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Abstract— Elliptic Curve Cryptography (ECC) is a relatively recent branch of cryptography based on the arithmetic of elliptic 
curves and the Elliptic Curve Discrete Logarithm Problem (ECDLP). Elliptic curve cryptographic schemes are public-key 
mechanisms that provide encryption, digital signature and key exchange capabilities. The best known encryption scheme based 
on ECC is the Elliptic Curve Integrated Encryption Scheme (ECIES), included in the ANSI X9.63, ISO/IEC 18033-2, IEEE 
1363a, and SECG SEC 1 standards. In the present work, we offer a comprehensive introduction to ECIES, detailing the 
encryption and decryption procedures and the list of functions and special characteristics included in aforementioned standards. 

Index Terms— Elliptic Curve Cryptography, ECIES, encryption scheme.  
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1 INTRODUCTION

HE development of public-key cryptography by 
Whitfield Diffie and Martin Hellman in 1976 [1] 
represented a revolution in the cryptographic world, 

overcoming some of the limitations inherent to symme-
tric-key algorithms such as the key distribution problem.  

Public-key schemes are complex designs that, in order 
to be useful, must be secure and efficient. In general, both 
characteristics depend on the mathematical problem on 
which they are based. Some examples of those problems 
are the integer factorization problem (IFP) used in the 
RSA cryptosystem [2], the discrete logarithm problem 
(DLP) used in the ElGamal scheme [3], and the elliptic 
curve discrete logarithm problem (ECDLP).  

In 1985, Victor Miller [4] and Neal Koblitz [5] indepen-
dently proposed a cryptosystem based on elliptic curves, 
whose security relies on the ECDLP problem. Elliptic 
Curve Cryptography (ECC) can be applied to data en-
cryption and decryption, digital signatures, and key ex-
change procedures. 

As in the case of the IFP and DLP, no algorithm is 
known that solves the ECDLP in an efficient way. Moreo-
ver, the ECDLP is regarded as the hardest of these three 
problems ([5] and [6]). From this fact derives one of the 
most important benefits of ECC: the key size. Keys in 
ECC are significantly shorter than in other cryptosystems 
such as RSA. A shorter key implies easier data manage-
ment, lower hardware requirements (in terms of buffers, 
memory, data storage, etc.), less bandwidth when trans-
mitting the keys over a network, and longer battery life in 

devices where it is important, such as mobile phones.  
A comparison between RSA and ECC key lengths is 

shown in Table 1 and illustrated in Fig. 1, with data taken 
from [7] and [8], where the security level is interpreted as 
the cryptographic strength provided by a symmetric en-
cryption algorithm using a key of n bits. 

 
TABLE 1 

KEY LENGTH COMPARISON OF RSA AND ECC 
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Fig. 1. Key length comparison for RSA and ECC cryptosystems. 

Security 
level 
(bits) 

RSA 
 key length 

(bits) 

ECC  
key length 

(bits) 

Approx. 
ratio 

80 1024 160-223 5-6:1 
112 2048 224-255 8-9:1 
128 3072 256-283 11-12:1 
192 7680 384-511 15-20:1 
256 15360 512-571 27-30:1 
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In the present work, we provide a comprehensive in-
troduction to the ECIES encryption scheme, detailing the 
encryption and decryption procedures and the list of 
functions and special characteristics included in the ANSI 
X9.63, IEEE 1363a, ISO/IEC 18033-2, and SECG SEC 1 
standards. 

This paper is organized as follows: Sections 2 presents 
a brief introduction to elliptic curves and ECC. Section 3 
enumerates the most important ECC implementations for 
key exchange, digital signatures and encryption applica-
tions. Section 4 describes in detail the ECIES scheme and 
the encryption and decryption steps performed during its 
operation. In Section 5 we offer a comparison of the 
ECIES allowed functions contained in the aforementioned 
standards. Finally, Section 6 provides a description of 
some of the additional options that must be taken into 
consideration not only when developing an ECIES im-
plementation, but also when using this encryption 
scheme as a final user. 

An earlier version of this work appeared in [9], where 
the comparison of the ECIES standads was included for 
the first time by the authors. The present contribution 
offers, in addition to what was presented in [9], an ex-
tended introduction to ECC, the fully detailed encryption 
and decryption processes, and the section dealing with 
the additional options that must taken into account when 
configuring ECIES.  

2 ELLIPTIC CURVE CRYPTOGRAPHY 
An elliptic curve E over the finite field (or Galois Field) 
GF is defined by the following equation, known as the 
Weierstrass equation for elliptic curves in non-
homogeneous form [7]:  

        64
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where ∈64321 ,,,, aaaaa GF and 0≠∆ , being ∆ the discri-
minant of E calculated in the following way [10]: 
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Condition 0≠∆ assures that the curve is non-singular, 
and thus there are no curve points with two or more dif-
ferent tangent lines.  

The homogeneous form of the Weierstrass equation is 
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and this implies the existence of a special point which can 
only be interpreted in the projective plane: the point at 
infinity O. This point is paramount in the usage of elliptic 
curves in cryptography, as it is the identity element that, 
together with the rest of the points of the elliptic curve 
and the addition operator (which allows to add two 
points of the elliptic curve, P and Q, in order to generate 
another point, R=P+Q), characterizes the elliptic curve 
with the mathematical structure of an abelian group. 

 When the same point is added several times 

to itself in the abelian group defined by an elliptic 
curve, the addition operator is transformed into the 
scalar multiplication, which in practice allows to multiply 
an elliptic curve point P by a positive integer n in order to 
produce another elliptic curve point, S=n·P. 

The number of points of an elliptic curve (concept also 
known as the cardinal or the order of the curve) is 
represented as #E. In contrast, the order of a point P that 
belongs to an elliptic curve E is the smaller integer n that 
produces the result n·P=O. 

From a cryptographic point of view, not every elliptic 
curve is useful. Cryptographers are interested in elliptic 
curves that form cyclic abelian groups, and also in elliptic 
curves with cyclic subgroups, so that the cofactor is a 
small number (e.g. 2, 4, etc.). As a consequence of La-
grange’s theorem (which states that for any finite group 
M, the order of every subgroup N of M divides the order 
of M), the order of the generator (i.e. the elliptic curve 
point that generates all the points of the cyclic subgroup) 
always divides the order of the elliptic curve (which not 
necessarily is a prime number). 

Two types of finite fields GF(q), with q = pm elements, 
are used in ECC: prime finite fields GF(p) (where p is an 
odd prime and m = 1) and binary finite fields GF(2m) 
(where p = 2 and m can be any integer greater than 1). 
When working with finite fields, using the proper change 
of variables it is possible to simplify the Weierstrass equa-
tion, obtaining new equations less general (they are 
adapted to specific finite fields) but easier to manage.  

If the characteristic of the finite field is 2, then 
GF(q)=GF(2m). If 01 ≠a , the equation (1) can be reduced to 
the form                  

                                           baxxxyy ++=+
232

,                                           (2) 

where the discriminant is b=∆ . 
If  01 =a , then the equation (1) is transformed into 

                                             baxxcyy ++=+
32

,                                           (3) 

where the discriminant is 4c=∆ . 
Moreover, if the characteristic of the finite field is 3, 

then two cases appear. If 2

2

1 aa −≠ , the equation (1) is re-
duced to 

                                                             baxxy ++=
232

,                                              (4) 

where the discriminant is ba3
−=∆ . 

In contrast, if  2

2

1 aa −= , then equation (1) is reduced to 

                                                                baxxy ++=
32

,                                             (5) 

where the discriminant is 3a−=∆ . 
Finally, if the characteristic of GF(q) is neither 2 nor 3, 

using the proper change of variables the equation (1) can 
be transformed into 

                                      baxxy ++=
32 ,                                                 (6) 

where the discriminant is ( )23
27416 ba +−=∆ . 

The set of parameters to be used in any ECC imple-
mentation depends on the underlying finite field. When 
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the field is GF(p), the set of parameters that define the 
curve is (p,a,b,G,n,h), whereas if the finite field is GF(2m), 
the set of parameters is (m,f(x),a,b,G,n,h). The meaning of 
each element in both sets is the following: 
• p is the prime number that characterizes the finite 

field GF(p). 
• m is the integer number specifying the finite field 

GF(2m). 
• f(x) is the irreducible polynomial of grade m defining 

GF(2m). 
• a and b are the elements of the finite field GF(q) tak-

ing part in the equations (2), (3), (4), (5), and (6). 
• G=(Gx,Gy) is the point of the curve that will be used 

as a generator of the points representing public keys.  
• n is the prime number whose value represents the 

order of the point G (i.e. n·G=O). 
• h is the cofactor of the curve, computed as h=#E/n, 

where n is the order of the generator G. 

3 ECC STANDARDS 

Theoretical findings related to either RSA or ECC cannot 
be used directly, as it is necessary to define data struc-
tures and procedures to manage the information. Cur-
rently there are three immediate applications for ECC in 
cryptography, as it is described in this section. 

3.1 Elliptic Curve Diffie-Hellman  
The main objective of key exchange protocols is to put in 
contact two or more entities communicating through an 
open and insecure channel, sharing a secret key that will 
provide data confidentiality and integrity to any informa-
tion exchanged using that channel.  

ECDH denotes the generic key exchange scheme based 
on the Diffie-Hellman mechanism applied to elliptic 
curves. Some practical implementations can be found in 
ANSI X9.63 [11], IEEE 1363 [12], NIST SP 800-56A [13], 
and SEC 1 [14] documents. 

3.2 Elliptic Curve Digital Signature Algorithm 
FIPS 186-2 [15] describes all the algorithms and digital 
signature schemes that can be used by any agency of the 
U.S. government. Currently those algorithms are DSA, 
RSA and ECDSA. ECDSA is the elliptic curve variant of 
the Digital Signature Algorithm (DSA). 

Both FIPS 186-2 [15] and ANSI X9.62 [16] state a mini-
mum key size of 1024 bits for RSA and DSA and 160 bits 
for ECC, which provides an equivalent security to a 
symmetric block cipher with a key size of 80 bits (see Ta-
ble 1).  

As a comparison, texts signed with a 1024 bits RSA key 
produce a digital signature of 128 bytes, whilst the same 
text signed with a 192 bits ECDSA key generates a digital 
signature of 48 bytes. 

3.3 Elliptic Curve Integrated Encryption Scheme 
The most extended encryption and decryption scheme 
based on ECC is the Elliptic Curve Integrated Encryption 
Scheme (ECIES). This scheme is a variant of the ElGamal 
scheme proposed by Abdalla, Bellare, and Rogaway in 
[17] and [18].  

Slightly different versions of ECIES can be found at 
ANSI X9.63 [11], IEEE 1363a [19], ISO/IEC 18033-2 [20] 
and SEC 1 [14] standards.  

As an example, any standard symmetric key encrypted 
with a 1024 bits RSA key produces an output of 128 bytes 
compared with the output of 84 bytes if the encryption is 
performed with one of the possible configurations of 
ECIES. 

4 ECIES 
As its name properly indicates, ECIES is an integrated 
encryption scheme which uses the following functions: 
• Key Agreement (KA): Function used for the genera-

tion of a shared secret by two parties. 
• Key Derivation Function (KDF): Mechanism that 

produces a set of keys from keying material and 
some optional parameters. 

• Encryption (ENC): Symmetric encryption algorithm. 
• Message Authentication Code (MAC): Data used in 

order to authenticate messages. 
• Hash (HASH): Digest function, used within the KDF 

and the MAC functions. 
In order to describe the steps that must be taken in or-

der to encrypt a clear message, we will follow the tradi-
tion and will assume that Alice wants to send a message 
to Bob. In that scenario, Alice’s ephemeral private and 
public keys will be represented as u and U, respectively. 
Similarly, we will refer to Bob‘s private and public keys 
as v and V, respectively.  

In ECC, private keys are elements of the finite field, ei-
ther GF(p) or GF(2m), whilst public keys are points belong-
ing to the elliptic curve and calculated as the product of 
the private key and the generator G of the elliptic curve. 
The steps (shown in Fig. 2) that Alice must complete are 
the following: 
1) Alice must create an ephemeral key pair consisting in 

the finite field element u and the elliptic curve point 
U=u·G. That key pair should be generated pseudo-
randomly exclusively for the current process. 

2) After the ephemeral keys u and U are generated, 
Alice will use the Key Agreement function, KA, in 
order to create a shared secret value, which is the re-
sult of the escalar multiplication u·V, considering as 
input values Alice's ephemeral private key u and 
Bob's public key V. 

3) Then, Alice must take the shared secret value u·V 
and optionally other parameters (e.g. the binary re-
presentation of the ephemeral public key U) as input 
data for the Key Derivation Function, KDF. The out-
put of this function is the concatenation of the sym-
metric encryption key, kENC, and the MAC key, kMAC. 

4) With the element kENC and the clear message, m, 
Alice will use the symmetric encryption algorithm, 
ENC, in order to produce the encrypted message, c. 

5) Taking the encrypted message c, kMAC and optionally 
other parameters, such as a text string previously 
agreed by both parties, Alice must use the selected 
MAC function in order to produce a tag. 

6) Finally, Alice will take the temporary public key U, the 
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tag, and the encrypted message c, and will send the 
cryptogram (U||tag||c) consisting of those three con-
catenated elements to Bob. 

Regarding the decryption process, the steps that Bob 
must perform (shown in Fig. 3) are the following: 
1) After receiving the cryptogram (U||tag||c)  from 

Alice, Bob must retrieve the ephemeral public key U, 
the tag, and the encrypted message c, so he can deal 
with those elements separately. 

2) Using the retrieved ephemeral public key, U, and his 
own private key, v, Bob will multiply both elements 
in order to produce the shared secret value v·U, as 
the result of this computation is the same that the 
product u·V, which is the core of the Diffie-Hellman 
procedure ([1] and [7]). 

3) Taking as input the shared secret value v·U and the 
same optional parameters that Alice used, Bob must 
produce the same encryption and MAC keys by 
means of the KDF procedure. 

4) With the MAC key kMAC, the encrypted message c, 
and the same optional parameters used by Alice, 
Bob will first compute the element tag*, and then he 
will compare its value with the tag that he received 
as part of the cryptogram. If the values are different, 
Bob must reject the cryptogram due to a failure in 
MAC verification procedure.  

5) If the tag value generated by Bob is the correct one, 
then he will continue the process by deciphering the 
encrypted message c using the symmetric ENC algo-
rithm and kENC. At the end of the decryption process, 
Bob will be able to access the plaintext that Alice in-
tended to send him. 

5 ECIES ALLOWED FUNCTIONS COMPARISON 
This section presents the comparison of allowed KA, 
KDF, HASH, ENC, and MAC functions that appear in the 
ANSI X9.63 [11], IEEE 1363a [17], ISO/IEC 18033-2 [20], 
and SECG SEC 1 [14] standards. 

Table 2 shows the different KA functions allowed in 
ECIES. In the context of ECIES, DH denotes the Diffie-
Hellman key agreement function [1] whose standard pro-
cedure was described in Section 4, whilst the term DHC 
refers to the Diffie-Hellman variant that, in addition to 
the sender’s and recipient’s keys, includes the cofactor in 
the computation of the shared secret value by means of 
the products h·u·V and h·v·U [7]. 

 

TABLE 2 
ECIES KA FUNCTIONS PER STANDARD 

X9.63 1363a 18033-2 SEC 1 

DH DH DH DH 

 DHC DHC DHC 

 

The KDF functions considered in ECIES are presented 
in Table 3, where X9.63-KDF is the KDF function defined 
in the ANSI X9.63 standard, KDF1 and KDF2 are func-
tions defined by the ISO/IEC 18033-2 document, and 
NIST-800-56 is the KDF concatenation function specified 
in NIST SP 800-56A [13]. 

 

Fig. 2. ECIES encryption functional diagram. 
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TABLE 3 
ECIES KDF FUNCTIONS PER STANDARD 

ANSI X9.63 IEEE 1363a ISO 18033-2 SECG SEC 1 

X9.63-KDF X9.63-KDF  KDF1  X9.63-KDF  

  KDF2 NIST-800-56 

 
In Table 4, the HASH functions used in ECIES are pre-

sented. SHA-1 is the well-known digest function included 
in [21]; SHA-2 represents the family composed by SHA-
256, SHA-384, and SHA-512 [21]; SHA-2* is the SHA-2 
family with the addition of the SHA-224 hash algorithm 
[21]; RIPEMD is the set of hash algorithms defined in [22]; 
and WHIRLPOOL is the function defined in [23]. 

 
TABLE 4 

ECIES HASH FUNCTIONS PER STANDARD 

ANSI X9.63 IEEE 1363a ISO 18033-2 SECG SEC 1 

SHA-1 SHA-1 SHA-1 SHA-1 

 SHA-2 SHA-2 SHA-2* 

 RIPEMD RIPEMD  

  WHIRLPOOL  

 
The symmetric ciphers considered in ECIES are shown 

in Table 5, where TDES is the Triple DES algorithm in 
CBC mode [24]; AES represents the Advanced Encryption 
Standard family, i.e., AES-128, AES-192, and AES-256 

[25]; and MISTY1, CAST-128, Camellia, and SEED are the 
algorithms specified in [26], [27], [28], and [29], respec-
tively. 

 

TABLE 5 
ECIES ENC FUNCTIONS PER STANDARD 

ANSI X9.63 IEEE 1363a ISO 18033-2 SECG SEC 1 

XOR TDES TDES XOR 

 AES AES AES 

  MISTY1  

  CAST-128  

  Camellia  

  SEED  

 
 
In Table 6, the allowed MAC functions are shown. 

DEA is the MAC function specified in ANSI X9.19 [30]; 
X9.71 is the reference to another MAC standard devel-
oped by ANSI [31]; MAC1, HMAC-SHA-1, and HMAC-
RIPEMD are defined in [32]; HMAC-SHA-2 represents 
the family of HMAC algorithms, i.e., HMAC-SHA-256, 
HMAC-SHA-384, and HMAC-SHA-512, described in [33]; 
HMAC-SHA-2* is the same as HMAC-SHA-2 with the 
addition of the HMAC-SHA-224 function; and CMAC-
AES is the set of HMAC functions related to the AES 
symmetric algorithm, that is, CMAC-AES-128, CMAC-
AES-192, and CMAC-AES-256, included in [34]. 

 

 

Fig. 3. ECIES decryption functional diagram. 
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TABLE 6 
ECIES MAC FUNCTIONS PER STANDARD 

ANSI X9.63 IEEE 1363a ISO 18033-2 SECG SEC 1 

DEA MAC1 H-SHA-1 H-SHA-1 

ANSI X9.71      H-SHA-2    H-SHA-2* 

  H-RIPEMD CMAC-AES 

  

6 ECIES ADDITIONAL OPTIONS 
Due to the significant number of functions implied in the 
operation of ECIES, there are several options that must be 
fixed in order to allow the recipient to correctly interpret 
the cryptogram and successfully decrypt it. 

In this section we present the most interesting addi-
tional options that must be taken into account by both 
ECIES developers and users. 

6.1 Point compression usage 
When converting an elliptic curve point into a binary 
string, sender and recipient must agree on one of the fol-
lowing two formats: 
• Uncompressed: Both coordinates are taken into ac-

count. A header byte 0x04 indicates that this is the 
format in use, so the byte string corresponding to the 
elliptic curve point P=(Px,Py) would be 0x04|| Px 
|| Py, where Px and Py are the binary representa-
tions of the coordinates (considered as integer num-
bers), and || is the concatenation operator. 

• Compressed: Only the first coordinate is used, which 
is signalled by using the header byte 0x02 or 0x03. 
The proper value of the header is decided based on 
some computations performed involving both coor-
dinates, so for any elliptic curve point only one 
compressed binary representation, either 0x02||Px 
or 0x03||Px, is valid. 

6.2 Shared secret value generation   
Independently of which of the KA functions is used (DH 
or DHC), users face a variety of options regarding the 
information that will be taken as input in the KDF func-
tion: 
• Firstly, users must decide whether to use the whole 

point P=(Px,Py), obtained as the output of the KA 
function, or just the first coordinate of that point, Px. 

• Secondly, they must decide whether to use the ele-
ment selected given the previous decision, or the 
hash output of that element, as it is described in [19]. 

6.3 Keying material interpretation 
Before obtaining the MAC and ENC keys from the output 
of the KDF function, users must define the interpretation 
order of that output. The two options available are: 
• First, the MAC key; then, the ENC key (kMAC||kENC). 
• First, the ENC key; then, the MAC key (kENC||kMAC). 

CONCLUSIONS 
ECIES is the best known encryption scheme in the scope 
of ECC, which is one of the most interesting current cryp-
tographic trends. Even though ECIES provides some val-
uable advantages over other cryptosystems as RSA, the 
number of slightly different versions of ECIES included in 
the standards may obstruct the adoption of ECIES.  

After analyzing the ECIES descriptions contained in 
ANSI X9.63, IEEE 1363a, ISO/IEC 18033-2, and SECG 
SEC 1, it can be stated that it is not possible to implement 
a software version compatible with all those standards, 
regarding both the specific operations and the list of al-
lowed functions and algorithms. In addition to this, im-
plementations may face another important problem, 
which is the limitation in the functions available to the 
developer in the application programming interface of the 
target device (PCs, smart cards, mobile phones, etc.).  

Taking into account both the interoperability and secu-
rity aspects, even though the newer versions (ISO/IEC 
18033-2 and SECG SEC 1) may not be fully compatible 
with legacy devices, they provide access to the most re-
cent and secure functions (e.g. SHA-2, AES, etc.), and in-
clude recommendations to avoid the latest criptographic 
attacks, so those standards should be considered as the 
starting point for any ECIES implementation. 
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