (BD), San Jose, CA)
3. Mix well, preferably by gently vortexing
4. Incubate for 30 min at room temperature (RT) protected from light
5. Add 2 mL of washing buffer to the cell pellet
6. Mix well, preferably by gently vortexing
7. Centrifuge for 5 min at 540 g
8. Discard the supernatant using a Pasteur pipette or vacuum system without disturbing the cell pellet, leaving approximately $50 \mu \mathrm{~L}$ residual volume in each tube
9. Mix well, preferably by gently vortexing
10. Combine cells from tubes 1-4 and from tubes 5-8 into two single tubes, respectively; for this purpose, wash the 8 tubes from the first set of tubes with washing buffer to recover all cells that might have been left in the original tubes.
11. Centrifuge for 5 min at 540 g
12. Discard the supernatant using a Pasteur pipette or vacuum system without disturbing the cell pellet, leaving approximately $50 \mu \mathrm{~L}$ residual volume in each tube
13. Mix well, preferably by gently vortexing
14. Add the appropriate volume of the remaining antibodies to the two tubes
15. Mix well, preferably by gently vortexing
16. Incubate for 20 min at RT protected from light
17. Add 2 mL of 1X FACS Lysing Solution - 10X FACS Lysing Solution (BD) diluted $1 / 10 \mathrm{vol} / \mathrm{vol}$ in distilled water, following the recommendations of the manufacturer-
18. Mix well, preferably by gently vortexing
19. Incubate for 15 min at RT protected from light
20. Centrifuge for 5 min at 540 g
21. Discard the supernatant using a Pasteur pipette or vacuum system without disturbing the cell pellet, leaving approximately $50 \mu \mathrm{~L}$ residual volume in each tube
22. Mix well, preferably by gently vortexing
23. Add 2 mL of washing buffer to the cell pellet
24. Mix well, preferably by gently vortexing
25. Centrifuge for 5 min at 540 g
26. Discard the supernatant using a Pasteur pipette or vacuum system without disturbing the cell pellet, leaving approximately $50 \mu \mathrm{~L}$ residual volume in each tube
27. Mix well, preferably by gently vortexing
28. Resuspend the cell pellet in $200 \mu \mathrm{~L}$ of acquisition buffer

29．Acquire the cells（preferably）immediately after staining or store at $4^{\circ} \mathrm{C}$ for a maximum of 1 hour until measured in the flow cytometer

Table S1．Panels of fluorochrome－conjugated antibody reagents used in this study．

Panel I．Analysis of TRBC1 expression on different maturation－associated subsets of total T $\alpha \beta$－cells and their major subsets															
$\stackrel{0}{0}_{0}^{\circ}$	$\sum_{\infty}^{\infty} n$	$\begin{aligned} & \text { Z } \\ & \text { 傦 } \end{aligned}$	范	$\begin{gathered} 0 \\ \substack{\text { in } \\ 0} \end{gathered}$	$\begin{gathered} \text { に0 } \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \text { B } \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\underset{\sim}{7}}{\stackrel{7}{7}}$	$\stackrel{\perp}{\stackrel{\circ}{\infty}}$	$\underset{~ U}{U}$	삘		$\begin{aligned} & \text { 烒 } \\ & \text { 芭 } \end{aligned}$	念	¢	UR
CD7	TRBC1	CD27	CD2	CD45RA	CD4	CD62L	$\begin{gathered} \hline \mathrm{CD} 1 \\ 6 \end{gathered}$	CD3	$\begin{gathered} \hline \mathrm{CD} 5 \\ 7 \end{gathered}$	cyGra	CD28	CD8	TCR γ 万	CD45	CD56

Panel II．Analysis of TRBC1 expression per TCRV β－family（using the IOTest ${ }^{\circledR}$ Beta Mark TCR V β Repertoire Kit－Beckman Coulter） among different maturation－associated subsets of T $\alpha \beta$－cells

$\begin{gathered} 10 \\ \stackrel{10}{\infty} \\ \stackrel{\infty}{\infty} \end{gathered}$	6 0 0 8	10 0 0 8	$\underset{\sim}{\underset{\sim}{7}}$	ペ	$\begin{aligned} & 0 \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\frac{0}{10}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & \text { ค } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{array}{ll} U \\ \text { 茿 } \\ \text { a } \end{array}$	$\begin{gathered} \text { E } \\ \text { U } \\ \text { A } \end{gathered}$	0 000 000 0			$\begin{aligned} & \text { H } \\ & \text { O} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \cup 8 \\ & \text { 4i } \end{aligned}$	$\begin{aligned} & \text { 合 } \\ & \text { 安 } \end{aligned}$
$\begin{gathered} \hline \text { CD } \\ 8 \end{gathered}$	$\begin{gathered} \hline \mathrm{CD} \\ 7 \end{gathered}$	CD45	CD27	$\begin{gathered} \hline \text { CD } \\ 2 \end{gathered}$		$\begin{gathered} \hline \mathrm{CD} 45 \mathrm{R} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \hline \mathrm{CD} \\ 4 \end{gathered}$	$\begin{gathered} \text { CD62 } \\ \mathrm{L} \end{gathered}$	$\begin{gathered} C D \\ 3 \end{gathered}$	TCRV β A		CD28	$\begin{gathered} \mathrm{TCR} \gamma \\ \delta \end{gathered}$	NKp80	TRBC1	$\begin{gathered} \hline \mathrm{CD} \\ 5 \end{gathered}$	
$\begin{gathered} \text { CD } \\ 8 \end{gathered}$	$\begin{gathered} C D \\ 7 \end{gathered}$		CD27	$\begin{gathered} C D \\ 2 \end{gathered}$	CD45	$\begin{gathered} \text { CD45R } \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \text { CD } \\ 4 \end{gathered}$	$\begin{gathered} \text { CD62 } \\ \text { L } \end{gathered}$	$\begin{gathered} C D \\ 3 \end{gathered}$	TCRV β B		CD28	$\begin{gathered} \mathrm{TCR} \gamma \\ \delta \end{gathered}$	NKp80	TRBC1	$\begin{gathered} \text { CD } \\ 5 \end{gathered}$	
$\begin{gathered} \text { CD } \\ 8 \end{gathered}$	$\begin{gathered} \text { CD } \\ 7 \end{gathered}$		CD27	$\begin{gathered} \text { CD } \\ 2 \end{gathered}$		$\begin{gathered} \text { CD45R } \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{CD} \\ 4 \end{gathered}$	$\begin{gathered} \text { CD62 } \\ \mathrm{L} \end{gathered}$	$\begin{gathered} \text { CD } \\ 3 \end{gathered}$	TCRV β C	CD45	CD28	$\begin{gathered} \mathrm{TCR} \gamma \\ \delta \end{gathered}$	NKp80	TRBC1	$\begin{gathered} \text { CD } \\ 5 \end{gathered}$	
$\begin{gathered} \text { CD } \\ 8 \end{gathered}$	$\begin{gathered} C D \\ 7 \end{gathered}$		CD27	$\begin{gathered} C D \\ 2 \end{gathered}$		$\begin{gathered} \text { CD45R } \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \text { CD } \\ 4 \end{gathered}$	$\begin{gathered} \text { CD62 } \\ \text { L } \end{gathered}$	$\begin{gathered} C D \\ 3 \end{gathered}$	TCRV β D		CD28	$\begin{gathered} \mathrm{TCR} \gamma \\ \delta \end{gathered}$	NKp80	TRBC1	$\begin{gathered} C D \\ 5 \end{gathered}$	CD45
$\begin{gathered} \text { CD } \\ 8 \end{gathered}$	$\begin{gathered} C D \\ 7 \end{gathered}$	CD45	CD27	$\begin{gathered} C D \\ 2 \end{gathered}$		$\begin{gathered} \text { CD45R } \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \text { CD } \\ 4 \end{gathered}$	$\begin{gathered} \text { CD62 } \\ \text { L } \end{gathered}$	$\begin{gathered} C D \\ 3 \end{gathered}$	TCRV β E		CD28	$\begin{gathered} \mathrm{TCR} \gamma \\ \delta \end{gathered}$	NKp80	TRBC1	$\begin{gathered} \text { CD } \\ 5 \end{gathered}$	
$\begin{gathered} \text { CD } \\ 8 \end{gathered}$	$\begin{gathered} \text { CD } \\ 7 \end{gathered}$		CD27	$\begin{gathered} C D \\ 2 \end{gathered}$	CD45	$\begin{gathered} \text { CD45R } \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \text { CD } \\ 4 \end{gathered}$	$\begin{gathered} \text { CD62 } \\ \text { L } \end{gathered}$	$\begin{gathered} C D \\ 3 \end{gathered}$	TCRV β F		CD28	$\begin{gathered} \mathrm{TCR} \gamma \\ \delta \end{gathered}$	NKp80	TRBC1	$\begin{gathered} C D \\ 5 \end{gathered}$	
$\begin{gathered} \text { CD } \\ 8 \end{gathered}$	$\begin{gathered} C D \\ 7 \end{gathered}$		CD27	$\begin{gathered} C D \\ 2 \end{gathered}$		$\begin{gathered} \text { CD45R } \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \text { CD } \\ 4 \end{gathered}$	$\begin{gathered} \text { CD62 } \\ \text { L } \end{gathered}$	$\begin{gathered} C D \\ 3 \end{gathered}$	TCRV β G	CD45	CD28	$\begin{gathered} \mathrm{TCR} \gamma \\ \delta \end{gathered}$	NKp80	TRBC1	$\begin{gathered} \text { CD } \\ 5 \end{gathered}$	
$\begin{gathered} \text { CD } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \text { CD } \\ 7 \\ \hline \end{gathered}$		CD27	$\begin{gathered} C D \\ 2 \end{gathered}$		$\begin{gathered} \mathrm{CD} 45 \mathrm{R} \\ \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CD} \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \text { CD62 } \\ \mathrm{L} \\ \hline \end{gathered}$	$\begin{gathered} \text { CD } \\ 3 \end{gathered}$	TCRV β H		CD28	$\begin{gathered} \mathrm{TCR} \gamma \\ \delta \\ \hline \end{gathered}$	NKp80	TRBC1	$\begin{gathered} C D \\ 5 \end{gathered}$	CD45

For all tubes，＂stain \＆lyse＂EuroFlow SOPs were used（www．EuroFlow．com），with the modifications described in Supplementary Protocol 1．Abbreviations（alphabetical order）：APC， allophycocyanin；H7，Hilite®7；BD，Becton／Dickinson Biosciences；BV，Brilliant Violet ${ }^{\mathrm{TM}}$ ；cy， cytoplasmic；Dy，dyomics；FITC，fluorescein isothiocyanate；Gra，granzyme B；PacB，Pacific Blue ${ }^{\mathrm{TM}}$ ； PE，phycoerythrin；Cy5．5，cyanin 5．5；Cy7，cyanin 7；PerCP，peridinin－chlorophyl protein；TCR，T－ cell receptor．

Table S2．Sources and specificities of the monoclonal antibody reagents used in this study．

Marker	Fluorochrome	Clone	Manufacturer	Volume（ $\mu \mathrm{L}$ ）
CD2	PacB	TS1／8	BioLegend	1
CD3	BV786	SK7	BD	1
CD4	BV605	SK3	BD	1
CD5	APCR700	UCHT2	BD	3
CD7	BUV661	M－T701	BD	0.5
CD8	BUV395	RPA－T8	BD	5
CD8	PECF594	RPA－T8	BD	1
CD16	BV711	3G8	BD	2.5
CD27	BV421	MT271	BD	2
CD28	PerCPCy5．5	CD28．2	BioLegend	5
CD45	BUV805	HI30	BD	5
CD45	BV480	HI30	BD	5
CD45	PerCP	HI30	BioLegend	5
CD45	AF700	HI30	BD	2.5
CD45	APCCy7	MEM－28	ExBio	5
CD45RA	BV510	HI100	BD	2.5
CD56	APCVio770	REA196	Miltenyi	2
CD57	FITC	HNK1	BD	10
CD62L	BV605	DREG56	BioLegend	2.5
CD62L	BV650	DREG56	BioLegend	2.5

Granzyme B	PE	GB11	Sanquin	5
NKp80	PEVio615	REA845	Miltenyi	2
TCR $\gamma \delta$	PECy7	11F2	BD	1
TRBC1	Dy634	JOVI-1	Immunostep	0.5
TRBC1	BUV737	JOVI-1	BD	1
TCRV $\beta 5.3$	PE	3D11	Beckman Coulter	10 (Tube A)
TCRV $\beta 7.1$	PE + FITC	ZOE	Beckman Coulter	
TCRV 3	FITC	CH92	Beckman Coulter	
TCRV $\beta 9$	PE	FIN9	Beckman Coulter	10 (Tube B)
TCRV $\beta 17$	PE + FITC	E17.5F3	Beckman Coulter	
TCRV 16	FITC	TAMAYA1.2	Beckman Coulter	
TCRV $\beta 18$	PE	BA62.6	Beckman Coulter	10 (Tube C)
TCRV $\beta 5.1$	PE + FITC	IMMU157	Beckman Coulter	
TCRV $\beta 20$	FITC	ELL1.4	Beckman Coulter	
TCRV $\beta 13.1$	PE	IMMU222	Beckman Coulter	10 (Tube D)
TCRV 313.6	PE + FITC	JU74.3	Beckman Coulter	
TCRV $\beta 8$	FITC	56C5.2	Beckman Coulter	
TCRV $\beta 5.2$	PE	36213	Beckman Coulter	10 (Tube E)
TCRV $\beta 2$	PE + FITC	MPB2D5	Beckman Coulter	
TCRV $\beta 12$	FITC	VER2.32	Beckman Coulter	
TCRV $\beta 23$	PE	AF23	Beckman Coulter	10 (Tube F)
TCRV $\beta 1$	PE + FITC	BL37.2	Beckman Coulter	
TCRV 21.3	FITC	IG125	Beckman Coulter	
TCRV $\beta 11$	PE	C21	Beckman Coulter	10 (Tube G)
TCR-Vß 22	PE + FITC	IMMU546	Beckman Coulter	
TCR-V 14	FITC	CAS1.1.3	Beckman Coulter	
TCR-V $\beta 13.2$	PE	H132	Beckman Coulter	10 (Tube H)
TCR-V $\beta 4$	PE + FITC	WJF24	Beckman Coulter	
TCR-V $\beta 7.2$	FITC	ZIZOU4	Beckman Coulter	

Abbreviations (alphabetical order): APC, allophycocyanin; H7, Hilite®7; BD, Becton/Dickinson Biosciences; BV, Brilliant Violet ${ }^{\mathrm{TM}}$; Dy, dyomics; FITC, fluorescein isothiocyanate; PacB, Pacific Blue ${ }^{\text {TM }}$; PE, phycoerythrin; Cy5.5, cyanin 5.5 ; Cy7, cyanin 7; PerCP, peridinin-chlorophyll; TCR, Tcell receptor.

Table S3. Detailed immunophenotypic features of T-cell subsets showing extreme TRBC1 ${ }^{+}$ percentages within the more mature polyclonal and monoclonal $T \alpha \beta$-cell populations expressing a specific TCRV β family.

| n.
 sample | Study
 group | Maturation
 Stage | TCRV β
 family | n. cells $/$
 $\mu \mathrm{m}$ | \%TRBC1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CD45RA ${ }^{+/++} \mathrm{CD} 57^{+}$CD94 ${ }^{+}$cyGra ${ }^{+}$cyPerf ${ }^{+}$							
\#7	LGLL	TE	V $322{ }^{+}$	350	1.6\%	CD2 ${ }^{+}$CD3 ${ }^{+} \mathrm{CD} 4-\mathrm{CD} 5^{\text {het }} \mathrm{CD}^{10}{ }^{10} \mathrm{CD}^{+}$ CD45RA ${ }^{\text {lo }}{ }^{\text {CD }} 577^{+}$CD94- cyGra $^{+}$cyPerf ${ }^{+}$	No
\#8	LGLL	TE	V $\beta 1^{+}$	691	0.14\%	$\mathrm{CD}^{1{ }^{\mathrm{L}}} \mathrm{CD}^{++}{ }^{+} \mathrm{CD} 4-\mathrm{CD} 5^{1 \circ} \mathrm{CD}^{+}{ }^{+} \mathrm{CD}^{+}{ }^{+}$ CD45RA ${ }^{+}$CD57 ${ }^{+}$CD94 ${ }^{+}$cyGra ${ }^{+}$cyPerf ${ }^{+}$	No
\#9	LGLL	TE	V $\beta 16{ }^{+}$	929	98\%	$\mathrm{CD} 2^{1{ }^{\mathrm{o}} \mathrm{CD}} 3^{+} \mathrm{CD} 4-\mathrm{CD} 5^{\mathrm{lo}} \mathrm{CD} 7-\mathrm{CD} 8-1 \mathrm{lo}$ CD45RA ${ }^{+}$CD57 ${ }^{+}$CD94-	Yes
\#10	LGLL	TE	V $\beta 14^{+}$	5,516	99.6\%	$\mathrm{CD}^{+}{ }^{+} \mathrm{CD}^{+}{ }^{+} \mathrm{CD} 4-\mathrm{CD} 5^{-/ \mathrm{lo}} \mathrm{CD} 7-/ \mathrm{lo} \mathrm{CD} 8^{+}$ CD57het $\mathrm{CD} 94{ }^{+}$cyGra $^{+}$cyPerf $^{+}$	No

[^0]

Figure S1. Distribution of T-cells expressing different TCRV β families among total T $\alpha \beta$ cells and their T $\alpha \beta$ CD8 ${ }^{+}$and $\mathrm{T} \alpha \beta \mathrm{CD} 4^{+}$cell subsets and their maturation-associated stages of CD28- effector memory and terminal effector cells as identified in blood of healthy donors $(n=6)$. Abbreviations (alphabetical order): EM, effector memory; TE, terminal effector.

[^0]: * Residual (reactive) polyclonal T $\alpha \beta$-cell populations from a HDc. HD were selected based on the absolute number of TE T $\alpha \beta$ cells (>10 cells $/ \mu \mathrm{L}$). Abbreviations (alphabetical order): cy, cytoplasmic; Gra, granzyme B; HD, healthy donor; HDc, healthy donor with a small T $\alpha \beta$-cell clone in blood; het, heterogeneous expression; lo, low expression; n., number; LGLL, large granular lymphocyte leukemia; Perf, perforin; TE, terminal effector.

