
JOURNAL OF COMPUTER SCIENCE AND ENGINEERING, VOLUME 2, ISSUE 2, AUGUST 2010

 7

© 2010 JCSE
http://sites.google.com/site/jcseuk/

A Survey of the Elliptic Curve Integrated
Encryption Scheme

V. Gayoso Martínez, L. Hernández Encinas, and C. Sánchez Ávila

Abstract— Elliptic Curve Cryptography (ECC) is a relatively recent branch of cryptography based on the arithmetic of elliptic
curves and the Elliptic Curve Discrete Logarithm Problem (ECDLP). Elliptic curve cryptographic schemes are public-key
mechanisms that provide encryption, digital signature and key exchange capabilities. The best known encryption scheme based
on ECC is the Elliptic Curve Integrated Encryption Scheme (ECIES), included in the ANSI X9.63, ISO/IEC 18033-2, IEEE
1363a, and SECG SEC 1 standards. In the present work, we offer a comprehensive introduction to ECIES, detailing the
encryption and decryption procedures and the list of functions and special characteristics included in aforementioned standards.

Index Terms— Elliptic Curve Cryptography, ECIES, encryption scheme.
.

—————————— � ——————————

1 INTRODUCTION

HE development of public-key cryptography by
Whitfield Diffie and Martin Hellman in 1976 [1]
represented a revolution in the cryptographic world,

overcoming some of the limitations inherent to symme-
tric-key algorithms such as the key distribution problem.

Public-key schemes are complex designs that, in order
to be useful, must be secure and efficient. In general, both
characteristics depend on the mathematical problem on
which they are based. Some examples of those problems
are the integer factorization problem (IFP) used in the
RSA cryptosystem [2], the discrete logarithm problem
(DLP) used in the ElGamal scheme [3], and the elliptic
curve discrete logarithm problem (ECDLP).

In 1985, Victor Miller [4] and Neal Koblitz [5] indepen-
dently proposed a cryptosystem based on elliptic curves,
whose security relies on the ECDLP problem. Elliptic
Curve Cryptography (ECC) can be applied to data en-
cryption and decryption, digital signatures, and key ex-
change procedures.

As in the case of the IFP and DLP, no algorithm is
known that solves the ECDLP in an efficient way. Moreo-
ver, the ECDLP is regarded as the hardest of these three
problems ([5] and [6]). From this fact derives one of the
most important benefits of ECC: the key size. Keys in
ECC are significantly shorter than in other cryptosystems
such as RSA. A shorter key implies easier data manage-
ment, lower hardware requirements (in terms of buffers,
memory, data storage, etc.), less bandwidth when trans-
mitting the keys over a network, and longer battery life in

devices where it is important, such as mobile phones.
A comparison between RSA and ECC key lengths is

shown in Table 1 and illustrated in Fig. 1, with data taken
from [7] and [8], where the security level is interpreted as
the cryptographic strength provided by a symmetric en-
cryption algorithm using a key of n bits.

TABLE 1

KEY LENGTH COMPARISON OF RSA AND ECC

————————————————
• V. Gayoso Martínez is with the Applied Physics Institute, Spanish Nation-

al Research Council (CSIC), Madrid, Spain.
• L. Hernández Encinas is with the Applied Physics Institute, Spanish Na-

tional Research Council (CSIC), Madrid, Spain
• C. Sánchez Ávila is with the Applied Mathematics to Information Technol-

ogies Department, Polytechnic University, Madrid, Spain.

T

Fig. 1. Key length comparison for RSA and ECC cryptosystems.

Security
level
(bits)

RSA
 key length

(bits)

ECC
key length

(bits)

Approx.
ratio

80 1024 160-223 5-6:1
112 2048 224-255 8-9:1
128 3072 256-283 11-12:1
192 7680 384-511 15-20:1
256 15360 512-571 27-30:1

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING, VOLUME 2, ISSUE 2, AUGUST 2010
 8

In the present work, we provide a comprehensive in-
troduction to the ECIES encryption scheme, detailing the
encryption and decryption procedures and the list of
functions and special characteristics included in the ANSI
X9.63, IEEE 1363a, ISO/IEC 18033-2, and SECG SEC 1
standards.

This paper is organized as follows: Sections 2 presents
a brief introduction to elliptic curves and ECC. Section 3
enumerates the most important ECC implementations for
key exchange, digital signatures and encryption applica-
tions. Section 4 describes in detail the ECIES scheme and
the encryption and decryption steps performed during its
operation. In Section 5 we offer a comparison of the
ECIES allowed functions contained in the aforementioned
standards. Finally, Section 6 provides a description of
some of the additional options that must be taken into
consideration not only when developing an ECIES im-
plementation, but also when using this encryption
scheme as a final user.

An earlier version of this work appeared in [9], where
the comparison of the ECIES standads was included for
the first time by the authors. The present contribution
offers, in addition to what was presented in [9], an ex-
tended introduction to ECC, the fully detailed encryption
and decryption processes, and the section dealing with
the additional options that must taken into account when
configuring ECIES.

2 ELLIPTIC CURVE CRYPTOGRAPHY
An elliptic curve E over the finite field (or Galois Field)
GF is defined by the following equation, known as the
Weierstrass equation for elliptic curves in non-
homogeneous form [7]:

 64

2

2

3

31

2 axaxaxyaxyay +++=++ , (1)

where ∈64321 ,,,, aaaaa GF and 0≠∆ , being ∆ the discri-
minant of E calculated in the following way [10]:

642

2

6

3

48

2

2 9278 ddddddd +−−−=∆ ,

being 2

2

12 4aad += , 3144 2 aaad += , 6

2

36 4aad += , and fi-
nally 2

4

2

32431626

2

18 4 aaaaaaaaaad −+−+= .

Condition 0≠∆ assures that the curve is non-singular,
and thus there are no curve points with two or more dif-
ferent tangent lines.

The homogeneous form of the Weierstrass equation is

3

6

2

4

2

2

32

31

2 ZaXZaZXaXYZaXYZaZY +++=++ ,

and this implies the existence of a special point which can
only be interpreted in the projective plane: the point at
infinity O. This point is paramount in the usage of elliptic
curves in cryptography, as it is the identity element that,
together with the rest of the points of the elliptic curve
and the addition operator (which allows to add two
points of the elliptic curve, P and Q, in order to generate
another point, R=P+Q), characterizes the elliptic curve
with the mathematical structure of an abelian group.

 When the same point is added several times

to itself in the abelian group defined by an elliptic
curve, the addition operator is transformed into the
scalar multiplication, which in practice allows to multiply
an elliptic curve point P by a positive integer n in order to
produce another elliptic curve point, S=n·P.

The number of points of an elliptic curve (concept also
known as the cardinal or the order of the curve) is
represented as #E. In contrast, the order of a point P that
belongs to an elliptic curve E is the smaller integer n that
produces the result n·P=O.

From a cryptographic point of view, not every elliptic
curve is useful. Cryptographers are interested in elliptic
curves that form cyclic abelian groups, and also in elliptic
curves with cyclic subgroups, so that the cofactor is a
small number (e.g. 2, 4, etc.). As a consequence of La-
grange’s theorem (which states that for any finite group
M, the order of every subgroup N of M divides the order
of M), the order of the generator (i.e. the elliptic curve
point that generates all the points of the cyclic subgroup)
always divides the order of the elliptic curve (which not
necessarily is a prime number).

Two types of finite fields GF(q), with q = pm elements,
are used in ECC: prime finite fields GF(p) (where p is an
odd prime and m = 1) and binary finite fields GF(2m)
(where p = 2 and m can be any integer greater than 1).
When working with finite fields, using the proper change
of variables it is possible to simplify the Weierstrass equa-
tion, obtaining new equations less general (they are
adapted to specific finite fields) but easier to manage.

If the characteristic of the finite field is 2, then
GF(q)=GF(2m). If 01 ≠a , the equation (1) can be reduced to
the form

 baxxxyy ++=+
232

, (2)

where the discriminant is b=∆ .
If 01 =a , then the equation (1) is transformed into

 baxxcyy ++=+
32

, (3)

where the discriminant is 4c=∆ .
Moreover, if the characteristic of the finite field is 3,

then two cases appear. If 2

2

1 aa −≠ , the equation (1) is re-
duced to

 baxxy ++=
232

, (4)

where the discriminant is ba3
−=∆ .

In contrast, if 2

2

1 aa −= , then equation (1) is reduced to

 baxxy ++=
32

, (5)

where the discriminant is 3a−=∆ .
Finally, if the characteristic of GF(q) is neither 2 nor 3,

using the proper change of variables the equation (1) can
be transformed into

 baxxy ++=
32 , (6)

where the discriminant is ()23
27416 ba +−=∆ .

The set of parameters to be used in any ECC imple-
mentation depends on the underlying finite field. When

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING, VOLUME 2, ISSUE 2, AUGUST 2010
 9

the field is GF(p), the set of parameters that define the
curve is (p,a,b,G,n,h), whereas if the finite field is GF(2m),
the set of parameters is (m,f(x),a,b,G,n,h). The meaning of
each element in both sets is the following:
• p is the prime number that characterizes the finite

field GF(p).
• m is the integer number specifying the finite field

GF(2m).
• f(x) is the irreducible polynomial of grade m defining

GF(2m).
• a and b are the elements of the finite field GF(q) tak-

ing part in the equations (2), (3), (4), (5), and (6).
• G=(Gx,Gy) is the point of the curve that will be used

as a generator of the points representing public keys.
• n is the prime number whose value represents the

order of the point G (i.e. n·G=O).
• h is the cofactor of the curve, computed as h=#E/n,

where n is the order of the generator G.

3 ECC STANDARDS

Theoretical findings related to either RSA or ECC cannot
be used directly, as it is necessary to define data struc-
tures and procedures to manage the information. Cur-
rently there are three immediate applications for ECC in
cryptography, as it is described in this section.

3.1 Elliptic Curve Diffie-Hellman
The main objective of key exchange protocols is to put in
contact two or more entities communicating through an
open and insecure channel, sharing a secret key that will
provide data confidentiality and integrity to any informa-
tion exchanged using that channel.

ECDH denotes the generic key exchange scheme based
on the Diffie-Hellman mechanism applied to elliptic
curves. Some practical implementations can be found in
ANSI X9.63 [11], IEEE 1363 [12], NIST SP 800-56A [13],
and SEC 1 [14] documents.

3.2 Elliptic Curve Digital Signature Algorithm
FIPS 186-2 [15] describes all the algorithms and digital
signature schemes that can be used by any agency of the
U.S. government. Currently those algorithms are DSA,
RSA and ECDSA. ECDSA is the elliptic curve variant of
the Digital Signature Algorithm (DSA).

Both FIPS 186-2 [15] and ANSI X9.62 [16] state a mini-
mum key size of 1024 bits for RSA and DSA and 160 bits
for ECC, which provides an equivalent security to a
symmetric block cipher with a key size of 80 bits (see Ta-
ble 1).

As a comparison, texts signed with a 1024 bits RSA key
produce a digital signature of 128 bytes, whilst the same
text signed with a 192 bits ECDSA key generates a digital
signature of 48 bytes.

3.3 Elliptic Curve Integrated Encryption Scheme
The most extended encryption and decryption scheme
based on ECC is the Elliptic Curve Integrated Encryption
Scheme (ECIES). This scheme is a variant of the ElGamal
scheme proposed by Abdalla, Bellare, and Rogaway in
[17] and [18].

Slightly different versions of ECIES can be found at
ANSI X9.63 [11], IEEE 1363a [19], ISO/IEC 18033-2 [20]
and SEC 1 [14] standards.

As an example, any standard symmetric key encrypted
with a 1024 bits RSA key produces an output of 128 bytes
compared with the output of 84 bytes if the encryption is
performed with one of the possible configurations of
ECIES.

4 ECIES
As its name properly indicates, ECIES is an integrated
encryption scheme which uses the following functions:
• Key Agreement (KA): Function used for the genera-

tion of a shared secret by two parties.
• Key Derivation Function (KDF): Mechanism that

produces a set of keys from keying material and
some optional parameters.

• Encryption (ENC): Symmetric encryption algorithm.
• Message Authentication Code (MAC): Data used in

order to authenticate messages.
• Hash (HASH): Digest function, used within the KDF

and the MAC functions.
In order to describe the steps that must be taken in or-

der to encrypt a clear message, we will follow the tradi-
tion and will assume that Alice wants to send a message
to Bob. In that scenario, Alice’s ephemeral private and
public keys will be represented as u and U, respectively.
Similarly, we will refer to Bob‘s private and public keys
as v and V, respectively.

In ECC, private keys are elements of the finite field, ei-
ther GF(p) or GF(2m), whilst public keys are points belong-
ing to the elliptic curve and calculated as the product of
the private key and the generator G of the elliptic curve.
The steps (shown in Fig. 2) that Alice must complete are
the following:
1) Alice must create an ephemeral key pair consisting in

the finite field element u and the elliptic curve point
U=u·G. That key pair should be generated pseudo-
randomly exclusively for the current process.

2) After the ephemeral keys u and U are generated,
Alice will use the Key Agreement function, KA, in
order to create a shared secret value, which is the re-
sult of the escalar multiplication u·V, considering as
input values Alice's ephemeral private key u and
Bob's public key V.

3) Then, Alice must take the shared secret value u·V
and optionally other parameters (e.g. the binary re-
presentation of the ephemeral public key U) as input
data for the Key Derivation Function, KDF. The out-
put of this function is the concatenation of the sym-
metric encryption key, kENC, and the MAC key, kMAC.

4) With the element kENC and the clear message, m,
Alice will use the symmetric encryption algorithm,
ENC, in order to produce the encrypted message, c.

5) Taking the encrypted message c, kMAC and optionally
other parameters, such as a text string previously
agreed by both parties, Alice must use the selected
MAC function in order to produce a tag.

6) Finally, Alice will take the temporary public key U, the

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING, VOLUME 2, ISSUE 2, AUGUST 2010
 10

tag, and the encrypted message c, and will send the
cryptogram (U||tag||c) consisting of those three con-
catenated elements to Bob.

Regarding the decryption process, the steps that Bob
must perform (shown in Fig. 3) are the following:
1) After receiving the cryptogram (U||tag||c) from

Alice, Bob must retrieve the ephemeral public key U,
the tag, and the encrypted message c, so he can deal
with those elements separately.

2) Using the retrieved ephemeral public key, U, and his
own private key, v, Bob will multiply both elements
in order to produce the shared secret value v·U, as
the result of this computation is the same that the
product u·V, which is the core of the Diffie-Hellman
procedure ([1] and [7]).

3) Taking as input the shared secret value v·U and the
same optional parameters that Alice used, Bob must
produce the same encryption and MAC keys by
means of the KDF procedure.

4) With the MAC key kMAC, the encrypted message c,
and the same optional parameters used by Alice,
Bob will first compute the element tag*, and then he
will compare its value with the tag that he received
as part of the cryptogram. If the values are different,
Bob must reject the cryptogram due to a failure in
MAC verification procedure.

5) If the tag value generated by Bob is the correct one,
then he will continue the process by deciphering the
encrypted message c using the symmetric ENC algo-
rithm and kENC. At the end of the decryption process,
Bob will be able to access the plaintext that Alice in-
tended to send him.

5 ECIES ALLOWED FUNCTIONS COMPARISON
This section presents the comparison of allowed KA,
KDF, HASH, ENC, and MAC functions that appear in the
ANSI X9.63 [11], IEEE 1363a [17], ISO/IEC 18033-2 [20],
and SECG SEC 1 [14] standards.

Table 2 shows the different KA functions allowed in
ECIES. In the context of ECIES, DH denotes the Diffie-
Hellman key agreement function [1] whose standard pro-
cedure was described in Section 4, whilst the term DHC
refers to the Diffie-Hellman variant that, in addition to
the sender’s and recipient’s keys, includes the cofactor in
the computation of the shared secret value by means of
the products h·u·V and h·v·U [7].

TABLE 2
ECIES KA FUNCTIONS PER STANDARD

X9.63 1363a 18033-2 SEC 1

DH DH DH DH

 DHC DHC DHC

The KDF functions considered in ECIES are presented
in Table 3, where X9.63-KDF is the KDF function defined
in the ANSI X9.63 standard, KDF1 and KDF2 are func-
tions defined by the ISO/IEC 18033-2 document, and
NIST-800-56 is the KDF concatenation function specified
in NIST SP 800-56A [13].

Fig. 2. ECIES encryption functional diagram.

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING, VOLUME 2, ISSUE 2, AUGUST 2010
 11

TABLE 3
ECIES KDF FUNCTIONS PER STANDARD

ANSI X9.63 IEEE 1363a ISO 18033-2 SECG SEC 1

X9.63-KDF X9.63-KDF KDF1 X9.63-KDF

 KDF2 NIST-800-56

In Table 4, the HASH functions used in ECIES are pre-

sented. SHA-1 is the well-known digest function included
in [21]; SHA-2 represents the family composed by SHA-
256, SHA-384, and SHA-512 [21]; SHA-2* is the SHA-2
family with the addition of the SHA-224 hash algorithm
[21]; RIPEMD is the set of hash algorithms defined in [22];
and WHIRLPOOL is the function defined in [23].

TABLE 4

ECIES HASH FUNCTIONS PER STANDARD

ANSI X9.63 IEEE 1363a ISO 18033-2 SECG SEC 1

SHA-1 SHA-1 SHA-1 SHA-1

 SHA-2 SHA-2 SHA-2*

 RIPEMD RIPEMD

 WHIRLPOOL

The symmetric ciphers considered in ECIES are shown

in Table 5, where TDES is the Triple DES algorithm in
CBC mode [24]; AES represents the Advanced Encryption
Standard family, i.e., AES-128, AES-192, and AES-256

[25]; and MISTY1, CAST-128, Camellia, and SEED are the
algorithms specified in [26], [27], [28], and [29], respec-
tively.

TABLE 5
ECIES ENC FUNCTIONS PER STANDARD

ANSI X9.63 IEEE 1363a ISO 18033-2 SECG SEC 1

XOR TDES TDES XOR

 AES AES AES

 MISTY1

 CAST-128

 Camellia

 SEED

In Table 6, the allowed MAC functions are shown.

DEA is the MAC function specified in ANSI X9.19 [30];
X9.71 is the reference to another MAC standard devel-
oped by ANSI [31]; MAC1, HMAC-SHA-1, and HMAC-
RIPEMD are defined in [32]; HMAC-SHA-2 represents
the family of HMAC algorithms, i.e., HMAC-SHA-256,
HMAC-SHA-384, and HMAC-SHA-512, described in [33];
HMAC-SHA-2* is the same as HMAC-SHA-2 with the
addition of the HMAC-SHA-224 function; and CMAC-
AES is the set of HMAC functions related to the AES
symmetric algorithm, that is, CMAC-AES-128, CMAC-
AES-192, and CMAC-AES-256, included in [34].

Fig. 3. ECIES decryption functional diagram.

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING, VOLUME 2, ISSUE 2, AUGUST 2010
 12

TABLE 6
ECIES MAC FUNCTIONS PER STANDARD

ANSI X9.63 IEEE 1363a ISO 18033-2 SECG SEC 1

DEA MAC1 H-SHA-1 H-SHA-1

ANSI X9.71 H-SHA-2 H-SHA-2*

 H-RIPEMD CMAC-AES

6 ECIES ADDITIONAL OPTIONS
Due to the significant number of functions implied in the
operation of ECIES, there are several options that must be
fixed in order to allow the recipient to correctly interpret
the cryptogram and successfully decrypt it.

In this section we present the most interesting addi-
tional options that must be taken into account by both
ECIES developers and users.

6.1 Point compression usage
When converting an elliptic curve point into a binary
string, sender and recipient must agree on one of the fol-
lowing two formats:
• Uncompressed: Both coordinates are taken into ac-

count. A header byte 0x04 indicates that this is the
format in use, so the byte string corresponding to the
elliptic curve point P=(Px,Py) would be 0x04|| Px
|| Py, where Px and Py are the binary representa-
tions of the coordinates (considered as integer num-
bers), and || is the concatenation operator.

• Compressed: Only the first coordinate is used, which
is signalled by using the header byte 0x02 or 0x03.
The proper value of the header is decided based on
some computations performed involving both coor-
dinates, so for any elliptic curve point only one
compressed binary representation, either 0x02||Px
or 0x03||Px, is valid.

6.2 Shared secret value generation
Independently of which of the KA functions is used (DH
or DHC), users face a variety of options regarding the
information that will be taken as input in the KDF func-
tion:
• Firstly, users must decide whether to use the whole

point P=(Px,Py), obtained as the output of the KA
function, or just the first coordinate of that point, Px.

• Secondly, they must decide whether to use the ele-
ment selected given the previous decision, or the
hash output of that element, as it is described in [19].

6.3 Keying material interpretation
Before obtaining the MAC and ENC keys from the output
of the KDF function, users must define the interpretation
order of that output. The two options available are:
• First, the MAC key; then, the ENC key (kMAC||kENC).
• First, the ENC key; then, the MAC key (kENC||kMAC).

CONCLUSIONS
ECIES is the best known encryption scheme in the scope
of ECC, which is one of the most interesting current cryp-
tographic trends. Even though ECIES provides some val-
uable advantages over other cryptosystems as RSA, the
number of slightly different versions of ECIES included in
the standards may obstruct the adoption of ECIES.

After analyzing the ECIES descriptions contained in
ANSI X9.63, IEEE 1363a, ISO/IEC 18033-2, and SECG
SEC 1, it can be stated that it is not possible to implement
a software version compatible with all those standards,
regarding both the specific operations and the list of al-
lowed functions and algorithms. In addition to this, im-
plementations may face another important problem,
which is the limitation in the functions available to the
developer in the application programming interface of the
target device (PCs, smart cards, mobile phones, etc.).

Taking into account both the interoperability and secu-
rity aspects, even though the newer versions (ISO/IEC
18033-2 and SECG SEC 1) may not be fully compatible
with legacy devices, they provide access to the most re-
cent and secure functions (e.g. SHA-2, AES, etc.), and in-
clude recommendations to avoid the latest criptographic
attacks, so those standards should be considered as the
starting point for any ECIES implementation.

ACKNOWLEDGMENT
This work has been partially supported by Ministerio

de Ciencia e Innovación (Spain) under the grant TEC2009-
13964-C04-02 and Ministerio de Industria, Turismo y
Comercio (Spain) in collaboration with CDTI and Te-
lefónica I+D under the project Segur@ CENIT-2007 2004.

REFERENCES
[1] W. Diffie and M.E. Hellman, “New directions in cryptogra-

phy”, IEEE Transactions in Information Theory, vol. 22, pp. 644-
654, 1976.

[2] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems”, Communica-
tions of the ACM, vol. 26, pp. 96-99, 1983.

[3] T. ElGamal. “A public key cryptosystem and a signature
scheme based on discrete logarithms”, IEEE Transactions on In-
formation Theory, vol. 31, pp. 469—472, 1985.

[4] V.S. Miller, “Use of elliptic curves in cryptography”, Lecture
Notes in Computer Science, vol. 218, pp. 417-426, 1986.

[5] N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of Com-
putation, vol. 48, pp. 203-209, 1987.

[6] Bundesamt für Sicherheit in der Informationstechnik (BSI),
Elliptic Curve Cryptography, TR 03111, 2009.

 http://www.bsi.de/literat/tr/tr03111/BSI-TR-03111.pdf
[7] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic

Curve Cryptography. New York: Springer-Verlag, 2003.
[8] National Institute of Standards and Technology (NIST), Recom-

mendation for key management – Part 1: General, SP 800-57, 2007.

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING, VOLUME 2, ISSUE 2, AUGUST 2010
 13

[9] V. Gayoso Martínez, L. Hernández Encinas, and C. Sánchez
Ávila, “A Comparison of the Standardized Versions of ECIES”,
Proceedings of the Sixth International Conference on Information As-
surance and Security – IAS 2010, Atlanta, 2010.

[10] J. Silverman, The Arithmetic of Elliptic Curves. New York: Sprin-
ger-Verlag, 1986.

[11] American National Standards Institute (ANSI), Public Key Cryp-
tography for the Financial Services Industry: Key Agreement and Key
Transport Using Elliptic Curve Cryptography, X9.63, 2001.

[12] Institute of Electrical and Electronics Engineers (IEEE), Standard
Specifications for Public Key Cryptography, Std. 1363, 2000.

[13] National Institute of Standards and Technology (NIST), Recom-
mendation for Pair-wise Key Establishment Schemes Using Discrete
Logarithm Cryptography, SP 800-56A, 2005.

[14] Standards for Efficient Cryptography Group (SECG), Elliptic
Curve Cryptography, SEC 1, version 2, 2009.

 http://www.secg. org/download/aid-780/sec1-v2.pdf
[15] National Institute of Standards and Technology (NIST), Digital

Signature Standard (DSS), FIPS 186-2, 2000.
[16] American National Standards Institute (ANSI), Public Key Cryp-

tography for the Financial Services Industry: The Elliptic Curve Digi-
tal Signature Algorithm (ECDSA), X9.62, 1998.

[17] M. Abdalla, M. Bellare, and P. Rogaway, “DHAES: An encryp-
tion scheme based on the Diffie-Hellman problem”, submission
to IEEE P1363a, 1998.
http://grouper.ieee.org/groups/1363/P1363a/contributions/
dhaes.pdf

[18] M. Abdalla, M. Bellare, and P. Rogaway, DHIES: An encryption
scheme based on the Diffie-Hellman problem, unpublished, 2001.
http://www.cs.ucdavis.edu/~rogaway/papers/dhies.pdf

[19] Institute of Electrical and Electronics Engineers (IEEE), Standard
Specifications for Public Key Cryptography - Amendment 1: Addi-
tional Techniques, Std. 1363a, 2004.

[20] International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC), Information Technology
– Security Techniques – Encryption Algorithms – Part 2: Asymme-
tric Ciphers, 18033-2, 2006.

[21] National Institute of Standards and Technology (NIST), Secure
Hash Standard, FIPS 180-2, 2002.

[22] H. Dobbertin, A. Bosselaers, and B. Preneel, “RIPEMD-160: A Streng-
thened Version of RIPEMD”, Lecture Notes in Computer Science, vol.
1039, pp. 71-82, 1996.

[23] International Organization for Standardization/International
Electrotechnical Commission (ISO/IEC), Information Technology
-- Security Techniques -- Hash-functions -- Part 3: Dedicated Hash-
functions, 10118-3, 2004.

[24] American National Standards Institute (ANSI), Triple Data En-
cryption: Modes of Operation, X9.52, 1998.

[25] National Institute of Standards and Technology (NIST), Ad-
vanced Encryption Standard, FIPS 197, 2001.

[26] M. Matsui, Specification of MISTY1 - A 64-bit Block Cipher, sub-
mission to NESSIE, 2000.
https://www.cosic.esat.kuleuven.be/nessie/workshop/submi
ssions/misty1.zip

[27] C. Adams, The CAST-128 Encryption Algorithm, RFC 2144, 1997.
 http://www.ietf.org/rfc/rfc2144.txt
[28] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Naka-

jima, and T. Tokita, “Camellia: A 128-Bit Block Cipher Suitable
for Multiple Platforms - Design and Analysis”, Lecture Notes in
Computer Science, vol. 2012, pp. 39-56, 2001.

[29] H.J. Lee, S.J. Lee, J.H. Yoon, D.H. Cheon, and J.I.Lee, The SEED
Encryption Algorithm, RFC 4269, 2005.

 http://www.ietf.org/rfc/rfc4269.txt
[30] American National Standards Institute (ANSI), Financial Institu-

tion Retail Message Authentication, X9.19, 1996.
[31] American National Standards Institute (ANSI), Keyed Hash

Message Authentication Code, X9.71, 2001.
[32] H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed Hashing

for Message Authentication, RFC 2104, 1997.
 http://www.ietf.org/rfc/rfc2104.txt
[33] National Institute of Standards and Technology (NIST), The

Keyed-Hash Message Authentication Code (HMAC), FIPS 198, 2002.
[34] National Institute of Standards and Technology (NIST), Recom-

mendation for Block Cipher Modes of Operation: The CMAC Mode
for Authentication, SP 800-38B, 2005.

INFORMATION ABOUT AUTHOR(S):

Víctor Gayoso Martínez obtained his Master Degree in Telecom-
munication Engineering from the Polytechnic University of Madrid in
2002. Since then, he has been working in topics related to smart
cards, Java technology and public key cryptography.

Luis Hernández Encinas obtained his Ph.D. in Mathematics from
the University of Salamanca, in 1992. He is a researcher at the De-
partment of Information Processing and Coding, Spanish Council for
Scientific Research (CSIC). His current research interests include
cryptography, algebraic curve cryptosystems, image processing and
number theory.

Carmen Sánchez Ávila received the Ph.D. in Mathematical
Sciences from the Polytechnic University of Madrid in 1993. At
present she is Professor in the Department of Applied Mathematics,
where during the last years she has been teaching different under-
graduate
courses as well as graduate courses in Biometric and Cryptography.

