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Abstract 20 
 21 

Discarding is one of the most important topics in fisheries management, both for economic and 22 

ecological reasons. The European Union has included, through the current EU Common Fisheries 23 

Policy (CFP) Regulation, a discard ban with a quite controversial instrument: to enforce the landing 24 

of unwanted catch as a measure to promote their reduction. This management decision may 25 

condition the future of the fishing exploitation in European Sea. Within this context, both 26 

stakeholders and policy makers are now claiming for more effective tools that can be used to 27 

support the decision-making framework. In this study, we propose a simulation-based approach 28 

combining hierarchical Bayesian Spatial Models (H-BSMs) with the spatial-temporal module of 29 

Ecopath with Ecosim (EwE) approach, Ecospace, in the North Western Mediterranean Sea. In 30 

particular, we firstly assessed high-density discard areas using H-BSMs with fisheries and 31 

environmental data, and secondly, we simulated potential management options to identify the trade-32 

offs of the discard ban application within these areas using EwE. We argue that coupling novel 33 

methods, as the ones used in this study, could be a decisive step to identify the best management 34 

action among a set of different scenarios within the context of the discard ban application in 35 

European Seas. 36 

 37 

 38 

Keywords: Bayesian model, discards, Ecospace, food web model, landing obligation, 39 

Mediterranean Sea, spatial ecology. 40 

 41 

 42 

 43 

 44 

 45 



2 

Introduction 46 

Worldwide discarding is one of the most important issues in fisheries management as it has negative 47 

impacts on ecosystems, the economy, and society [1, 2]. Indeed, discards represent a wasteful use of 48 

resources and, consequently, generate future economic losses for fisheries, populations, 49 

communities and ecosystems [3]. 50 

There is an increasing effort to understand the complex array of factors that influence the discard 51 

process [4:6] and to assess the spatial-temporal dynamics surrounding this process [7:10]. 52 

Within the European Union (EU hereafter) waters, a number of factors are responsible for the high 53 

level of discards, including the use of non-selective fishing gear, lack of market value for certain 54 

species, minimum landing size restrictions, and the overlap between fishing grounds and species 55 

home range [11]. One of the most important recent changes regarding discard management is the 56 

shift in focus to what is caught rather than what is landed [12, 13]. The European Common 57 

Fisheries Policy (CPF) introduced a ‘discard ban’ measure between January 1, 2015 to the January 58 

1, 2019 for all regulated species in EU waters (Article 15, EU Regulation 1380/2013), which 59 

determined that all catches of regulated commercial species  be landed and counted, and compared 60 

against their quota. This management strategy, should it be extended, could determine the future of 61 

fishing exploitation in European seas with short-term and long-term socio-economic and ecological 62 

implications. For these reasons, stakeholders and policy makers alike now demand more effective 63 

tools to support the decision-making framework. 64 

To explore alternative management options and to identify the ecological trade-offs of the discard 65 

ban, a simulation-based approach that couples species distribution models, specifically the 66 

hierarchical Bayesian Spatial Models (H-BSMs), with ecosystem models, using the food-web 67 

model Ecopath with Ecosim (EwE), might offer an innovative approach. H-BSMs are particularly 68 

appropriate to identify discard hotspots as they can explicitly model the spatio-temporal variability 69 

of discards [14]. When geo-referenced discard data are analyzed, it is common to include 70 
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geographic coordinates (latitude and/or longitude) in the models as continuous explicative variables 71 

[15, 16], given that fixed effects and, therefore, the spatial dependency of observations is not 72 

considered. Similarly, a non-random spatial variable [17] or geographic fishing boundaries [18] can 73 

be included as predictors in models to try to capture spatial discard trends [7]. However, only 74 

geostatistical techniques intrinsically incorporate a component to account for spatial autocorrelation 75 

[19, 20]. H-BSMs extend the concept of spatial autocorrelation in multilevel structures, including a 76 

spatial random effect that is a stochastic process indexed in space, which represents all spatially 77 

explicit processes that may influence the discard pattern. By applying H-BSMs to discard data the 78 

multiple sources of uncertainty associated with both the observed data and the discard process can 79 

be included in the analysis to generate a more robust statistical inference. Moreover, H-BSMs is not 80 

only better able to identify discard hotspots, but also predict them and, therefore, contribute to better 81 

spatial management planning [21, 7, 8, 10, 22].  82 

Ecological processes and human activities, in addition to environmental factors, can indeed affect 83 

the discard phenomena and need to be explicitly considered in process-based oriented modelling, 84 

such as Ecopath with Ecosim food-web modelling (EwE) [23]. EwE is an ecosystem modelling 85 

approach that builds food-web models by describing the ecosystem through energy flows between 86 

functional groups with similar functional and ecological traits. Within EwE, Ecospace is a spatial-87 

temporal dynamic module that represents temporal and spatial 2D dynamics of trophic web 88 

components [24, 25]. This approach  has been widely used to quantify the spatial impact of fisheries 89 

on marine species [26], to analyse the impact of management scenarios such as the establishment of 90 

marine protected areas [27], to develop spatial optimization routines [28], and to assess the impact 91 

of climate change on marine ecosystems [29, 30]. EwE has also been used to model the ecological 92 

impacts of changes in fishing gear, for example to measure the ecological consequences of reducing 93 

discarding from bottom trawling in the NW Mediterranean Sea [31]. Recently a new Ecospace 94 

module has been implemented that integrates niche modelling into the food web modelling 95 
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approach [32: 36]. This new tool, combined with the spatial-temporal framework module of EwE 96 

[30], bridges the gap between envelope environmental models and food web models [32]. 97 

In this study, we apply Bayesian spatial modelling with ecological modelling techniques to analyze 98 

fishery discard and environmental data in the Southern Catalan Sea ecosystem. First, the Bayesian 99 

approach is used to model the amount and distribution of discards in the study area. Next, we use 100 

the EwE approach to evaluate the ecological consequences of discards on commercial and non-101 

commercial species under different degrees of the discard ban by examining a broad number of 102 

ecological indicators related to trophic network dynamics. Finally, we reflect on how the 103 

simulation-based coupling framework tested here can provide a new and useful tool to explore 104 

management strategies that benefit fishers and possibly improve economic revenues while reducing 105 

the ecological impacts and pressure on non-target species. 106 

 107 

Material and Methods 108 

Study area 109 

The study was carried out in the Southern Catalan Sea (Figure 1), an area of relatively high 110 

productivity due to a joint effect of the Northern current and the run-off of the Ebro and Rhone 111 

rivers [37, 38]. The continental shelf in this area is narrow, with the northern current flowing south-112 

westwards along the continental slope toward the wider continental shelf surrounding the Ebro 113 

Delta River. This area is an important fishing ground for both small pelagic and demersal species 114 

[39, 40], as well as at risk predatory marine species, such as marine mammals and seabirds [41].  115 
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 116 

Figure 1: Study area located in the North-western Mediterranean Sea. 117 

 118 

Discards, landings and fishing effort datasets 119 

Catch and discards data from 2009 to 2016 were collected by the Instituto Español de Oceanografía 120 

(IEO, Spanish Oceanographic Institute), under the EU Data Collection Framework (EC Regulation 121 

199/2008) [42]. A métier approach was used in the sampling design, which is a method that 122 

formally segments fisheries by vessel type, gear, fishing grounds and target species [8]. On-board 123 

observers collected monthly discards data for each sampled haul as estimation between landings 124 

and the total catch. The reference fleet for this study was the bottom otter trawl fleet that operates in 125 

the Southern Catalan Sea (Geographical Sub Area 06 North), which targets a mixed species métier 126 

(hereafter OTB-MIX). The OTB-MIX includes trawlers that usually operate in the continental shelf 127 
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waters (from 50 to 200 m depth) with different target species. European hake (Merluccius 128 

merluccius), red mullet (Mullus barbatus), Norway lobster (Nephrops norvegicus), and octopus 129 

(Octopus vulgaris), are the most common species. These trawlers make short hauls of about 2-4 130 

hours with about 2-3 fishing hauls per trip and land in Castellón and Tarragona harbours, the two 131 

main fishing ports in the study area.  132 

Since the catch and discard statistics varied markedly among vessels, catch per unit effort (CPUE) 133 

and discards per unit effort (DPUE) were calculated by the catch and discard weight per haul 134 

duration (kg/h). Two CPUE variables were calculated: one of the total discards (hereafter CPUEtot), 135 

and the other of the regulated species (hereafter CPUEreg) defined in Annex III of Regulation (EC) 136 

No 1967/2006 (see Appendix 1 for the specific regulated species). Similarly, two DPUE response 137 

variables were created: one representing total discards in order to assess the overall ecological 138 

impact of the fishery (hereafter DPUEtot), and the other representing the discards of regulated 139 

species, which have a minimum landing size (hereafter DPUEreg). Finally, all DPUE measures were 140 

log-transformed to down weight extreme values, to achieve normality and ensure a better fit of the 141 

models (Shapiro and Kolmogorov-Smirnov tests, p-values < 0.05). Landing datasets collected in the 142 

fishery harbours located in the studied area where the OTB-MIX métier land were provided by the 143 

General Secretariat of Fisheries of the Spanish Ministry of Agriculture, Food and Environment 144 

(MAPAMA).  145 

 146 

Environmental data 147 

To predict DPUE we included both oceanographic variables (i.e., Sea Surface Temperature (SST), 148 

Sea Bottom Temperature (SBT), Sea Surface Salinity (SSS), Sea Bottom Salinity (SBS), Primary 149 

Production (PP)) and physical descriptors (i.e., bathymetry and type of the seabed) as possible 150 

predictors in the models (Table 1). 151 

Oceanographic variables were derived for the entire study area from a regional application of the 152 
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ROMS model [43] which is coupled with a biogeochemical nitrogen-based plankton model [44] 153 

already tested for spatial applications in the Mediterranean Sea [45, 33, 36]. Implementation of the 154 

ROMS was adapted to the Catalan Sea with a grid of 2 x 2 km resolution and a vertical resolution of 155 

40 levels. Climatologies were used as boundary conditions and were derived from the NEMO 156 

model (available from http://www.nemo-ocean.eu) [46], following the same procedure used in Coll 157 

et al., [47]. Bathymetry and the types of seabed were obtained from the European Marine 158 

Observation Data Network (EMODnet Bathymetry Consortium (2018): EMODnet Digital 159 

Bathymetry (DTM), http://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6).  160 

Specific values for the environmental variables In each fishing location were extracted using the 161 

“extract” function of the “raster” package [48] in the R software [49]. 162 

Both physical and oceanographic variables were explored for correlation, collinearity, outliers, and 163 

missing data before they were included in the model. Correlation among variables was checked by 164 

performing a Spearman’s correlation test with the “cor.test” function of the R software. Collinearity 165 

was tested by computing the generalized variance-inflation factors (GVIF), which are the corrected 166 

VIF values by the number of degrees of freedom of a predictor variable [50]. The GVIF was 167 

assessed using the “corvif” function in R software. All variables used in the models have a GVIF 168 

lower than 3 and a Spearman’s correlation lower than 0.70 (p-value >0.05). Outliers and missing 169 

data were checked using the procedure elaborated by Zuur et al. [51]. 170 

Environmental predictors, as well as the computed CPUEs measures, were standardized (difference 171 

from the mean divided by the corresponding standard deviation) to facilitate visualization and 172 

interpretation. 173 

 174 

Modelling high density DPUE areas 175 

Hierarchical Bayesian spatial models (H-BSMs) were used to identify the high-density DPUE areas 176 

for both total discards and discard of regulated species. Specifically, the expected values of DPUE 177 

http://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6
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in each haul (μDPUE) were related to the spatial, temporal and environmental covariates according 178 

to the general formulation, 179 

µDPUE
i jk

= X
i j
b+ Y

j
+ W

i
+ Z

k
                                                  (Eq. 1) 180 

where β represents the vector of the regression coefficients, Xij is the vector of explanatory 181 

covariates listed in Table 1 at year j and location i, Yj is the component of the temporal unstructured 182 

random effect in year tj,, Wi represents the spatially structured random effect at location i, and Zk is 183 

the random effect of the vessel. The remaining potential source of DPUE variability could be due to 184 

differences among vessels caused by a skipper effect or unobserved gear characteristics. To remove 185 

bias caused by vessel-specific differences in fishing operation, we included a vessel effect. In 186 

addition to the environmental variables, CPUE measures (CPUEtot and CPUEreg) for each fishing 187 

haul were included as possible predictors of DPUE variability, as well as a month factor to assess 188 

intra-annual variations.  189 

H-BSMs were fitted using the Integrated Nested Laplace Approximation (INLA) package [52] in 190 

the R environment. INLA performs Stochastic Partial Differential Equations (SPDE)  [53] for the 191 

spatially structured random effect, which approximates a continuously indexed Gaussian Field (GF) 192 

with a Matérn covariance function by a Gaussian Markov Random Field (GMRF). The spatial effect 193 

is a numeric vector that links each observation to a spatial location and, thus it accounts for 194 

independent region-specific noise that cannot be explained by the available covariates [54]. This 195 

component is defined in terms of two hyperparameters, κ and τ, that are related to the range and 196 

scale of the spatial effect [55]. A multivariate Gaussian distribution with a mean of zero and a 197 

Matérn spatially-structured covariance matrix were assumed for the spatial component (see [54] for 198 

more information about how to express prior knowledge of spatial effects).  199 

A vague Gamma prior distribution with shape and scale parameters of 1 and 5e-05, respectively, 200 

was assumed for the precision parameter γ of the temporal component. Vague prior distributions 201 
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with a zero-mean and a standard deviation of 100 were used for all the fixed effects since no prior 202 

information was available.  203 

Model selection was performed by testing all possible combinations among the non correlated 204 

variables considering the Watanabe Akaike Information Criterion (WAIC) [56] for goodness of fit 205 

and the Log-Conditional Predictive Ordinates (LCPO) [57] for predictive quality measures.  206 

 207 

Ecopath with Ecosim modelling approach 208 

The basic routine of Ecopath is to provide a snapshot of the structure and flows of a food web and 209 

describe the balance between production of functional groups and consumption within an 210 

ecosystem. Each functional group can represent a species, a sub-group of a species (e.g., juveniles 211 

and adults) or a group of species with functional and ecological similarities. Ecopath is the starting 212 

point to develop temporal and spatial-temporal modelling approaches using Ecosim and Ecospace 213 

[22]. A description of the EwE methodology, main applications and limitations can be found in the 214 

literature [23, 58, 59, 60]. 215 

The Ecopath model uses a system of linear equations to describe the average flows of mass and 216 

energy between these groups during a specific period of time, (normally a year). The flow to and 217 

from each group is described by the following equation: 218 

 )EE -(1 · (P/B) · B +BA + E +Y + C D · (Q/B) · B = (P/B) · B iii ii iijjjii                 (Eq. 2) 219 

where Bi is the biomass of group i, (P/B)i is the production per unit of biomass, Yi is the total fishery 220 

catch rate, Ei is the net migration rate (emigration−immigration), BAi is the biomass accumulation 221 

rate, EEi is the ecotrophic efficiency, which is defined by the proportion of production that is 222 

utilized in the system, Bj is the biomass of consumers or predators j, (Q/B)j is the consumption per 223 

unit of biomass j, and DCij is the fraction of i in the diet of j.  224 

For each functional group i, at least three of the four basic parameters are required: biomass (Bi), 225 
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consumption rates (Q/B)i   and production rates (P/B) i, and ecotrophic efficiency (EEi). The fourth 226 

parameter is estimated in the model [23]. Diet composition (DCij) and fishing yields and other 227 

exports (Yi and Ei) are also needed. 228 

Ecosim is a temporal dynamic module that is able to simulate ecosystem effects of (mainly fishing) 229 

mortality changes and environmental forcing over time [23, 24, 25]. The model uses a system of 230 

time-dependent differential equations from the baseline mass-balance model (see Eq. 3), where the 231 

biomass growth rate is calculated as: 232 

iiiiijijiii B )e + F + (M - I +  Q -  Q g  = /dtdB  
                             (Eq. 3) 233 

where dBi/dt represents the biomass growth rate of group i during the time interval dt, gi is the net 234 

growth efficiency (production/consumption ratio, P/Q), Mi is the natural mortality rate 235 

((P/B)i·Bi(1−EEi)), Fi is the fishing mortality rate, Ii is immigration rate, and ei is emigration rate. 236 

The two sums from equation 3 estimate consumption rates. The first expresses total consumption by 237 

group i, and the second predation by all predators in the same group i. The consumption rates, Q, 238 

are calculated based on the ‘foraging arena’ concept, where Bi’s are divided into vulnerable and 239 

non-vulnerable components [61]. 240 

The set of Ecosim equations are used in the spatial routine Ecospace, the spatial-temporal model of 241 

EwE, which predicts the biomass dynamics in a two-dimensional space [24]. ‘Water’ cells in 242 

Ecospace can be assigned to contain one or more habitat types and species can be assigned 243 

preferred habitats [23]. Fishing fleets can be limited to fish in specific habitats and can be subjected 244 

to zonal fishing regulations (no take zones) [24]. The model further incorporates organism dispersal 245 

rates and other behavioural parameters [23]. 246 

In this study, the ecosystem model of the Southern Catalan Sea that was developed with Ecopath 247 

with Ecosim (EwE) [62, 63, 64] was run to analyze the spatial-temporal dynamics of marine 248 

resources and the ecosystem under different discard ban policy scenarios. This model, previously 249 



11 

fitted to 1978- 2010 time series [65] includes 40 functional groups and four fishing fleets (bottom 250 

trawling, purse seining, long lining and tuna fishing), and covers an area of 5,000 km
2
 with depths 251 

from 50 to 400 m [66]. A previous Ecospace model, which was developed to evaluate the combined 252 

effects of environmental conditions and fishing in the ecosystem dynamics of the Southern Catalan 253 

Sea, was used as a starting point with the original configuration as the default setting [66]. The 254 

environmental variables used to parameterize the Ecospace model were the same as those used for 255 

the H-BSMs. The primary production spatial pattern was used to drive the dynamics of the 256 

phytoplankton group (through the variation of the initial P/B value) of the food web model [64]. 257 

 258 

Ecosystem simulations and analyses 259 

Starting from the original Ecosim model and previously developed Ecospace configurations [64, 65, 260 

66], a series of spatial-temporal simulations were run and compared against a non-discard ban 261 

scenario. Spatial-temporal simulations were developed for the period 2016 to 2020 and the model 262 

was let to keep running until 2030 (Table 2). EwE version 6.6 and the spatial-temporal framework 263 

module of EwE [30] were used to implement the discard ban scenarios at specific points in time and 264 

space. 265 

 266 

A first group of simulations was carried out and ran until 2030 using an Ecosim temporal dynamic 267 

model and did not include spatial information: 268 

S0: Baseline simulation - the original Ecosim model fitted to time series from 1978 to 2010 was 269 

used and ran to 2030 and did not include implementation of a discard ban policy.  270 

S1: total implementation of the discard ban on regulated species, i.e., 100% reduction of discards of 271 

these species in the entire study area from 2016 to 2020 and run to 2030. 272 
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S2: total implementation of the discard ban on all discarded species (both regulated and not 273 

regulated species), i.e., 100% reduction of all discards in the entire study from 2016 to 2020 and run 274 

to 2030. 275 

 276 

In a second group of simulations, spatial-temporal scenarios were developed, which integrated the 277 

H-BSMs outputs in the spatial-temporal model Ecospace [47], and reduced 100% of discards from 278 

2016 to 2020, while running to 2030: 279 

S3: total implementation of the discard ban (100% reduction of discards) of regulated species in the 280 

entire study area. 281 

S4: total implementation of the discard ban for total discarded species in the entire study area. 282 

S5: total implementation of the discard ban for the regulated species only in the high intensity 283 

DPUEreg areas identified by H-BSMs. 284 

S6: total implementation of the discard ban for total discarded species only in the high intensity 285 

DPUEtot areas identified by the H-BSMs. 286 

 287 

Ecological indicators 288 

Results from scenarios were compared by using a set of selected ecological indicators that were 289 

calculated for three different years: the year the discard ban policy started (2016), the year set  for 290 

full policy implementation (2020), and 10 years after full implementation of the ban (2030) (Table 291 

3).  292 

The ecological indicators that were chosen were divided into two categories: (1) biomass and catch-293 

based indicators, such as total catch, total catch of important commercial species (such as hake, red 294 

mullets, Norway lobster, anchovy, sardine, flatfish and demersal species), total biomass of exploited 295 

species, total biomass of important commercial species, total invertebrates over fish biomass, total 296 

demersal over pelagic biomass, predatory biomass; and (2) ecosystem and biodiversity-based 297 
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indicators, such as, Kempton’s Q biodiversity index, marine trophic index (MTI), Trophic level of 298 

the catch (TLc) and TLco 3.25. These are all common indicators that are regularly extracted from 299 

EwE modelling [64, 65, 67]. The Kempton’s Q index was calculated as a relative index of biomass 300 

diversity based on the Kempton’s Q index developed for expressing species diversity [61]. This 301 

index includes those species or functional groups with a TL ≥ 3, so an increase in this index implies 302 

an increase in the biomass of various high TLs organisms. The TLc was used to describe how the 303 

fishery and ecosystem might interact because of modelled policy measures [23]. 304 

 305 

Results 306 

A total of 201 fishing hauls were sampled in the study area over the period 2009 to 2016. Total 307 

catch and discards for that period were 49,517 kg and 12,720 kg respectively, which is equivalent to 308 

26% of all fisheries catch during that period. Overall, the most discarded species were Scyliorhinus 309 

canicula (726.93 kg), Engraulis encrasicolus (631.78 kg) and Galeus melastomus (604.97 kg). 310 

Among the regulated species, the most discarded were Engraulis encrasicolus, Sardina pilchardus 311 

(356.19 kg) and Pagellus acarne (148.24 kg).  312 

 313 

Hierarchical Bayesian spatial models  314 

SSS was highly correlated to SBS (r>0.80) and SST was highly correlated to SBT (r>0.80).  315 

Moreover, the variables SSS and SST have a Generalized Variance Inflation Factors of (GVIF)>3. 316 

Given this, separate H-BSM runs were performed and each run included only one of the highly 317 

correlated variables to determine which one would explain the most discard variance.  318 

For total discards, the selected predictors (based on the lowest WAIC and LCPO values) were 319 

CPUEtot, month, SBT, PP and the vessel random effect, plus a stochastic spatial component that 320 

accounts for the residual spatial autocorrelation. No relevant inter-annual differences were found in 321 

this area for the DPUEtot variability. Indeed, all H-BSMs that contained the temporal effect revealed 322 
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higher WAIC and LCPO values that those lacking.  323 

The findings showed a positive relationship between CPUEtot and DPUEtot (posterior mean= 1.65; 324 

95% CI= [0.96; 1.84]). Conversely, both SBT and PP presented negative relationships with DPUEtot 325 

variability (posterior mean= -0.65; 95% CI= [-0.33; -0.10]; posterior mean= -1.15; 95% CI = [-1.19; 326 

-0.53], respectively). Thus, higher values of DPUEtot were found in colder waters with lower 327 

concentrations of PP. The months with higher estimated coefficients than the reference level 328 

(January) were February and May (posterior mean = 1.23; 95% CI= [0.41; 1.92]; posterior mean= 329 

1.05; 95% CI = [0.34; 1.52], respectively). By contrast, September was found to be the month with 330 

the lowest DPUEtot values. 331 

Maps of the DPUEtot revealed latitudinal patterns, and the highest values were reached in the 332 

southern part of the study area (Figure 2) where the continental shelf is wider. The spatial 333 

component effect was consistent and revealed a similar pattern (Figure 3). 334 
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 335 

Figure 2: Posterior predictive distribution of the DPUEtot: mean (a); 95% credible intervals with 336 

the first (b) and third (c) quantiles and the standard deviation (d). 337 

 338 
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 339 

Figure 3: Posterior distribution of the spatial effect of the DPUEtot: mean (a); 95% credible 340 

intervals with the first (b) and third (c) quantiles and the standard deviation (d). 341 

 342 

With respect to DPUEreg, the relevant covariates for the best model were CPUEreg bathymetry and 343 

PP together with the vessel and spatial random effects. As for the DPUEtot, no inter-annual 344 

variability was identified for the DPUEreg. Moreover, no monthly variation was found for DPUreg. A 345 

positive relationship was found between DPUEreg and the bathymetry, (posterior mean= 1.42; 95% 346 

CI= [0.74; 2.01]), and between DPUEreg and CPUEreg (posterior mean= 1.84; 95% CI= [1.02; 347 

2.34]). By contrast, a negative relationship was found between PP and DPUEreg (posterior mean= -348 

0.49; 95% CI= [-0.53; -0.09]).  349 

Both the predictive spatial DPUEreg values map and the posterior mean of the spatial effect map 350 

(Figures 4 and 5) demonstrated that the southern part of the study area has the  highest DPUEreg 351 

concentrations. A specific marked hotspot with higher DPUEreg was identified in waters located off 352 
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Castellón. 353 

 354 

 355 

Figure 4: Posterior predictive distribution of the DPUEreg: mean (a); 95% credible intervals with 356 

the first (b) and third (c) quantiles and the standard deviation (d). 357 

 358 
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 359 

Figure 5: Posterior distribution of the spatial effect of the DPUEreg: mean (a); 95% credible 360 

intervals with the first (b) and third (c) quantiles and the standard deviation (d). 361 

 362 

Ecosystem scale simulations of the discard ban impact 363 

Compared to the baseline scenario of no discard ban, the simulations performed with the ecosystem 364 

EwE model that considered regulated species predicted that the biomass and hake catch would 365 

increase, especially when submitted to spatial-temporal effects. (Table 4 and Figure 6a). These 366 

increases were higher in simulations that extended the discard ban to all discarded species, not just 367 

regulated ones. Results for Norway lobster showed that biomass increased when compared to the 368 

baseline scenario (Figure 6b), although there were no clear increases in catches. On the contrary, 369 

anchovy and sardine biomass and catches either slightly declined or increased depending on the 370 

simulation. For anchovy, the discard ban on all species had a larger negative effect than it did on the 371 
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discard ban for only regulated species, whereas similar results were observed for sardine in both 372 

simulations of the discard ban. Result for flatfish species were contrasting. A discard ban on 373 

regulated species was shown to have large positive effects, whereas a discard ban on all discarded 374 

species predicted negative results, both in terms of biomass and catch (Table 4).  375 

Simulations with the ecosystem EwE model predicted slight declines (mostly < 1%) of total catch 376 

and total biomass in both 2020 and 2030 under the different simulations tested in the study, when 377 

compared to 2016 (Table 5). Overall, the discard ban is predicted to have moderate positive effects 378 

on demersal fish catch and biomass, a slight negative impact on invertebrates (less than 1% change) 379 

and a slight negative impact on total fish biomass (less than a 2% change). Changes to the total 380 

invertebrates/total fish biomass were also predicted to be small, and results were contrasting: 381 

positive results were obtained when the discard ban was simulated on regulated species, and 382 

negative results were obtained when the discard ban was simulated on all discarded species. 383 

Biomass results for other predatory species contrasted between temporal simulations (which 384 

revealed a notable increase in biomass) and spatial-temporal simulations (which revealed either a 385 

slight increase or decline) (Table 5). The Kempton’s Q index mainly revealed slight positive 386 

increases in the simulation of the discard ban on retained species, but slight negative increase was 387 

observed when all species were banned from discarding. A similar behaviour was observed with the 388 

MTI indicator, whereas the TLc slightly increased in all simulations, including the baseline (Table 389 

5). 390 
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 391 

Figure 6: Ecospace predicted distribution of biomass (log(t·km
-2

)) for European hake (a) and 392 

Norway Lobster (b) in the study area under Scenario 6 of discard banning (Table 2) 393 

 394 

 395 

 396 

Discussion 397 

Solving the discards problem is an urgently need to better manage fisheries. However, it is quite a 398 

complex issue given that discards vary substantially over time and space and are due to numerous 399 

factors, including environmental conditions and species composition, as well as fisheries and 400 

economic characteristics [7, 8]. The new obligation to land discards in European Seas may have 401 

unpredictable and unwished ecological, socio-economic and operational impacts [2, 68]. For these 402 

reasons we tested a simulation-based approach that combined H-BSMs with spatial-temporal EwE 403 

modelling to assess the potential effects of implementing the ‘landing obligation’ in a highly 404 

exploited ecosystem in the North Western Mediterranean Sea. Overall, we found that the amount of 405 

discard in our study area between 2009-2016 accounted for 26% of the total catch. Similar studies 406 

on demersal trawls reported higher discard ratios, such as in the north-eastern Mediterranean Sea 407 

(38-49%) [69:71] and in the south Spain area (31-34%) [7]. However, the discard ratio in our study 408 

area was higher than the ratio reported for mid-water trawls in the Turkish Black Sea (5.1%) [72] 409 

and in the Adriatic Sea (up to 15%) [73].  410 

From a species composition point of view, a large portion of discard was of the elasmobranch 411 

species, which are considered vulnerable species due to their biology and K-selection life-history 412 
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traits [74]. Discard non-target vulnerable species may have negative consequences for both 413 

commercial and non-commercial species owing to the effects on species interactions and cascading 414 

effects throughout the trophic web. 415 

Our findings did not identify any relevant temporal trends over the years in either DPUE measures. 416 

On the contrary, intra-annual variability was a relevant factor for the DPUEtot. February and May, 417 

specifically, were the months that recorded the highest DPUE values. This could be attributed to the 418 

fisher targeting behaviour during these months [75], and in general due to spatial seasonal patterns 419 

of the marine community [76, 77]. 420 

Furthermore, discarding is a decision taken on board and based on a given fisher’s discarding 421 

pattern, which is influenced by different factors, such as market dynamics for a given species or 422 

other legal and regulatory constraints. Indeed, for both DPUE measures, H-BSMs identified the 423 

random vessel effect to be a relevant variable that could affect the discard amount. This effect 424 

should collect this hidden variability that otherwise could not be analyzed. 425 

Moreover, for both DPUE measures, results showed a direct and positive relationship between the 426 

CPUE and the DPUE, meaning that more catches lead to more discard. This result is in line with 427 

other studies that found the same relationship in other exploited areas [6, 8]. 428 

In terms of which variables could be driving the spatial distributions and discard abundance, some 429 

differences were found between total discards and regulated species discards. For example, 430 

bathymetry was only an important factor influencing the DPUE variability for regulated species. 431 

This result is in line with other discard studies that highlighted depth-related variations of DPUE 432 

quantities as this is linked to differences in species composition and in the length-frequency 433 

distribution of some particular species as the Boops boops [6, 78]. 434 

Both total discards and regulated species discards were affected by the primary production 435 

concentration (PP). Waters with lower concentrations of PP recorded higher DPUE values. 436 

Similarly, the sea bottom temperature (SBT) was negatively related to the DPUE of total discards. 437 
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Thus, areas with colder and less productive waters were also the areas with high discard 438 

abundances. These results can potentially be explained by two different hypotheses or a 439 

combination of both: 1) the “environmental hypothesis” whereby these environmental variables are 440 

directly correlated to the habitat preferences of métier target species (i.e., European hake, red 441 

mullet, Norway lobster), which are also favourable to the organisms that are part of the discard; 2) 442 

the “effort hypothesis” whereby fishing is more intense in areas with these characteristics and where 443 

the stock of target species is more abundant. 444 

The spatial effect, which indicates the intrinsic spatial variability of the discards after excluding 445 

explicative variables, was relevant for both DPUE measures (total species and regulated species). 446 

This result could reflect the effect of other hidden factors, such as community composition or 447 

biological interactions, on the total values of DPUE Maps show a clear latitudinal pattern with a 448 

specific DPUE hotspot of regulated species in waters located in front of Castellón. The 449 

identification of these spatial-temporal trends and in particular of the DPUE hotspots can be 450 

particularly useful for spatial management of the analyzed fleet. The intra-annual/spatial effects 451 

could potentially be exploited in a spatial management strategy to reduce DPUE quantities, 452 

providing there are necessary economic incentives for fishers to adopt selective temporal rotation of 453 

fishing grounds. 454 

According to the simulations from the ecosystem modelling exercise, the ecological benefits of the 455 

discard ban would be mainly positive on European hake, a vulnerable and highly exploited or 456 

overexploited species [79, 80], and on Norway Lobster, a highly exploited invertebrate [81, 82] in 457 

the Mediterranean Sea. These impacts would be larger if the discard ban were extended to the entire 458 

list of discarded species, instead of just the regulated ones. However, other regulated species would 459 

show contrasting results. Likely, due to their role as prey and competitor species, smaller species 460 

that mainly play a prey role in the ecosystem may be negatively affected by the recovery of their 461 

predators (such as European hake as predator and anchovy as prey) or recovery of competitors 462 
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(such as demersal fish and flatfishes that can compete for similar preys). These results highlight that 463 

considering inter-specific food-web dynamics are essential to identifying the ecological 464 

consequences [68] and trade-offs of fisheries management and exploitation alternatives [83]. 465 

Ecosystem simulations also illustrated that the impact of the discard ban on the ecosystem may be 466 

limited and only a slight recovery of the ecosystem structure may be achieved by a discard ban. 467 

Some indicators showed a partial recovery of the ecosystem health with the implementation of the 468 

discard ban, such as demersal fish biomass. However, most of them did not show clear signs of 469 

recovery [67]. This can be related to the fact that the study exclusively simulated a discard ban of 470 

bottom trawling and did not include other measures or fleets. Additional fleets, such as purse seiners 471 

and small-scale fisheries, also have a large negative effect on marine resource and thus an 472 

intervention on these fleets may be needed to recover highly exploited Mediterranean species and 473 

communities, such as a reduction of fishing effort or total closure of sensitive areas (e.g., nurseries, 474 

spawning areas or aggregation areas). Due to the poor situation of many exploited stocks (such as 475 

European hake, European sardine and European anchovy) and ecosystems in the Mediterranean Sea 476 

[80] this study highlights that more drastic measures may be needed to yield clearer results in terms 477 

of recoveries of stocks and communities in Southern European Seas, in addition to a full 478 

implementation of the discard ban. 479 

Finally, our results highlight that the choice of modelling framework used to analyse the discard ban 480 

outcomes is important because in some cases our modelling results contrasted when implementing a 481 

temporal or a spatial-temporal approach. This is mainly because fishing effort, catch and discarding 482 

generation show heterogeneous spatial patterns.  483 

Bayesian spatial models can be a powerful approach to identifying discard hotspots given that they 484 

quantify both the spatial magnitude and the different sources of uncertainty. However, these models 485 

often include only implicit biotic interactions (such as competition, predation etc.) and simulation of 486 

future management scenarios are not performed straightforwardly. By contrast, these options are 487 
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available with the EwE approach, which did not include an explicit spatial component to account for 488 

the spatial autocorrelation and a quantification of the uncertainty. By combining these two 489 

techniques we can gain clear advantages for the exploration of management strategies and, 490 

specifically, assess possible discard ban implementations and consequences. This approach could be 491 

extended to others case study in others European fishing areas using similar data to test similarity 492 

and possible difference in the discard ban implementation. 493 
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Appendix 1: List of the regulated species in the Mediterranean Sea as defined in Annex III to 754 

Regulation (EC) No 1967/2006 that shall be brought and retained on board the fishing vessels, 755 

recorded, and landed, when the landing obligation will be implemented. The length (cm) refers to 756 

the Minimum Landing Size. Acronyms are: TL= total length and CL = carapace length. 757 

 758 

Species Length (cm) 

Dicentrarchus labrax 25 

Diplodus annularis 12 

Diplodus puntazzo 18 

Diplodus sargo 15 

Diplodus vulgaris 15 

Engraulis encrasicolus 9 

Epinephelus spp. 45 

Lithognathus mormyrus 20 

Merluccius merluccius 20 

Mullus spp. 11 

Pagellus acarne 12 

Pagellus bogaraveo 33 

Pagellus erythrinus 15 

Pagrus pagrus 18 

Polyprion americanus 45 

Sardina pilchardus 11 

Scomber spp. 18 

Solea vulgaris 20 

Sparus aurata 20 

Trachurus spp. 15 

Homarus gammarus 30 TL, 10,5 CL 

Nephrops norvegicus 7 TL, 2 CL 

Palinuridae 9 CL 

Parapenaeus longirostris 2 CL 

Pecten jacobeus 10 

Venerupis spp. 2.5 
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