
Abundance of the Common dolphin (*Delphinus delphis*) in the north of the Iberian Peninsula.

<u>Camilo Saavedra</u>, Tim Gerrodette, Maite Louzao, Julio Valeiras, Salvador García, José Luis Murcia, Santiago Cerviño, Graham J. Pierce, M. Begoña Santos

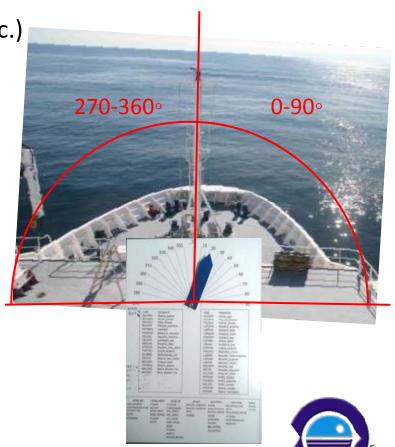
PELACUS Surveys

PELACUS survey

- Scanning parallel transects (perpendicular to the coast) with an echosounder
- Fishing stations with a pelagic trawl (estimate length and species composition)
- Oceanographic stations during the night (CTD, Bongo net)

PELACUS observers team

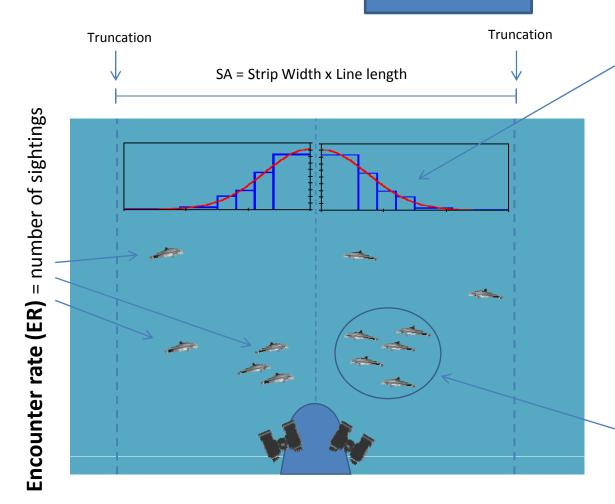
- Team of three observers of top predators since 2007
- Distance Sampling methodology
 - Searching effort: Line-transects during the acoustic scanning (passing mode)
 - Search and record marine mammals, seabirds and others (fish, boats, floating debris, etc.)
 - 2 observers on-duty searching with naked eyes (7x50 binoculars used only for species identification)



PELACUS methodology

- Environmental conditions (each transect)
 - Oceanographic conditions (Beaufort, wind, swell, etc.)
 - Search conditions (visibility, sun glare, etc.)
- Distance sampling data
 - Distance to the sighting (stick method)
 - Angle (angleboard)
 - Group size (best estimate)
 - Behaviour (e.g. ATTRACTION)

Sightings summary


	2007	2008	2009	2010	2011	2012	2013	2014	Total
Small cetaceans									
Common dolphin	12	18	17	27	17	20	22	25	158
Striped dolphin		6					1		7
Bottlenose dolphin	10	13	8	11	1	4	2	21	75
Long-finned pilot whale	6	10	17	9		1	7	26	76
Risso's dolphin		2	1			2			5
Harbour porpoise	1						1		2
Unidentified dolphin	5	2	12	4	2		3	8	36
Big whales									
Minke whale						1		2	3
Fin whale						1			1
Sperm whale			1						1
False killer whale		1							1
Beaked whale1		1		1					2
Beaked whale2					1				1
Baleen whale	1		1						2
Cetacean						1		1	2
urtles									
Leatherback turtle						1			1
Bone fish									
Sun fish	15	14	5	2	12	25	15	13	101
harks									
Blue shark								1	

Distance sampling

Density (ER, GS, DF)

$$\widehat{D} = \frac{n \cdot \widehat{E}_{(s)}}{c \cdot a \cdot \widehat{P}_a \cdot \widehat{g}_0}$$

Abundance (D, A)

Detection function (DF)

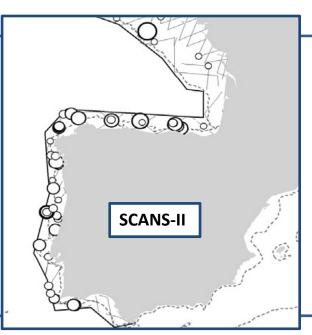
- Perpendicular distance
- Other covariates
 Beaufort (sea state)
 Group size

Swell Visibility Sun glare

Id

pd

Group size (GS)


Estimated number of animals

Attraction (I)

- <u>Distance Sampling methodology</u> assumes that animals do not respond to the searching platform (neither attraction nor avoidance movements)
- **Common dolphin** -> High attraction rate -> Overestimate abundance

SCANS-II

- Only absolute abundance estimate on the shelf
 Atlantic waters of the Iberian Peninsula
- Common dolphin abundance estimates
 - Conventional analysis (no attract. correction)
 - Mark and recapture (double platform)

Attraction (II)

SCANS-II correction factor (0.36):

- Mark recapture abundance estimate (corrected for attraction) is 36% of the abundance estimated with the conventional method

Recorded behaviour:

- Attraction

- No attraction

	Total	Attract.	No attract.	Prop.Attract.
Common dolphin	158	64	94	40.50%
Bottlenose dolphin	36	6	73	7.60%
Long-finned pilot whale	79	6	70	7.90%

We removed these observations assuming that those "attracted" dolphins should not have been seen:

- Some would have been sighted even if they had not approached the boat. They were already close to the track line. <u>Negative bias</u>?
- Some would have approached the boat (from far away) but not enough to have appreciated signs of attraction. <u>Positive bias</u>?

Distance sampling analysis

Bayesian approach

Tomoharu Eguchi and Tim Gerrodette, 2009

- Allows us to combine previous knowledge of data :
 - Attraction correction factor (SCANS)
 - Known distributions to some parameters (work with the scarcity and uncertainty of the data) -> Small sample sizes

Half-normal Detection Function

Truncation = 500 m
$$\longrightarrow$$
 Proportion within = 92% \longrightarrow g(500) =0.8

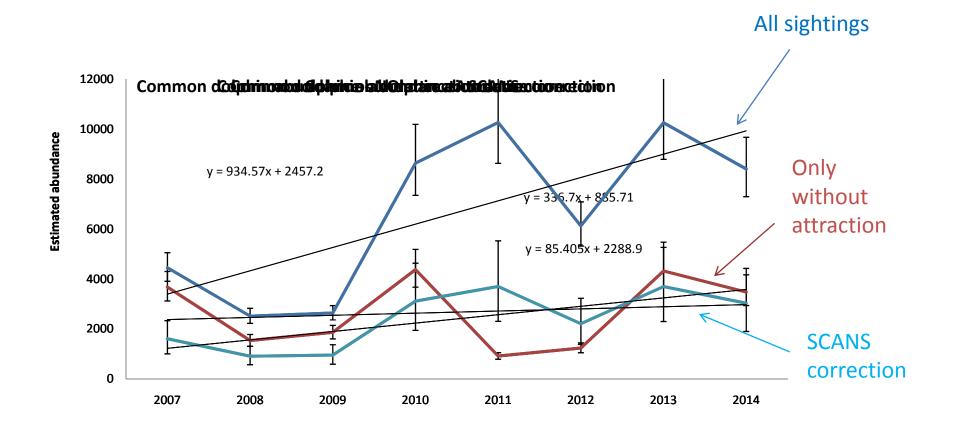
Results and comparison with SCANS-II

Our estimates

mean abundance between 2007-14

	All sightings	SCANS correction	No attraction
Abundance (N)	6257(0.07)	2255(0.21)	2665(0.08)
δ / Km²	0.310(0.07)	0.112(0.21)	0.132(0.08)
	\	\	/

SCANS (rescaled)	abundance in 2005	
JCANS (163caled)		
	SCANS-II	SCANS-II mark-
	conventional	recapture
Abundance (N)	7064(0.25)	2597(0.22)
δ / Km²	0.352(0.25)	0.129(0.22)


Study Area = 20200 km^2

6.9 times smaller

SCANS-II (BLOCK W) = 138600 km²

Annual abundance

Conclusions

- Non-dedicated surveys have some limitations. Good way to collect information that otherwise we would not get
- Using relative estimates we can analyse trends in the abundance (attraction correction methods affect)
- Absolute abundance estimates are roughly consistent with other studies (although do not cover the entire population)
- For absolute abundance need to improve the attraction correction method or data collection (double platform)

Camilo Saavedra

